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Abstract. In this paper we present a theoretical framework to quan-
tify the information brought by several linear approximations of a block-
cipher without putting any restriction on these approximations. We quan-
tify here the entropy of the key given the plaintext-ciphertext pairs statis-
tics which is a much more accurate measure than the ones studied earlier.
The techniques which are developed here apply to various ways of per-
forming the linear attack and can also been used to measure the entropy
of the key for other statistical attacks. Moreover, we present a realistic
attack on the full DES with a time complexity of 248 for 241 pairs what
is a big improvement comparing to Matsui’s algorithm 2 (251.9).

Keywords : linear cryptanalysis, multiple linear approximations, infor-
mation theory.

1 Introduction

Related work

Linear cryptanalysis is probably one of the most powerful tools avail-
able for attacking symmetric cryptosystems. It was invented by Matsui
[1, 2] to break the DES cipher building upon ideas put forward in [3, 4]. It
was quickly discovered that other ciphers can be attacked in this way, for
instance FEAL [5], LOKI [6], SAFER [7]. It is a known plaintext attack
which takes advantage of probabilistic linear equations that involve bits
of the plaintext P, the ciphertext C and the key K

Pr(< π,P > ⊕ < γ,C > ⊕ < κ,K >= b) =
1

2
+ ǫ. (1)

Usually, ǫ is called the bias of the equation, π, γ and κ are linear masks
and < π,P > denotes the following inner product between π = (πi)1≤i≤m

and P = (Pi)1≤i≤m, < π,P >
def
=

⊕m
i=1 πiPi. There might be several

different linear approximations of this kind we have at our disposal and
we let n be their number. We denote the corresponding key masks by
κi = (κj

i )1≤j≤k and the corresponding biases by ǫi for i ∈ {1, . . . , n}.



Such an attack can be divided in three parts:
- Distillation phase: It consists in extracting from the available plaintext-
ciphertext pairs the relevant parts of the data. Basically, for each linear
approximation, the attacker counts how many times < π,P > ⊕ < γ,C >
evaluates to zero.
- Analysis phase: It consists in extracting from the values taken by the
counters some information on the key and testing whether some key
guesses are correct or not by using the linear approximation(s) (1) as
a distinguisher. Typically, the output of this phase is a list of all possible
subkey guesses sorted relatively to their likelihood.
- Search phase: It typically consists in finding the remaining key bits by
exhaustive search.

In [1] Matsui used only one approximation to distinguish wrong last
round keys from the right one. One year later, he refined his attack by us-
ing a second approximation obtained by symmetry [2] and by also distin-
guishing with them the first round key. Later Vaudenay [8] has presented a
framework for statistical cryptanalysis where Matsui’s attack is presented
as a particular case. With Junod, he has also studied the optimal way of
merging information from two (or more) approximations [9]. This kind
of attack can use several approximations but the key masks must have
disjoint supports. A second approach of using multiple equations is given
by Kaliski and Robshaw [10]. They improved Matsui’s first attack using
several approximations which have the same key mask κ. Biryukov and
al. suggest in [11] a way of using multiple linear approximations without
putting any restriction on them. They present a theoretical framework to
compute the expected rank of the good subkey guess. This framework has
been used for SERPENT cryptanalysis [12, 13]. Recent works by Hermelin
and al. [14] give a way to compute the good subkey ranking probability
law in the case of multidimensional linear cryptanalysis. More details on
this work are given later to compare it to ours.

All these improvements have a common goal: reducing the amount
of messages needed for the attack. Clearly, using several approximations
should give more information than a single one.

Our contribution

The purpose of this paper is to study how much multiple linear ap-
proximations may benefit linear cryptanalysis. We aim at quantifying ac-
curately how much information is gained on the key from the knowledge
of statistical data derived from linear characteristics of type (1).



Several statistics have been proposed to study how many plaintext-
ciphertext pairs we need in order to carry out successfully a linear crypt-
analysis. This includes for instance the probability of guessing incorrectly
a linear combination of key bits by Matsui’s Algorithm 1 [2], the rank-
ing of the right subkey in the ordered list of candidates [15, 16] or the
expected size of the number of keys which are more likely than the right
key [11]. Some of these statistics are either not relevant for multilinear
cryptanalysis or are extremely difficult to compute (such as for instance
the ranking statistics of [15, 16] when we do not allow restrictions on the
approximations used). This is not the case of the expected size of the
number L of keys which are more likely than the right key considered in
[11]. However, this kind of statistics also leads to pessimistic predictions
concerning the number of plaintext-ciphertexts which are needed. To be
more specific, it turns out that its prediction of the number of plain-
text/ciphertext pairs ensuring that the most likely key is indeed the right
key is in many cases twice the number of plaintext/ciphertexts which are
really needed ! This is detailed in Proposition 3.1. We obtain the right
amount by our analysis. It consists in studying instead of the expectation
of L, the entropy H(K|Y) of the key K (or more generally H(K′|Y),
where K′ is a certain subkey of K- for instance it can be the part of
the key involved in a distinguisher attack) given the statistics Y we have
derived from the plaintext-ciphertext pairs.

The fact that the entropy is a much better statistic than the expeca-
tion of L is is related to the following probabilistic phenomenon : this ex-
pectation is in a rather wide range of amount of plaintext-ciphertext pairs
exponential in the key size k, while for most plaintext-ciphertext pairs the
most likely key is the right one. This comes from the fact that rare events
(of exponentially small probability) yield values of L which are exponen-
tially large in k. In other words, while for typical plaintext-ciphertext pairs
L is equal to zero, for some rare occurrences of the plaintext-ciphertext
pairs L is very large, and this accounts quite heavily in the expectation of
L. The entropy behaves here much better. In a certain sense, it is related
to the expectation of the logarithm log2(L). The logarithm of L varies
much less than L and this why the typical size of log L coincides quite
well with the expectation.

Despite the fact that it is much more desirable to estimate the entropy
than the expectation of L, it might seem that this quantity is much harder
to calculate. Our main result is to give here a lower bound on this quantity
(see Subsections 3.1 and 3.2) which is quite sharp. The sharpness of the
bound is illustrated by the results of Subsection 3.3. We apply this bound



in three different scenarios: (i) the linear attack which recovers only the
linear combination of the key bits, (ii) the usual linear distinguishing
attack which recovers some linear combinations of the key bits of the
first (and/or) last round, and (iii) the algorithm MK2 in [11]. We wish
to emphasize the fact that the technique to derive the lower bound is
quite general and applies in a very wide range of situations, and not
only in the case where Y corresponds to a function of the counters of
linear approximations (see Subsection 3.1). A second useful property of
this lower bound on the entropy is that it gives an upper bound on the
information we gain on the K when we know Y which is independent of
the algorithm we use afterwards to extract this information.

