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Abstract

In this paper, we investigate the famous Blake-Wilson, Johnson & Menezes
(BJM) authenticated key exchange protocols. We observe that the Corrupt
query in the BJM model is not very reasonable, i.e. it fails to model the adver-
sary’s capability well. We modify the BJM model by providing it with a new
Corrupt query. By this way, we bring the BJM model further to the practice.
Besides, our modification has a significant impact on the security proofs of the
BJM protocols. Specifically, the security proofs using CDH assumption will no
longer work in the modified BJM model. With slight modification, we show
that the BJM protocols are secure in the modified BJM model under the gap
Diffie-Hellman assumption (GDH).

Key words: Authenticated key exchange, Provably secure, BJM protocol,
Gap Diffie-Hellman;

1. Introduction

Key exchange (KE) allows two parties, Alice (A) and Bob (B), to establish a
shared session key via unsecured channels. Later, the shared session key can be
used to ensure data confidentiality and integrity between A and B using efficient
symmetric encryptions and message authentication codes (MAC). The classical
Diffie and Hellman [6] (DH) key exchange protocol first provides a solution to
this issue.

Authenticated key exchange (AKE) assures both parties that no other par-
ties aside from their intended peers may learn the established session key. A
key exchange (KE) protocol is said to provide key confirmation, if both parties
are sure that the intended peers really hold the session key. A protocol which
is an authenticated key exchange with key confirmation protocol is called AKC
protocol [4].

The authenticated key exchange protocols have been established to be sur-
prisingly difficult to design and there are a large number of possible attacks
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against the protocols. The traditional trial-and-error design approach is not
very desirable and has led to the situation that the flaws in the AKE proto-
cols have taken many years to discover. This has highlighted the importance of
examining the AKE protocols in the formal security model.

Bellare and Rogaway (BR93) [2] first propose a formal security model for
authentication and key distribution. They consider a scenario in which both two
parties share a long term key and want to establish a common session key. In
the BR93 model, the probabilistic polynomial time (PPT) adversary M has full
control of the communication network and its capability is modeled by providing
it with Send, Reveal oracle queries. The Send query allows the adversary to send
the message of its choice to some party and obtains the response, while Reveal
query allows the adversary to expose the session keys of some parties.

Subsequent work by Bellare and Rogaway (BR95) [3] considers key distri-
bution in the three-party server-based setting (3PKD) in which party A who
shares a long term key K with the server wants to establish a session key with
another party B (with the help of the server). In addition to the existing oracle
queries in the BR93 model, they additionally introduce a new Corrupt(A,K ′)
query by which the adversary obtains the long term key and the internal state
of party A, and replaces it with a new value K ′ of its choice. From that point
on, the server will use the revised long term key. If the adversary later wants to
modify A’s long term key to new one K ′′ she can issue a Corrupt(A,K ′′) query
(ignoring the returned string). The BR95 model is further developed by papers
[1, 4, 5, 7] later.

Blake-Wilson, Johnson & Menezes (BJM) [4] first consider the issue of au-
thenticated key exchange in the asymmetric (public key) setting in which each
party holds a public key/private key pair and wants to establish a common
session key. This famous paper has the significant influence on the subsequent
work in the key exchange field.

• The paper first proposes the formal definition of secure AKE and AKC
protocols, both of which have later been accepted as the standard defini-
tion for the key exchange protocols.

• The paper first introduces several important concepts such as key com-
promise impersonation (KCI), unknown key-share (UKS), both of which
are extensively studied by later work.

• The paper presents four key exchange protocols in which the protocol 1
and protocol 2 are shown to be secure three-pass AKC protocols provided
that computational Diffie-Hellman (CDH) problem and message authen-
tication code (MAC) algorithm are secure. The protocol 3 and protocol 4
are two-pass AKE protocols. The paper gives a short proof for protocol
3 and a conjectured security for protocol 4 which is further analyzed and
improved by later papers [10, 8].
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1.1. Corrupt queries in BR95 and BJM model
The BR95 model considers the symmetric setting in which party A who

shares a long term key K with the server wants to establish a session key with
another party B (with the help of the server).