Complementarity with [14]
The work of Hermelin, Nyberg and Cho gives a framework for multidi-

mensional linear cryptanalysis that does not require statistical indepen-
dence between the approximations used. A set of m linearly independent
approximations is chosen and the correlations of the linear combinations
of those approximations are computed. For each plaintext/ciphertext pair,
the m bits vector corresponding to the m base approximation evaluations
is extracted. Hence, the attacker gets an empirical probability distribu-
tion for the m bits vector. Actually, this distribution depends on the key
used for encryption (usually it depends on m bits of this key). Using
the correlations of the 2m approximations, the probability distribution of
the m bits vector can be computed for each possible key. Using enough
pairs, the empirical distribution is likely to be the closest to the distri-
bution provided by the correct key. The guessed key is the one with the
maximum log-likelihood ratio (LLR) to the uniform distribution.

As the statistical independence hypothesis for linear approximations
may not hold for many ciphers, this is an important theoretic improve-
ment. Nevertheless, some of the results are not tight because of some
other conjectures or simplifications. For instance, saying that the LLR
of a wrong keys has a mean of 0 gives very pessimistic results as sup-
posing statistical independence of LLRs does (for 8-round DES at least).
Moreover, this method may not apply to some cryptanalyses (the one
presented in this paper for instance). Using m base approximations leads
to a time complexity of 2m2d in the analysis phase (where d is the number
of information bits to recover). In the case of the presented attack, 32968
approximations are used to recover 42 key bits. This set of approximation
has a dimension of 54. Hence, the analysis time complexity is about 296

what is much greater that exhaustive search. The approach presented in



this paper is based on a statistical independence hypothesis. Thus, it is an
orthogonal and complementary approach to the one of [14]. This approach
leads to an attack with a better complexity than Matsui’s algorithm 2 as
soon as less than 242 pairs are available (see Section 4). Using the same
approximations in the framework of Hermelin and al. leads to an attack
with higher complexity.

Actually, our method is based on some decoding techniques that are
easily practicable in case of statistical independence of the approxima-
tions. That is why our theoretical framework seems to be the more suit-
able in that case. In the other hand, the work of Hermelin and al. is the
more suitable when no assumption is made on statistical independence
up to now.

2 The probabilistic model

It will be convenient to denote by K̃
def
= (K̃i)1≤i≤n the vector of linear

combinations of the key bits induced by the key masks, that is

K̃i
def
=

k
⊕

j=1

κj
iKj .

A quantity will play a fundamental role in this setting : the dimension
(what we will denote by d) of the vector space generated by the κi’s. It
can be much smaller than the number n of different key masks.

We denote by Σ the set of N plaintext-ciphertext pairs. The informa-
tion available after the distillation phase is modeled by

Model 1 — The attacker receives a vector Y = (Yi)1≤i≤n such that:

∀ i ∈ {1, . . . , n}, Yi = (−1)K̃i + Ni , Ni ∼ N (0, σ2
i ), (2)

where σ2
i

def
= 1

4Nǫ2
i

(N is the number of available plaintext/ciphertext

pairs).
We denote by f(Y|K̃) the density function of the variable Y condi-

tioned by the value taken by K̃ and fi(Yi | K̃i) denotes the density of the
variable Yi conditioned by K̃i.
These conditional densities satisfy the independence relation

f(Y | K̃) =
n

∏

i=1

f(Yi | K̃i) (3)



The vector Y is derived from Σ as follows. We first define for every i in
{1, . . . , n} and every j in {1, . . . , N} the following quantity

Dj
i

def
=< πi,P

j > ⊕ < γi,C
j > ⊕bi,

where the plaintext-ciphertext pairs in Σ are indexed by (Pj ,Cj) and bi

is the constant appearing in the i-th linear approximation. Then for all i

in {1, . . . , n} we set up the counters Di with Di
def
=

∑N
j=1 Dj

i from which
we build the vector of counters D = (Di)1≤i≤n. Di is a binomial random
variable which is approximately distributed as a normal law N ((1/2 −
ǫi(−1)K̃i)N, (1/4− ǫ2i )N). This explains why the vector Y = (Yi)1≤i≤n is
defined as:

Yi
def
=

N − 2Di

2Nǫi
(4)

and why Equation (2) holds. There is some debate about the indepen-
dence relation (3). This point is discussed by Murphy in [17] where he
proves that even if some key masks are linearly dependent, the indepen-
dence relation (3) holds asymptotically if for a fixed key the covariances
cov(Dj

i1
, Dj

i2
) are negligible. We have checked whether this holds in our ex-

perimental study. We had 129 linear approximations on 8-round DES with
biases in the range [1.45.10−4, 5.96.10−4] and we found empirical covari-
ances in the range [−2.10−7, 2.10−7] for 1012 samples. This corroborates
the fact that the covariances are negligible and that the independence
relation (3) approximately holds.

3 Bounds on the required amount of plaintext-ciphertext
pairs

3.1 An information-theoretic lower bound

The purpose of this subsection is to derive a general lower bound on the
amount of uncertainty H(K|Y) we have on the key given the statistics Y

derived from the plaintext-ciphertext pairs. We recall that the (binary)
entropy H(X) of a random variable X is given by the expression:

H(X)
def
= −

∑

x

Pr(X = x) log2 Pr(X = x) (for discrete X)

def
= −

∫

f(x) log2 f(x)dx (for continuous X of density f) (5)



For a couple of random variables (X, Y ) we denote by H(X|Y ) the con-
ditional entropy of X given Y . It is defined by

H(X|Y )
def
=

∑

y

Pr(Y = y)H(X|Y = y),

where H(X|Y = y)
def
= −∑

x Pr(X = x|Y = y) log2 Pr(X = x|Y = y)
when X and Y are discrete variables and when Y is a continuous random
variable taking its values over R

n it is given by

H(X|Y) =

∫

Rn

H(X|Y = y)f(y)dy,

where f(y) is the density of the distribution of Y at the point y. A related
quantity is the mutual information I(X; Y ) between X and Y which is
defined by

I(X; Y )
def
= H(X) −H(X|Y ). (6)

It is straightforward to check [18] that this quantity is symmetric and
that

I(X; Y ) = I(Y ; X) = H(Y ) −H(Y |X). (7)

Since K is a discrete random variable and Y is a continuous one, it will
be convenient to use the following formula for the mutual information
where the conditional distributions of Y given K has density f(Y |K).

I(K; Y ) =
∑

k

Pr(K = k)

∫

f(y|k) log
f(y|k)

∑

k f(y|k)
dy. (8)

We will be interested in deriving a lower bound on H(K′|Y) when
K′ = (K ′

1, . . . , K
′
n) is a subkey derived from K which satisfies:

(i)(conditional independence assumption)

f(Y | K′) =

n
∏

i=1

f(Yi | K ′
i), (9)

where f(Y|K′) is the density function of the variable Y conditioned by
the value taken by K′ and fi(Yi | K ′

i) denotes the density of the variable
Yi conditioned by K ′

i.
(ii) The subkey K′ may take 2k′

values and all are equally likely.

With these assumptions we have the following result



Lemma 1.

I(K′;Y) ≤
n

∑

i=1

I(K ′
i; Yi) (10)

H(K′|Y) ≥ k′ −
n

∑

i=1

I(K ′
i; Yi). (11)

The proof of this lemma can be found in the appendix. It will be
used in what follows in various scenarios for linear attacks, but it can
obviously be used to cover many other cryptographic attacks. This lower
bound is in general quite sharp as long as it is non-trivial, i.e when k′ ≥
∑n

i=1 I(K ′
i; Yi). We will prove this for Attack 1 in what follows but this

can also be done for the other cases.

3.2 Application to various scenarios

Attack 1 : In this case, we do not use the linear equations as distin-
guishers but only want to recover the < κi,K >’s. This corresponds in
the case of a single equation to Matsui’s attack 1 and in the case of
multiple equations to the attack MK1 in [11]. We have here

K ′
i = K̃i =< κi,K >

Yi =
N − 2Di

2Nǫi
.

Variables K′ and Y satisfy the required conditional independence as-
sumption (see Equation 3) and a straightforward calculation using For-
mula (8) yields

I(K ′
i; Yi) = Cap(σ2

i )

where

Cap(σ2)
def
= 1 − σe−

1
2σ2

√
8π

∫ ∞

−∞
e−

u2σ2

8 e
u
2 log2

(

1 + e−u
)

du.

and therefore by applying Lemma 1 we obtain

H(K′|Y) ≥ d −
n

∑

i=1

Cap(σ2
i ) (12)

Attack 2: This attack corresponds to cryptanalyses using a distinguisher
such as [12, 19]. Approximations of the form (1) are applied to a reduced



cipher say the cipher peeled off by the first and the last round what is
usually the case. Here, we focus on the subkeys used for the first (Kfirst)
and the last rounds (Klast). The idea is to encrypt and decrypt the pairs
with each possible value for Kfirst and Klast and then to observe the bias
obtained. The candidate that gives the greater bias is then choosen. Notice
that we do not take care of the information given by the < κi,K >. This
may be the case when cryptanalyzing ciphers for which it is difficult to
find the key masks of linear approximations.

The < πi,P >’s and the < γi,C >’s might not depend on all the bits
of Kfirst and Klast. We denote by K̂i the vector composed of the bits of
Kfirst and Klast on which the < πi,P >’s and the < γi,C >’s depend on.

We define K′ by the vector (K̂i)
n
i=1 and assume that it may take 2k̂ values.

The aim is to recover K′ based on the values of the counters Dz
i for i in

{1, . . . , n} and z ranging over all possible values for K′. These counters
are defined similarly as in Section 2 with the difference being that we use
the value K′ = z for deriving the relevant couples (P,C). The statistics

Y = (Yi)1≤i≤n we consider in this case is given by Yi
def
= (Y z

i )z with

Y z
i =

|N − 2Dz
i |

2Nǫi
.

The conditional independence relation (3) is also satisfied in this case.
With the help of Lemma 1, we can write H(K′|Y) ≥ k̂−∑n

i=1 I(K ′; Yi).
We can again use Lemma 1 and obtain I(K ′; Yi) ≤ ∑

z I(K ′; Y z
i ). The

variable Y z
i has density ri if z corresponds to the right choice for K ′ and

wi otherwise, where ri(t) = ϕ1
i (t) + ϕ−1

i (t), wi(t) = 2ϕ0
i (t) for nonneg-

ative t with ϕα
i (t) = 1√

2πσ2
i

exp
[

− (t−α)2

2σ2
i

]

being the density of a normal

variable of expectation α and variance σ2
i . A straightforward application

of Formula (8) gives

I(K ′
i; Y

z
i ) =

∫ ∞

0

ri(t)

2k̂
log

(

ri(t)

si(t)

)

dt+

∫ ∞

0
(1−2−k̂)wi(t) log

(

wi(t)

si(t)

)

dt,

(13)

with si(t)
def
= 2−k̂ri(t)+ (1−2−k̂)wi(t). We denote this quantity by Ii and

we finally obtain

H(K′|Y) ≥ k̂ − 2k̂
n

∑

i=1

Ii.

Attack 3: This corresponds to the attack MK2 in [11] which is a variation
of the previously seen distinguisher attack. In this case, we wish to find
simultaneously the K̂i’s defined in Attack 2 and the vector K̃ defined in



Attack 1. In this case, we let K′
i = (K̂i, K̃i) and define K′ def

= (K′
i)1≤i≤n.

We assume that 2k′
is the number of all possible values for K′ and that

2k̂ is the number of all possible values for K̂. Here, we define the relevant
statistics Y = (Yi)1≤i≤n by Yi = (Y z

i )z where z ranges over all possible
values for K̂ and where

Y z
i =

N − 2Dz
i

2Nǫi
.

We have again the desired independence relation (3) and as in the previous
example we can use Lemma 1 twice to obtain

H(K′|Y) ≥ k′ −
n

∑

i=1

I(K′
i;Yi) ≥ k′ − 2k̂

n
∑

i=1

I(K′
i; Y

z
i )

A straightforward application of Formula (8) yields

I(K′
i; Y

z
i ) =

∫ ∞

−∞

ϕ1
i (t)

2k̂
log

(

ϕ1
i (t)

ψi(t)

)

dt+

∫ ∞

−∞
(1−2−k̂)ϕ0

i (t) log

(

ϕ0
i (t)

ψi(t)

)

dt,

with ψi(t)
def
= (1− 2−k̂)ϕ0

i (t) + 2−k̂−1[ϕ−1
i (t) + ϕ1

i (t)] and ϕα
i (t) defined as

in Attack 2.