• Corrupt(A,K ′) in the BR95 model: The adversary obtains the long term
key K of party A from the oracle. Then the oracle replaces K with a new
value K ′ of the adversary’s choice, i.e. K ← K ′. From that point on, the
corrupted party A will use the revised long term key K ′. If the adversary
later wants to modify A’s long term key to new one K ′′ she can issue a
Corrupt(A,K ′′) query (ignoring the returned string).

Actually, in the practice (the symmetric setting), if the adversary want to update
the party A’s long term key K, it is necessary for the adversary to present
the new long term key K ′ of its choice to the server with which it should
share the long term key K ′. Otherwise, the key exchange protocol will not
proceed correctly. So the Corrupt query in the BR95 models the real world (the
symmetric setting) well.

Note that the Corrupt query in the BJM model (the public key setting)
directly follows from that of the BR95 model (the symmetric setting). Assume
that PA = gSA is the party A’s public key and SA is the private key.

• Corrupt(A,S′A) in the BJM model: adversary obtains the party A’s
private key SA from the oracle and the oracle updates the SA with a new
value S′A of the adversary’s choice, i.e. SA ← S′A. From that point on, all
the parties will use party A’s new public key P ′A = gS

′
A .

Unfortunately, we find that the Corrupt query in the BJM model does not
model the real world (the public key setting) well. For example, in the practice
if the adversary want to modify the private key SA of some corrupted party A
with new private key S′A of its choice, the adversary is supposed to present the
corresponding public key P ′A = gS

′
A to the certification authority (CA) which

issues a certificate binding the new public key P ′A with party A’s identity. 1

Anyway, it is hardly possible for the adversary to present the new private key
S′A to anyone else (including CA). So we argue that the Corrupt query in the
BJM model (the public key setting) which inherits that of the BR95 model (the
symmetric setting) fails to model the real world well.

1.2. Our Contributions
In view of the weakness of the Corrupt query in the BJM model, in this

paper, we replace it with a new Corrupt(A) query in which the adversary obtains

1No other actions by the CA are required or assumed except that CA had better check
the validity of the public key PA, e.g. checking if P ′

A ∈ G (even a proof of possession of the
private key is not mandatory in the practice).
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the party A’s private key SA and takes fully control of the party A 2. From
that point on, the adversary can arbitrarily replace SA with new private key S′A
without presenting it to the oracle, and party A will use the new public key P ′A
later.

In practical terms this means that the security of our protocols does not
depend on the certification authority requiring registrants of public keys to
present its private key or prove knowledge of the corresponding private keys.

We stress that the modification not only brings the security model further
to the practice, but also has a significant impact on the security proofs of the
BJM protocols. Specifically, the protocol 1 and protocol 2 will no longer be
provably secure under the CDH assumption if we examine them in the security
model with modified Corrupt query.

Finally, we slightly modify the BJM protocol 1 and protocol 2 and show that
both of them are secure in the modified BJM model (with new Corrupt query)
under the gap Diffie-Hellman assumption (GDH) [11].

2. Preliminaries

In this section, we present several established results and tools needed in
this paper. Let the value κ be the security parameter. Let p, q be primes, where
q|p − 1. Let G = 〈g〉 be the cyclic group of order q. Define CDH(U,V):=Z,
where U=gu, V=gv and Z=guv.

2.1. DDH Assumption
Consider the two probability distributions (U,V,CDH(U,V)) and (U,V,Z)

where U,V,Z ∈ G.
For any probabilistic polynomial time algorithm A,

|Pr[A(p, q, g, U=gu,V=gv,CDH(U,V))=1]
−Pr[A(p, q, g, U=gu,V=gv,Z)=1]| ≤ ε(κ)

where u, v ∈ Zq and ε(κ) is negligible. The probability is taken over the coin
tosses of A, the choice of p, q, g and the random choices of u, v in Zq.