3.3 An upper bound

One might wonder whether or not the bounds given in the previous sub-
section are sharp or not. It is clear that these lower bounds become nega-
tive when the number of pairs is large enough and that they are worthless
in this case (since entropy is always nonnegative). However in all three
cases it can be proved that as long the bound is non trivial it is quite
sharp. We will prove this for the lower-bound (12). Similar techniques can
be used for the other bounds but it would be too long to include them in
this paper. To prove that (12) is sharp we will consider the case when

n
∑

i=1

Cap(σ2
i ) ≈ d

If the lower-bound is sharp, one might be tempted to say that the condi-
tional entropy of K′ given Y should be close to 0 which would mean that
K′ is determined from Y with probability close to 1. This is of course
not always true, but it is the case for most choices of the coefficients κj

i .
To give a precise meaning to this statement we will first consider what
happens when the κj

i ’s are chosen at random.



Theorem 1. Assume that the κj
i are chosen chosen uniformly at random

and that
∑n

i=1 Cap(σ2
i ) ≥ d + δn for some constant δ > 0. Let Perr be

the probability that the most likely value for K′ given Y is not the right
one. There exists a constant A such that

Perr ≤
A

δ2n
+ 2−δn/2.

The probability Perr is taken over Y but also over the choices of the
κj

i ’s. It says nothing about a particular choice of the κj
i ’s. However it

implies the aforementioned assertion about most choices of the κi’s. Let
us be more specific by bringing in Perr(C) which is the probability that
the most likely key given Y is not the right one when the subspace of
dimension d of the possible values for K̃ is C. A bound on Perr implies
that for most choices of the κi’s (and hence of C) Perr(C) is small by using
the following lemma

Lemma 2. Assume that Perr ≤ ǫ. Then for any t > 0:

PrC (Perr(C) ≥ tǫ) ≤ 1

t

Proof. Let us define P
def
= PrC (Perr(C) ≥ tǫ). Then, we observe that

Perr =
∑

C Perr(C)Pr(C) ≥ Ptǫ. This implies that P ≤ 1
t .

Remark: The notation PrC means here that the probability is taken over
the choices for C. It actually denotes the proportion of choices for C which
lead to the specified event inside the probability.

3.4 Entropy vs. expected number of K̃’s more likely than the

right one

The aim of this subsection is to emphasize the fact that in a certain
range of values of N (which is the number of plaintext-ciphertext pairs)
the expected size E of the list of the K̃’s which are more likely than the
right one gives pessimistic estimates of the amount of plaintext-ciphertext
pairs we need to mount an attack. Actually, the gain g of a type 1 attack
defined in [11] relies on this statistic E . Here, we compare this gain with
the capacity defined in Subsection 3.2. In order to achieve top ranking
for a d-bits key (that is the correct key is at the top of the list), the gain
has to be equal to d and Theorem 1 shows that for

∑n
i=1 Cap(σ2

i ) ≈ d
the probability of top ranking is close to 1. The comparison shows that
the estimate derived from E is twice bigger than the one derived from



our entropy approach, as stated in Proposition 3.1. Proposition 3.1 holds
for N · ǫ2i = o(1). This is often the case in multiple linear cryptanalysis
where many approximations are used to drop the data complexity below
the value required for a single approximation, that is N = O(ǫ−2).

Proposition 3.1 — Suppose that N is in a range where ∀i, Nǫ2i = o(1).
Using our entropy approach, the estimate for the data complexity required
to achieve top ranking on a d-bit key is

N ≈ d ln(2)

2
∑n

i=1 ǫ2i
(1 + o(1)) .

The one obtained using the formula derived from the gain in [11] is

N ≈ d ln(2)
∑n

i=1 ǫ2i
(1 + o(1)) .

Proof.

It can be found in [20, ex. 4.12] that
∑n

i=1 Cap(σ2
i ) =

2N
Pn

i=1 ǫ2i
ln(2) (1+o(1)),

if for all i, N · ǫ2i = o(1). The corresponding estimate for N is N ≈
d ln(2)

2
Pn

i=1 ǫ2i
(1 + o(1)) . The formula for the gain in [11] is:

g ≈ − log2



2 · Φ



−

√

√

√

√2N ·
n

∑

i=1

ǫ2i







 . (14)

The following estimate can be found in [21, p. 175]. For large x,
ln(Φ(−x)) = −x2/2(1 + o(1)). We can apply this to (14) and find

N ≈ d ln(2)
Pn

i=1 ǫ2
i

(1 + o(1)) .

4 Experimental Results

To corroborate the theoretical results presented in this paper, we per-
formed some experiments. First, we confirm the tightness of the bound on
entropy by comparing it to the empirical entropy computed for a toy ex-
ample (namely a type 1 attack on the 8-round DES). Then, we performed
a realistic type 1 attack on the full 16-round DES, ranked the subkeys
with respect to their likelihoods and checked whether or not the rank of
the right subkey is among the 2H(K′|Y) most likely subkeys. The results
we obtained confirmed that choosing lists of this size is indeed relevant.
Finally, in order to emphasize the power of multiple linear cryptanalysis,



we compare this type 1 attack using many approximations to Matsui’s
type 3 attack using the optimal ranking statistic suggested by Junod [15].
This is first time that such an attack is performed.

Accuracy of the bound on entropy

Concerning the bound on entropy given in 1, we checked our results on
8-round DES. For those simulations, we used a group of 76 linear approx-
imations involving 13 key bits to perform a type 1 attack. The quality
of the lower-bound (12) can be verified by estimating empirically the en-
tropy. Figure 1 displays the empirical conditional entropy of K′ given
Y for these equations as a function of log2(N), where N is the number
of available plaintext-ciphertext pairs. There is an excellent agreement
between the lower bound and the empirical entropies up to when we ap-
proach the critical value of N for which the lower bound is equal to zero.
This kind of lower bound is really suited to the case when the amount of
plaintext/ciphertext pairs is some order of magnitude below this critical
value. This is typically the case when we want to decrease the amount of
data needed at the expense of keeping a list of possible candidates for K′.
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Fig. 1. comparison between lower bound and empirical value of entropy.