2.2. CDH Assumption.
For any probabilistic polynomial time algorithm A,

Pr[A(p, q, g, U=gu, V=gv) = CDH(U,V)] ≤ ε(κ).

where u, v ∈ Zq and ε(κ) is negligible. The probability is taken over the coin
tosses of A, the choice of p, q, g and the random choices of u, v in Zq.

2The later papers [7, 9] even allow the adversary to reveal the party’s private key without
fully control the party. By this way, their models cover the KCI attack.
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2.3. GDH Assumption.
For any probabilistic polynomial time algorithm A,

Pr[ADDH(·)(p, q, g, U=gu, V=gv) = CDH(U,V)] ≤ ε(κ)

where u, v ∈ Zq, and where ε(κ) is negligible. The DDH(·) denotes that A has
oracle access to DDH. The probability is taken over the coin tosses of A, the
choice of p, q, g and the random choices of u and v in Zq.

2.4. MAC.
For any probabilistic polynomial time algorithm A,

Pr[K ∈R {0, 1}κ; AMACK(·)(κ) = (m, a=MACK(m)
)
] ≤ ε(κ)

where ε(κ) is negligible. The MAC(·) denotes that A has oracle access to MAC.
Note that we require that m has not been queried against the MACing oracle.

3. Review of BJM’s work

3.1. Security Model
In this section, we review the BJM security model. For more details, see [4].

Participants. We model the protocol participants as a finite set U of fixed,
polynomial size with each A ∈ U being a probabilistic polynomial time (PPT)
Turing machine. Each protocol participant A ∈ U may execute a polynomial
number of protocol instances in parallel. We will refer to s-th instance of princi-
pal A communicating with peer B as Πs

A,B(A,B ∈ U) (a session or an instance).
Adversary Model. The adversary M is modeled as a PPT Turing machine
and has full control of the communication network and may eavesdrop, delay,
replay, alter and insert messages at will. We model the adversary’s capability
by providing it with oracle queries.

• Reveal(Πs
A,B) The adversary obtains the session key of Πs

A,B , provided
that the session holds a session key.

• Corrupt(A,S′A) The adversary obtains the private key SA of party A, and
the oracle replaces party A’s private key with new one S′A, i.e. SA ← S′A.
From that point on, all the parties will use party A’s new public key
P ′A = gS

′
A .

• Send(Πs
A,B ,m) The adversary sends the message m to the session Πs

A,B

and gets a response according to the protocol specification.

• Test(Πs
A,B) Only one query of this form is allowed for the adversary.

Provided that the session key is defined, the adversary M can execute this
query at any time. Then with probability 1/2 the session key and with
probability 1/2 a uniformly chosen random value ζ ∈ {0, 1}κ is returned.
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Let No-Matching denote the event that there exists a session Πs
A,B which

has accepted, but there exists no session Πt
B,A which has engaged in a matching

conversation 3 to Πs
A,B . Further, we require that both of party A and B are

uncorrupted. Let No-MatchingnmM,Σ(κ) be the probability that the event No-
Matching occurs.

Definition 1 (Freshness for AKE Protocols). Let instance Πs
A,B be a com-

pleted session, which is executed by party A with another party B. We define
Πs
A,B to be fresh if it has accepted, neither A nor B has been corrupted, and

neither Πs
A,B nor its matching conversation Πt

B,A (if exists) has been revealed.

Definition 2 (AKE Security). As a function of the security parameter κ, we
define the advantage AdvakeM,Σ(κ) of the PPT adversary M in attacking protocol
Σ as

AdvakeM,Σ(κ)
def
= |2 · SuccakeM,Σ(κ)− 1|

Here SuccakeM,Σ is the probability that the adversary queries Test oracle to a fresh
instance Πs

A,B, outputs a bit b̂ such that b̂ = b, where the bit b is used by the Test
oracle. We call the authenticated key exchange protocol Σ to be AKE secure if
for any PPT adversary M the function AdvakeM,Σ(κ) is negligible.

Definition 3 (AKC Security). A protocol Σ is a secure AKC protocol if

1. In the presence of the benign adversary on Πs
A,B and Πt

B,A, both oracles
always accept holding the same session key SK, and this key is distributed
uniformly at random on {0, 1}κ;

and if for every adversary M

2. If uncorrupted oracles Πs
A,B and Πt

B,A have matching conversation then
both oracles accept and hold the same session key SK.

3. No-MatchingnmM,Σ(κ) is negligible.

4. AdvakeM,Σ(κ) is negligible.

3.2. BJM Protocol 1
In this section, we review the BJM protocol 1 in Figure 1 (also Figure 1

in [4]). The discussion on the BJM protocol 2 is to a large extent similar and
deferred to Appendix B.

Let the value κ be the security parameter. Let G = 〈g〉 be a cyclic group of
order q with a generator g ∈ G. Let H1,H2 be two hash functions modeled as
random oracles in the security proof. Let MACK(m) be a message authentica-
tion code on message m keyed with K. Let (PA=gSA , SA) be party A’s public
key/private key pair and (PB=gSB , SB) be party B’s public key/private key
pair respectively.

3Informally, matching conversations mean that two sessions hold the same transcripts which
are the concatenations of sent and received messages during the communication.
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A(PA=gSA ) B(PB=gSB )

gRA

−−−−−−−−−−−−−−−−−−−−→
MACK(2, B,A, gRB , gRA)
←−−−−−−−−−−−−−−−−−−−−−

K = H1(gSASB ) MACK(3, A,B, gRA , gRB )
−−−−−−−−−−−−−−−−−−−−−→

K = H1(gSASB )

SK = H2(gRARB ) SK = H2(gRARB )

Figure 1: BJM Protocol 1

Theorem 1 (Theorem 8 in [4]). BJM protocol 1 in Figure 1 is a secure AKC
protocol in the sense of Definition 3 provided the CDH and MAC are secure and
H1 and H2 are independent random oracles.

Below we review the basic idea of the proof, which is helpful to understand our
improvement.
Condition 1 and 2: The proofs are omitted due to the relative simplicity.
Condition 3: They prove that No-MatchingnmM,Σ(κ) is negligible. Recall that
No-Matching is event that there exists a session Πs

A,B which has accepted, but
there exists no session Πt

B,A which has engaged in a matching conversation to
Πs
A,B . Note that we require that both of party A and B are uncorrupted.

• Case 1. Before they prove that No-MatchingnmM,Σ(κ) is negligible, they
first prove that the probability that the event Aκ happens is negligible
under CDH assumption. The event Aκ happens when there exists two
uncorrupted parties A,B for which gSASB is queried of H1 by the adversary
M .

• Case 2. They prove that if event Aκ does not occur, the probability No-
MatchingnmM,Σ(κ) is negligible under MAC assumption.

Condition 4: They prove that AdvakeM,Σ(κ) is negligible.

4. Improvement on BJM Model

As shown in the introduction, upon receipt of the Corrupt(A,S′A) queries,
the oracle gives party A’s private key SA to the adversary M and replaces SA
with a new private key S′A of the adversary M ’s choice. From this point on,
party A is fully under control of the adversary M . However, we stress that in
the real world if the adversary wants to replace the old private key of party A
with new one, it is not necessary for the adversary M to show the new private
key S′A to anyone else (including CA). So we claim that the definition of the
Corrupt query in the BJM model is not very desirable. We modify the Corrupt
query as follows:
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• Corrupt(A): The adversary obtains the party A’s private key SA. From
now, the adversary takes full control of the party A and can arbitrarily
replace the old private key SA with new one S′A of its choice without
presenting the new private key to the oracle. From that point on, the
corrupted party A will use the new public key P ′A.

Note that the modification not only brings the BJM security model further
to the practice, but also has a significant impact on the security proofs of the
BJM protocols.