A realistic type 1 attack on the full 16-round DES

Our aim in this experiment was to confirm that most of the time the
right value of K′ = (< κi,K >)1≤i≤n belongs to the list of 2H(K′|Y) most
likely candidates. We performed here the whole type 1 attack, with the
exception of the search phase which is not relevant for our purpose. In
[22], the analysis phase uses a soft decision decoding algorithm for Reed
Muller codes over the Gaussian channel with erasures. This decoding al-
gorithm can be efficiently performed using a fast Walsh-Hadamard trans-



form. Generating the list and sorting it are thus two operations with the
same complexity O(d2d) where d is the dimension of the space spanned
by κ’s. This implies that to speed up the analysis phase, we have to use
approximations that lead to a small d. In the case when the set of approxi-
mations does not have any structure, the analysis phase can be efficiently
performed using a general decoding algorithm for random linear codes
such as for instance the stochastic resonance decoding algorithm from
Valembois [23]. There is still no proof of its complexity but it is quite
simple to implement and actually efficient. The study of this decoding
algorithm is out of the scope of this article but is a nice subject we wish
to work on.

Using a Branch & Bound Algorithm, we found 74086 linear approxi-
mations on the 16-round DES with biases higher than 2−28.84 (the biases
are obtained by using the piling-up lemma). The space spanned by these
κ’s turned out to be 56. This is too much to use directly the fast Walsh-
Hadamard transform. We choose to consider a subset of these approxi-
mations (32968 out of 74086 spanning a vector space of dimension 42)
which can be divided in 4 groups, each of them consisting of key masks
κi spanning a vector space of small dimension d. We sum-up information
about these groups in Figure 2.

Group N Nb. input masks Nb. output masks d

G1 12384 1500 82 19
G2 12384 82 1500 19
G3 4100 64 82 13
G4 4100 82 64 13

Fig. 2. characteristics of the groups of approximations.

The symmetry comes from the fact that enciphering or deciphering
with the DES is the same algorithm (using subkeys in reverse order).
We observe that the number of different masks in a group is much lower
than the number of approximations. This will help us in speeding up
the distillation phase using a trick similar to the one mentioned in [24].
Notice that some key bits are common to some groups. We performed a
fast Walsh Hadamard transformation on each group separately and use a
heuristic to combine the information for each group to compute the rank
of the correct key inside the list of candidates sorted with respect to their
likelihood. This is detailed in Appendix B.



The number N of available pairs was chosen to be small enough so that
we can generate the data and perform the distillation phase in reasonable
time. On the other hand, if we want our experiments to be relevant, we
must get at least 1 bit of information about the key. These considerations
lead us to choose N = 239 for which we get 2 bit of information out of 42
on the subkey.

We performed the attack 18 times. This attack recovers 42 bits of the
key. For 239 pairs, the information on the key is of 2 bits. The entropy
on the key is thus 40 bits. Our theoretical work suggests to take a list of
size 2H(K′|Y) = 240 to have a good success probability. Our experiments
corroborate this. The worst rank over the 18 experiments is 240.88 and
the rank exceeded 240 in only 3 experiments out of 18. The (ordered) list
of ranks for the 18 experiments is:

231.34, 233.39, 234.65, 235.24, 236.56, 237.32, 237.99, 238.11, 238.52, 238.97,

239.04, 239.19, 239.27, 239.53, 239.85, 240.28, 240.82, 240.88.

Comparison with Matsui’s attack:

The attack from [2] uses two approximations on 14-round DES with biases
1.19.2−21 in a type 3 attack. This kind of attack uses approximations
with much better biases than a type 1 attack because they involve only
14 rounds instead of the full 16 rounds.

Despite this fact, we show here that the gap between 14-round ap-
proximations and 16-round approximations can be filled by using many
approximations in type 1 attack. We demonstrate here that for a rather
large range of number of plaintext/ciphertext pairs N , a type 1 attack
has a better complexity than the best version Matsui’s type 3 attack [15].
This is first time that such a result is shown on the full DES.

Figure 3 gives the formulas used to compute the complexity of the
two attacks. Due to space constraints, we do not detail how we obtained
the distillation and analysis phase complexities but they are essentially a
direct application of the tricks of [24] and the work of [19]. We denote by ν
the XOR operation complexity and θ the DES enciphering complexity (in-
cluding key schedule). From the same amount of data, our attack obtains

Attack Distillation Analysis Search

Matsui’s [15] N · 2 · 46 · ν 12 · 212 · ν 2H(K′|Y) · θ
Our N · (82 + 82 + 64 + 64) · 44 · ν 226 · ν 2H(K′|Y) · θ

Fig. 3. complexities of the different steps.



more information on the key. It improves the final search complexity at
the cost of increasing the distillation phase complexity. To measure the
gain of using a type 1 attack, we have to estimate the ratio ν/θ. The
lower this ratio is, the more we gain using multilinear type 1 attack. For
a standard implementation, 600 · ν is a good estimate of θ. We computed
the complexities of the two attacks in terms of DES evaluations (θ) and
plotted it as functions of the number of pairs in Figure 4. We restrict the
plot to the value of N where type 1 attack competes with type 3 and
we can see that this attack is better for N less than 242. We also plotted
the complexities of the type attack for θ = 400 · ν and θ = 200 · ν to
show that type 1 attack still competes with type 3 whenever enciphering
is very efficient. Notice that with these estimates of θ the complexity for
Matsui’s attack remains the same as long as N is less than 242.5.
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Fig. 4. complexities of Matsui’s type 3 attack and our type 1 attack in terms of DES
evaluations.

Remark on Matsui’s attack complexity:

In [15], the author points out the fact that his Theorem 1 is pessimistic
regarding the expected average rank of the good key. For 243 pairs, the
empirical complexity seems to be less than 241 with high probability. Ac-
tually, the bound (12) suggests a complexity of precisely 241 in this case
(see Figure 4). This is a good illustration of the phenomenon mentioned
in Section 3.4. The average rank of the good key is pessimistic because
in some extremely rare cases the rank is sufficiently high to influence the



mean. This observation, together with the complexity of computing mul-
tidimensional probability laws in a general case, may confirm the interest
of the approach presented in this paper.

5 Conclusion and further work

We have presented here a rather general technique in Lemma 1 to derive a
sharp lower bound on the entropy of a key given (independent) statistics.

We have applied it here to various linear cryptanalytic attacks, but
the scope of this tool is much broader and it would be interesting to apply
it for other classes of statistical attacks.

We performed a realistic type 1 attack on full 16-round DES using
32968 approximations and 239 plaintext/ciphertext pairs that confirmed
our theoretical results.

Moreover, theoretical results predict that for 241 pairs, the DES can be
broken with high probability with complexity close to 248 while Matsui’s
attack 2 needs 251.9 DES computations.

This work entails some further research interests.