We claim that the existing proof of Case 1 (Theorem 8 in [4]) for the BJM
protocol 1 will no longer hold under the CDH assumption in the modified BJM
model. Recall that in the Case 1 we want to prove that if there exists an
adversary M making event Aκ happens, then we can construct a CDH problem
solver F . At the beginning of F , it embeds the CDH instance into the public
keys of both parties A and B (see the Theorem 8 of [4] for the details). In other
words, during the simulation, F knows neither A’s private key nor B’s private
key.

Unfortunately, if the adversary M makes Corrupt(C) query and subse-
quently replaces party C’s old private key SC with new private key S′C of its
choice, then the subsequent Send queries to the uncorrupted party A (or B)
by the corrupted party C controlled by the adversary M can no longer be re-
sponded correctly. The problem is that the simulator F can not compute the
key H1(gSAS

′
C ) of MAC since it does not know party C’s new private key S′C

while the adversary M can.

F (CDH solver) the adversary M

Corrupt(C)
←−−−−−−−−−−

SC−−−−−−−−−−−→
· SC ← S′C
·
·

Send(Πs
A,C , g

RC )
←−−−−−−−−−−−−

?−−−−−−−−−−→

Figure 2: A simulation of BJM protocol 1 in the modified BJM model

For clarity of exposition, we illustrate in Figure 2 that the security proof
of the BJM protocol 1 is not correct in the modified BJM model. Accord-
ing to the protocol specification, the simulator F is supposed to respond with
MACK(2, A,C, gRA , gRC ) where K = H1(gS

′
CSA). However, F knows neither

S′C nor SA, and thus it can not produce the MAC value correctly while the
adversary M can. In other words, the simulation provided by F will no longer
be accurate.
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Remark: In the original BJM model, if the adversary want to replace the
corrupted party C’s private key SC , it is required to present the new private
key S′C to the oracle, i.e. Corrupt(C, S′C). With the new private key S′C , the
simulator F can respond correctly the corrupted party C’s Send queries to the
uncorrupted party A, since F can compute the key K = H1(gSAS

′
C ) of MAC. So

the BJM protocol 1 can be proven secure under CDH assumption in the original
BJM model.

5. New Security Proof in the Modified BJM Model

Before we present our new proof, we give a slightly modified BJM protocol 1
which is identical to the original BJM protocol 1 except that it adds the parties’
identities A,B into H1, i.e. H1(·, A,B). By this way, we can simplify the new
security proof of the modified BJM protocol 1.

A(PA=gSA ) B(PB=gSB )

gRA

−−−−−−−−−−−−−−−−−−−−→
MACK(2, B,A, gRB , gRA)
←−−−−−−−−−−−−−−−−−−−−−

K = H1(gSASB ,A,B) MACK(3, A,B, gRA , gRB )
−−−−−−−−−−−−−−−−−−−−−→

K = H1(gSASB ,A,B)

SK = H2(gRARB ) SK = H2(gRARB )

Figure 3: Modified BJM Protocol 1

We show that the modified BJM protocol in Figure 3 is secure in the modified
BJM model under the gap Difffie-Hellman (GDH) assumption. Specifically, we
have following theorem.

Theorem 2. The modified BJM protocol 1 in Figure 3 is a secure AKC protocol
in the sense of Definition 3 (with modified Corrupt query) provided the GDH
and MAC are secure and H1 and H2 are independent random oracles.

Proof (sketch). Compared to the proof of Theorem 8 in the original BJM paper
[4], the security proof of the modified BJM protocol 1 is identical except for
the proof for Case 1 in the Condition 3, in which we make use of the GDH
assumption instead of CDH assumption. We explain roughly the idea as follows:

Assume that the adversary has corrupted the party C and replaces its private
key SC with new one S′C . For the Send queries to uncorrupted party A by the
corrupted party C, the simulator F does not know how to compute response
message MAC

H1(gSAS′
C ,A,C)

(·) since F knows neither SA nor S′C .
The problem is how to provide consistent answers to the adversary M . For

example, if F responds with MACK(·) where K ∈ {0, 1}κ is chosen randomly,
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and later M queries H1 on the explicit value (gSAS
′
C , A,C)(the adversary can

compute them since it knows S′C), the answers provided by F will no longer
be consistent. It is for this purpose that we use the DDH(·, ·, ·) oracle to judge
whether or not the adversary queries H1 on value (gSAS

′
C , A,C). The identities

(A,C) acts as the indicators by which F knows when and how to call the
DDH oracle. Specifically, upon receipt of H1(Ẑ, A,C), the simulator F calls
DDH(PA, P ′C , Ẑ) where PA = gSA , P ′C = gS

′
C . Otherwise (as the original BJM

protocol 1 does), for each query of the form H1(Ẑ), the simulator F must call all
the oracles of the form DDH(PIDi

, PIDj
, Ẑ) (IDi, IDj ∈ U) until the predicates

return 1.
The details of proof for Case 1 will be presented in Appendix A.

6. Conclusions

In this paper, we investigate the famous Blake-Wilson, Johnson & Menezes
(BJM) authenticated key exchange protocols. We observe that the Corrupt
query in the BJM model is not very reasonable. We modify the BJM model
by providing it with a new Corrupt query. Our modification ont only brings
the BJM model further to the practice, but also has a significant impact on the
security proof of the BJM protocols. Specifically, the security proofs using CDH
assumption will no longer work in the modified BJM model. Finally, we present
the slight modified BJM protocols and show that they are shown secure in the
modified BJM model under the gap Diffie-Hellman assumption (GDH).
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Appendix A

LetAκ be the event that, during the adversaryM ’s experiment, there exists a
pair uncorrupted parties A,B ∈ U for which the value of the form (gSASB , A,B)
is queried against H1 by the adversary M .

Case 1: Suppose that Pr[Aκ] is non-negligible. In this case we construct from
the adversary M an algorithm F which is used to solve the GDH problem with
non-negligible probability.
F ’s operation: F takes a GDH problem instance (U=gu,V=gv), and tries to
compute CDH(U,V)=guv with access to the DDH(·, ·, ·) oracle.

F randomly picks two parties A,B ∈ U , guessing that the adversary M will
query H1 with the value of the form (gSASB , A,B). F assigns the public/private
pairs for all parties except for A’s and B’s. F sets A’s public key to be U, and
B’s public key to be V respectively.

F answers all Reveal queries and H2 queries as specified by protocol. F
answers all Send queries as specified by protocol except for Send queries to
party A and B. Below we just describe F ’s actions when the adversary M
makes the Send queries to the party B (the Send queries to party A can be
similarly dealt with). Note that party C may be corrupted.
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In the simulation below, simulator F introduces a list Llist, which stores
entries with the form (IDi, IDj , ∗). The third element records the key K of
MAC, which is either CDH(PIDi

, PIDj
) or a random value in group G.

• Send(ΠB,C ,M=λ): The simulator F chooses RB ∈ Zq and responds with
gRB .

• Send(ΠB,C ,M=gRC ): The simulator F maintains an initially empty list
Llist with entries of the form (IDi, IDj , ∗). F looks in Llist for the entry
of the form (C,B, ∗).

– If finds it, F responds with MACK(2, B,C, gRB , gRC ) where K is the
third element of this entry in Llist.

– Otherwise, F chooses K ∈ {0, 1}κ at random and responds with
MACK(2, B, C, gRB , gRC ). Then F stores the new entry of the form
(C,B,K) in Llist.

• Send(ΠB,C ,M=MACK(2, C,B, gRC , gRB )): F looks in Llist for the entry
of the form (B,C, ∗).

– If finds it, F checks if M=MACK(2, C,B, gRC , gRB ) where K is the
third element of this entry in Llist.
∗ If the predicates evaluates to 1, F responds with MACK(3, B,C,
gRB , gRC ).