It would be interesting to compare our theoretical results with some
others [11, 25] for some particular type 3 attack.

Another interesting thing would be to perform a type 1 attack on
another cipher (SERPENT for instance) to see if, for recent ciphers, type 1
attacks still can compete type 3 attacks.

A deep study of different decoding algorithms for the analysis phase
is necessary as much as a precise complexity analysis of distillation phase
complexity for type 1 attack (maybe using ideas from [19]).
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A Proofs

A.1 Proof of Lemma 1

Let us use Equation (7) and write in two different ways the mutual in-
formation between K′ and Y: I(K′;Y) = H(K′) −H(K′|Y) = H(Y) −



H(Y|K′). From this we deduce that

I(K′;Y) = H(Y) −H(Y|K′)

= H(Y1, . . . , Yn) −H(Y1, . . . , Yn|K′). (15)

Here Equation (15) is a consequence of the fact that the a priori distri-
bution over K′ is the uniform distribution and the entropy of a discrete
random variable which is uniformly distributed is obviously nothing but
the logarithm of the number of values it can take. Moreover (see [18,
Theorem 2.6.6])

H(Y1, . . . , Yn) ≤ H(Y1) + · · · + H(Yn). (16)

On the other hand, by the chain rule for entropy [18, Theorem 2.5.1]:

H(Y1, . . . , Yn|K′) = H(Y1|K′)+H(Y2|Y1,K
′)+ · · ·+H(Yn|Y1, Y2, . . . , Yn−1,K

′). (17)

We notice now that H(Yi|K′, Y1 . . . Yi−1) can be written as

P

k

R

Ri−1 H(Yi|K
′=k,Y1=y1,...,Yi−1=yi−1)f(y1,...,yi−1|K

′=k)Pr(K′=k)dy1...dyi−1,

(18)
where the sum is taken over all possible values k of K′ and
f(y1, . . . , yi−1|K′ = k)Pr(K′ = k) is the density of the distribu-
tion of the vector (Y1, . . . , Yi−1) given the value k of K′ at the point
(y1, . . . , yi−1). From conditional independence assumption (9) we deduce
that H(Yi|K′ = k, Y1 = y1, . . . , Yi−1 = yi−1) = H(Yi|K ′

i). By summing in
Expression (18) over y1, . . . , yi−1 and all possible values of
K ′

1, . . . , K
′
i−1, K

′
i+1, . . . , K

′
n we obtain that

H(Yi|K′, Y1, . . . , Yi−1) =
1

2
H(Yi|K′

i = 0) +
1

2
H(Yi|K′

i = 1) = H(Yi|K′
i = ki) (19)

Plugging in this last expression in Expression (17) we obtain that

H(Y1, . . . , Yn|K ′
1, . . . , K

′
n) = H(Y1|K ′

1) + · · · + H(Yn|K ′
n). (20)

Using this last equation and Inequality (16) in (15) we finally deduce that

I(K′;Y) ≤ H(Y1) + · · · + H(Yn) −H(Y1|K ′
1) − · · · − H(Yn|K ′

n)

≤
n

∑

i=1

H(Yi) −H(Yi|K ′
i) ≤

n
∑

i=1

I(K ′
i; Yi). (21)

The lower bound on the entropy follows from equality (7) that can be
written as H(K′|Y) = H(K′) − I(K′;Y) = k′ − I(K′;Y).



A.2 Proof of Theorem 1

The proof of this theorem follows closely standard proofs of the direct part
of Shannon’s channel capacity theorem [18], however most of the proofs
given for this theorem are asymptotic in nature and are not suited to our
case. There are proofs which are not asymptotic, but they are tailored for
the case where all the σi’s are equal and are rather involved. We prefer
to follow a slightly different path here. The first argument we will use is
an explicit form of the joint AEP (Asymptotic Equipartition Property)
theorem.

For this purpose, we denote by (X,Y) a couple of random variables
where X = (Xi)1≤i≤n is uniformly distributed over {0, 1}n and Y =
(Yi)1≤i≤n is the output of the Gaussian channel described in Section 2
when X is sent through it. This means that

Yi = (−1)Xi + Ni, (22)

where the Ni are independent centered normal variables of variance σ2
i .

Let us first bring in the following definition.

Definition 1. For ǫ > 0, we define the set Tǫ of ǫ-jointly typical se-

quences of {0, 1}n × R
n by Tǫ

def
=

⋃

x∈{0,1}n{x} × Tǫ(x) with

Tǫ(x)
def
= {y ∈ R

n : |− log2(f(y)) −H(Y)| < nǫ (23)
∣

∣− log2

(

f(y|x)2−n
)

−H(X,Y)
∣

∣ < nǫ
}

(24)

where f(y) is the density distribution of Y and f(y|x) is the density
distribution of Y given that X is equal to x.

The entropies of Y and (X,Y) are given by the following expressions

Lemma 3.

H(Y) =
n

∑

i=1

Cap(σ2
i ) +

1

2
log2(2πeσ2

i )

H(X,Y) = n +
n

∑

i=1

1

2
log2(2πeσ2

i )

Proof. Notice that with our model the Yi’s are independent. Therefore
H(Y) =

∑n
i=1 H(Yi). Moreover, by the very definitions of entropy and

mutual information: H(Yi) = H(Yi|Xi) + I(Xi; Yi); Xi is uniformly dis-
tributed over {0, 1} and therefore by the definition of the capacity of a



Gaussian channel and the fact that the capacity attains its maximum for a
binary input which is uniformly distributed we have I(Xi; Yi) = Cap(σ2

i ).
On the other hand H(Yi|Xi) is obviously the same as H(Ni). The calcu-
lation of this entropy is standard (see [18]) and gives

H(Ni) =
1

2
log2(2πeσ2

i ) (25)

By putting all these facts together we obtain the expression for H(Y).
Concerning the other entropy, with similar arguments we obtain

H(X,Y) = H(X) + H(Y|X)

= n +
∑

x∈{0,1}n

1

2n
H(Y|X = x)

= n +
∑

x∈{0,1}n

1

2n
H(N1, . . . , Nn)

= n +
n

∑

i=1

1

2
log2(2πeσ2

i )

“Tǫ” stands for “typical set” since it is highly unlikely that (X,Y)
does not belong to Tǫ:

Lemma 4. There exists a constant A such that

Pr ((X,Y) /∈ Tǫ) ≤
A

ǫ2n
.

Before giving the proof of this lemma we will first give an interpreta-
tion of entropy which provides an explanation of why the probability of
falling outside the typical set becomes smaller as n increases.