∗ Otherwise, F rejects this session.
– Otherwise (no such entry exists), F rejects this session.

F answers all H1 queries as specified by protocol except for H1 queries
on (Ẑ, C,B) and (Ẑ, B,C) (the queries on (Ẑ, C,A) and (Ẑ, A,C) are
similarly dealt with).

• H1(Ẑ, C,B)
(
or H1(Ẑ, B,C)

)
: F maintains an initially empty list H list

1

with entries of the form (Ẑ, IDi, IDj , ∗). The simulator F responds to
these queries in the following way:

– If (Ẑ, C,B, ∗)
(
or (Ẑ, B,C, ∗)

)
is already there, then F responds with

the stored fourth value h.
– Otherwise, F checks if Ẑ=gSCSB by calling oracle DDH(PC , PB , Ẑ)

where PC = gSC ,PB = gSB . If the DDH predicates evaluates to 1, F
looks in Llist for the entry of the form (C,B, ∗)

(
or (B,C, ∗)

)
.

∗ If F finds it, F stores new entry of the form (Ẑ, C,B,K)
(
or

(Ẑ, B,C,K)
)

in H list
1 , where K is the third element of this entry

in Llist. Then, F responds with K.
∗ Otherwise (no such an entry in Llist), F randomly chooses h ∈
{0, 1}k, stores a new entry of the form (C,B, h)

(
or (B,C, h)

)
in Llist. Also, F stores a new entry of the form (Ẑ, C,B, h)

(
or

(Ẑ, B,C, h)
)

in H list and responds with h.

12



– Otherwise (DDH predicates evaluates to 0), F chooses h ∈ {0, 1}k
at random, sends it to the adversary M and stores the new tuple
(Ẑ, C,B, h)

(
or (Ẑ, B,C, h)

)
in H list

1 .

• Corrupt(IDi):

– If IDi=A or IDi=B, F aborts.

– Otherwise, F returns the party IDi’s private key to the adversary.

Now, if the adversary makes event Aκ happen, i.e. it has made queries H1

oracle on the the value of the form (gSASB =guv, A,B), for each entry of the form
(Ẑ, A,B) in H list

1 , F calls the DDH(U, V, Ẑ). If the DDH predicates evaluate
to 1, F stops and outputs Ẑ=CDH(U,V). The probability that F outputs the
value CDH(U,V) is

Pr[F ] ≥ Pr[Aκ]
T1(κ)2

where T1(κ) is the maximum number of parties in the system. So we can
conclude that if Pr[Aκ] is non-negligible then F can solve the GDH problem
with non-negligible probability. This contradicts the assumed hardness of the
GDH problem.

Appendix B

1. BJM protocol 2

A(PA=gSA ) B(PB=gSB )

gRA

−−−−−−−−−−−−−−−−−−−−→
MACK(2, B,A, gRB , gRA )
←−−−−−−−−−−−−−−−−−−−−−−

K = H1(gRARB , gSASB ) MACK(3, A,B, gRA , gRB )
−−−−−−−−−−−−−−−−−−−−−−→

K = H1(gRARB , gSASB )

SK = H2(gRARB , gSASB ) SK = H2(gRARB , gSASB )

Figure 4: BJM Protocol 2

2. Modified BJM protocol 2
We give a slightly modified BJM protocol 2 in Figure 5 which is identical

to the original BJM protocol 2 in Figure 4 (also Figure 2 in [4]) except that
it adds the value sid into both H1 and H2, i.e. H1(·, ·, sid), H2(·, ·, sid), where
sid = (gRA , gRB , A,B).