Lemma 5. Let Ui
def
= − log2 fi(Yi) where fi is given by

fi(y)
def
=

1

2
√

2πσ2
i

(

e
−

(y−1)2

2σ2
i + e

−
(y+1)2

2σ2
i

)

.



We also denote by Vi
def
= − log2

(

gi(Yi−(−1)Xi )
2

)

where gi is the density

distribution of a centered Gaussian variable of variance σ2
i .

− log2(f(Y)) −H(Y) =
n

∑

i=1

Ui − E

(

n
∑

i=1

Ui

)

− log2(f(Y|X)2−n) −H(X,Y) =

n
∑

i=1

Vi − E

(

n
∑

i=1

Vi

)

Proof. For the first equation we just have to notice that

− log2(f(Y)) = − log2 (Πn
i=1fi(Yi)) = −

n
∑

i=1

log2(fi(Yi)) =
n

∑

i=1

Ui

and that H(Y) = E(− log2 f(Y)), which follows directly from the defini-
tion of the entropy given in (5). The second equation can be obtained in
a similar way.

This implies that in order to estimate the probability that a point
falls outside the typical set we have to estimate the probability that the
deviation between a sum of n independent random variables and its ex-
pectation is at least of order ǫn. In our case, it can be proven that for
fixed ǫ, this probability is exponentially small in n. However, we prefer
to give a much weaker statement which is also easier to prove and which
uses only Chebyschev’s inequality, which we recall here

Lemma 6. Consider a real random variable X of variance var(X). We
have for any t > 0:

Pr (|X − E(X)| ≥ t) ≤ var(X)

t2
. (26)

To use this inequality we have to estimate the variances of the Ui’s
and the Vi’s. It can be checked that

Lemma 7. There exists a constant A such that for any i we have

var(Vi) ≤ A and var(Ui) ≤ A.

Proof. Let us prove the first statement. Recall that from (22), we have
Ni = Yi − (−1)Xi .

V̄i
def
= Vi − E(Vi) = − log2

(

gi(Ni)

2

)

− E

(

− log2

(

gi(Ni)

2

))

= − log2 (gi(Ni)) −
1

2
log2(2eπσ2

i )



where the last equation follows from Expression (25). Hence:

V̄i = log2(e)
N2

i

2σ2
i

+
1

2
log2(2πσ2

i ) −
1

2
log2(2eπσ2

i ) =
log2(e)

2

(

N2
i

σ2
i

− 1

)

,

and therefore

var(Vi)
def
= E

[

V̄i
2
]

=
log2(e)

2

4

∫ ∞

−∞

1
√

2πσ2
i

(

u2

σ2
i

− 1

)2

e
− u2

2σ2
i du

=
log2(e)

2

4

∫ ∞

−∞

1√
2π

(

v2 − 1
)2

e−
v2

2 dv

where the last equation follows by the change of variable v = u
σi

in the
integral. This shows that the variance of Vi is constant. For the second
statement we will make use of the following inequalities. For nonnegative
u we have

e
−

(u−1)2

2σ2
i /2

√

2πσ2
i ≤ fi(u) ≤ e

−
(u−1)2

2σ2
i /

√

2πσ2
i . (27)

Recall that E(Ui) = H(Yi) = H(Yi|Xi) + I(Xi; Yi) = H(Ni) + I(Xi; Yi).
Note that 0 ≤ inf(Xi; Yi) ≤ H(Xi) = 1 by the properties of mutual
information (see [18][chapter 2]). And since H(Ni) = 1

2 log2(2eπσ2
i ) we

deduce that

1

2
log2(2eπσ2

i ) ≤ E(Ui) ≤
1

2
log2(2eπσ2

i ) + 1. (28)

To simplify the expressions below we let u = Yi. Assume that Ui is greater
that its expectation and that this expectation is nonnegative. This means
that − log2 fi(u) ≥ E(Ui) ≥ 0. We notice that

Ūi
2

= (Ui − E(Ui))
2

= (− log2(fi(u)) − E(Ui))
2

≤
(

log2(e)
(u − 1)2

2σ2
i

+ 1 +
1

2
log2(2πσ2

i ) −
1

2
log2(2eπσ2

i )

)2

=

(

log2(e)
(u − 1)2

2σ2
i

− 1

2
log2(e/2)

)2

(29)

by using inequations (27) and (28). Let us now write

var(Ui) = E(Ūi)
2 =

∫ ∞

−∞
Ūi

2
fi(u)du

=

∫ 0

−∞
Ūi

2
fi(u)du +

∫

E(Ui)

0
Ūi

2
fi(u)du +

∫ ∞

E(Ui)
Ūi

2
fi(u)du



From the previous upper-bound on Ūi
2

we deduce that
Z ∞

E(Ui)

Ūi
2
fi(u)du ≤

Z ∞

E(Ui)

„

log2(e)
(u − 1)2

2σ2
i

− 1

2
log2(e/2)

«2

fi(u)du

≤
Z ∞

E(Ui)

„

log2(e)
(u − 1)2

2σ2
i

− 1

2
log2(e/2)

«2
e
−

(u−1)2

2σ2
i

p

2πσ2
i

du (30)

=

Z ∞

E(Ui)−1
σi

„

log2(e)
v2

2
− 1

2
log2(e/2)

«2
e−

v
2

2

√
2π

dv (31)

≤
Z ∞

−∞

„

log2(e)
v2

2
− 1

2
log2(e/2)

«2
e−

v
2

2

√
2π

dv,

where Inequality (30) is a consequence of (27) and Equality (31) follows
from the change of variable v = u−1

σi
. The two other integrals in (29) can

be treated similarly where instead of using (27) we use for negative values

of u: e
−

(u+1)2

2σ2
i /2

√

2πσ2
i ≤ fi(u) ≤ e

−
(u+1)2

2σ2
i /

√

2πσ2
i . This yields a constant

upper-bound for all variances var(Ui).

We are ready now to prove Lemma 4:
Proof. We start the proof by writing

Pr((X,Y)/∈Tǫ) = Pr({|− log2(f(Y))−H(Y)|≥nǫ}∪{|− log2(f(Y|X)2−n)−H(X,Y)|≥nǫ}
≤ Pr(|− log2(f(Y))−H(Y)|≥nǫ)+Pr(|− log2(f(Y|X)2−n)−H(X,Y)|≥nǫ)

= Pr(|U−E(U)|≥nǫ)+Pr(|V −E(V )|≥nǫ)

with U
def
=

∑n
i=1 Ui and V

def
=

∑n
i=1 Vi. We use now Chebyschev’s inequal-

ity (Lemma 26) together with the upper-bounds var(U) =
∑n

i=1 var(Ui) ≤
nA and var(V ) =

∑n
i=1 var(Vi) ≤ nA to obtain Pr ((X,Y) /∈ Tǫ) ≤ 2A

nǫ2
.

Moreover, not only is it unlikely that (X,Y) does not fall in Tǫ, but
the Euclidean volume (which we denote by “Vol”) of this set is not too
large:

Lemma 8.
∑

x∈{0,1}n

Vol(Tǫ(x)) ≤ 2H(X,Y)+ǫn

Proof. Let us notice that

1 =
∑

x∈{0,1}n

1

2n

∫

Rn

f(y|x)dy ≥
∑

x∈{0,1}n

1

2n

∫

Tǫ(x)
f(y|x)dy

≥
∑

x∈{0,1}n

Vol(Tǫ(x))2−H(X,Y)−ǫn



where the last inequality follows from (24)

We will use this result to show that

Proposition 1. If (X̃, Ỹ) is a couple of independent random variables,
where X̃ is uniformly distributed and Ỹ has the same distribution as Y,

then Pr
(

(X̃, Ỹ) ∈ Tǫ

)

≤ 2−C+2nǫ with C
def
=

∑n
i=1 Cap(σ2

i ).

Proof. We evaluate Pr
(

(X̃, Ỹ) ∈ Tǫ

)

as follows

Pr((X̃,Ỹ)∈Tǫ)=
P

x∈{0,1}n
1

2n

R

Tx(ǫ) f(y)≤
P

x∈{0,1}n
1

2n Vol(Tx(ǫ))2−H(Y)+ǫn

The last inequality follows from (23) in the definition of the typical set.
We use now Lemma 8 to obtain

Pr
(

(X̃, Ỹ) ∈ Tǫ

)

≤ 1

2n
2H(X,Y)+ǫn2−H(Y)+ǫn ≤ 2−n+H(X;Y)−H(Y)+2ǫn

By using the expressions for H(X,Y) and H(Y) given in Lemma 3 we
deduce −n+H(X,Y)−H(Y) = −∑n

i=1 Cap(σ2
i ). This finishes the proof.

These results can be used to analyze the following typical set decoder,
which takes as inputs a vector y in R

n which is the output of the Gaussian
channel described in Section 2 and a real parameter ǫ, and outputs either
“Failure” or a possible key K̃ ∈ {0, 1}n.
Typical set decoder(y, ǫ)
1 counter ← 0
2 for all possible values k of K̃

3 do if y ∈ Tk(ǫ)
4 then counter ← counter + 1
5 result ← k

6 if counter = 1
7 then return result
8 else return failure

This algorithm is therefore successful if and only if y is in the typical

set of the right key and if there is no other value k for K̃ for which y

belongs to the typical set associated to k. Let us now finish the proof of
Theorem 1.
Proof. Let k be right value of K̃ and let C be the set of possible values
of K̃. The probability Perr that the typical decoder fails is clearly upper-
bounded by

Perr ≤ Pry,C(Tk(ǫ)) +
∑

k′∈C,k′ 6=k

Pry,C (Tk′(ǫ)) (32)



where Tk(ǫ) denotes the complementary set of Tk(ǫ). On the one hand

Pry,C(Tk(ǫ)) = Pr((X,Y) /∈ Tǫ) ≤
A

ǫ2n
.

by Lemma 4, and on the other hand for k′ 6= k:

∑

k′∈C,k′ 6=k

Pry,C (Tk′(ǫ)) ≤
∑

k′∈C

Pry,C (Tk′(ǫ)) = 2rPr
(

(X̃, Ỹ) ∈ Tǫ

)

≤ 2r−
Pn

i=1 Cap(σ2
i )+2ǫn

by Proposition 1. By plugging in these two upper bounds in the union
bound (32) we obtain Perr ≤ A

ǫ2n
+ 2r−

Pn
i=1 Cap(σ2

i )+2ǫn ≤ A
ǫ2n

+ 2−δn+2ǫn.

We finish the proof by choosing ǫ = δ
4 .

B How to combine information from the 4 groups

Let us recall the problematic. Four groups of approximations are used
to recover 42 bits of the master key. The two first groups (namely G1
and G2) involve 19 bits of the key each and the two others (G3 and G4)
involve only 13 key bits. Some bits are common to some groups what
explains that the overall set of approximations only involves 42 bits. We
denote by LGi

(1 ≤ i ≤ 4) the list sorted obtained after perfoming the
Walsh Hadamard transformation on group Gi. Elements in LGi

are of the

form (k, li(k)) where k ∈ F
19/13
2 is the 13/19 bits candidate and li(k) the

log-likelihood of this candidate regarding the ith group of approximations.

The question is how do we combine the information obtained by the 4
groups of approximations to efficiently recover the rank of the good subkey
in the sorted list of candidates.

First of all, notice that the log-likelihood of a subkey is the sum of the
log-likelihoods obtained with each group of approximations that is

l(k) = l1(k) + l2(k) + l3(k) + l4(k).

The second thing to notice is that in our simulations, we know the value
of the good key k∗. Thus, we can compute l(k∗) from the Li’s.

We recall that the total dimension of the space spanned by κ’s is 42 thus
computing the log-likelihood of all subkeys and then sorting the list is
not efficient enough.



We actually merge information from groups G1 and G3 (resp. G2 and
G4) into 2 sorted lists L1 and L2. Since 6 bits are in common for each
couple of groups, the size of these two lists is 226.

L1 = {(k1||k3, l1(k1) + l3(k3)), (k1, l(k1)) ∈ LG1 , (k3, l(k3)) ∈ LG3}

L2 = {(k2||k4, l2(k2) + l4(k4)), (k2, l(k2)) ∈ LG2 , (k4, l(k4)) ∈ LG4}
Finally, subkeys from L1 and L2 have 10 common bits thus we split L2

into 210 subkey cosets L2,a of size 216 (with L2,a still sorted). Now, for
each subkey k ∈ L1, we have a list L2,k10 of all subkeys from L2 with the
same common 10 bits as k. To compute the rank of the good subkey, we
sum, for each subkey k ∈ L1, the number of subkeys in the subkey coset
L2,k10 that leads to a better global log-likelihood than the good subkey.

The complexity of the analysis phase is dominated by the merging
operations of complexity 226.