Theorem 3. The modified BJM protocol 2 in Figure 5 is a secure AKC protocol
in the sense of Definition 3 (with modified Corrupt query) provided the GDH
and MAC are secure and H1 and H2 are independent random oracles.
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A(PA=gSA ) B(PB=gSB )

gRA

−−−−−−−−−−−−−−−−−−−−→
MACK(2, B,A, gRB , gRA )
←−−−−−−−−−−−−−−−−−−−−−−

K = H1(gRARB , gSASB , sid) MACK(3, A,B, gRA , gRB )
−−−−−−−−−−−−−−−−−−−−−−→

K = H1(gRARB , gSASB , sid)

SK = H2(gRARB , gSASB , sid) SK = H2(gRARB , gSASB , sid)
where where

sid = (gRA , gRB , A,B) sid = (gRA , gRB , A,B)

Figure 5: Modified BJM Protocol 2

Proof (sketch). Compared to the proof of Theorem 9 in the original BJM proto-
col 2 [4], the security proof of the modified BJM protocol 2 is to a large extent
similar except for the proof for Case 1 in the Condition 3, in which we make
use of the GDH assumption instead of CDH assumption.

The modified BJM Protocol 2 is different from the modified BJM Protocol
1 in that it hashes sid into both H1 and H2, where sid includes the identities of
parties and the ephemeral public keys.

Assume that the adversary has corrupted the party C, updates its private
key to be S′C , and establishes a session key SK with the uncorrupted party B.
For the Reveal queries to party B, the simulator does not know how to return
the real session key SK, since F can not compute it without SB and S′C . If F
responds with a random value SK ∈ {0, 1}κ, and later M queries H2 on the
explicit value (gRCRB , gS

′
CSB , gRC , gRB , C,B)(the adversary can compute them

since it knows S′C and chooses RC itself), the answers provided by F will no
longer be consistent.

It is for this purpose that F uses DDH oracles to check the validity of the H2

queries. Specifically, upon receipt of H2(Ẑ1, Ẑ2, g
RC , gRB , C,B), the simulator

calls both DDH(P ′C , PB , Ẑ2) and DDH(gRC , gRB , Ẑ1) to judge whether or not
the adversary queries H2 on the correct value. The value sid = (gRC , gRB , C,B)
acts as the indicators for the simulator F .

To avoid repetition, we just give the sketch of the simulator F , in which
party C may be corrupted and A,B are uncorrupted.

• Corrupt(IDi): The simulator F ’s action is the same as that of Theorem
2.

• Send: The simulator F ’s action is similar to that of Theorem 2 except
that it maintains a list Llist with the form of (gRIDi , gRIDj , IDi, IDj , ∗)
instead of the form of (IDi, IDj , ∗).

• H1(Ẑ1, Ẑ2, g
RC , gRB , C,B)

(
or H1(Ẑ1, Ẑ2, g

RB , gRC , B,C)
)
: The simula-

tor F maintains an initially empty list H list
1 with entries of the form

(Ẑ1, Ẑ2, g
RIDi , gRIDj , IDi, IDj , ∗) instead of the form of (Ẑ, IDi, IDj , ∗).

As a result, F must call both DDH(PC , PB , Ẑ2) and DDH(gRC , gRB , Ẑ1)
oracles to keep the consistency of H list

1 and Llist.
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• Reveal(Πs
B,C): The simulator F maintains an initially empty list T list

with entries of the form (gRIDi , gRIDi , IDi, IDj , ∗). F looks in T list for
the entry of the form (gRC , gRB , C,B, ∗).

– If finds it, F responds with SK, which is the fifth element of this
entry in T list.

– Otherwise, F chooses SK ∈ {0, 1}κ at random and stores the new
entry of the form (gRC , gRB , C,B, SK) in T list.

• H2(Ẑ1, Ẑ2, g
RC , gRB , C,B)

(
or H2(Ẑ1, Ẑ2, g

RB , gRC , B, C)
)
: F maintains

an initially empty list H list
2 with entries of the form (Ẑ1, Ẑ2, g

RIDi , gRIDj ,
IDi, IDj , ∗). The simulator F calls both DDH(PC , PB , Ẑ2) and DDH(gRC ,

gRB , Ẑ1) oracles to keep the consistency of H list
2 and T list.
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