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Abstract. Undeniable signatures, introduced by Chaum and van Antwerpen, require a veri-
fier to interact with the signer to verify a signature, and hence allow the signer to control the
verifiability of his signatures. Convertible undeniable signatures, introduced by Boyar, Chaum,
Damgard, and Pedersen, furthermore allow the signer to convert signatures to publicly verifi-
able ones by publicizing a verification token, either for individual signatures or for all signatures
universally. In addition, the signer is able to delegate the ability to prove validity and convert
signatures to a semi-trusted third party by providing a verification key. While the latter function-
ality is implemented by the early convertible undeniable signature schemes, most recent schemes
do not consider this despite its practical appeal.

In this paper we present an updated definition and security model for schemes allowing dele-
gation, and highlight a new essential security property, token soundness, which is not formally
treated in the previous security models for convertible undeniable signatures. We then propose a
new convertible undeniable signature scheme. The scheme allows delegation of verification and is
provably secure in the standard model assuming the computational co-Diffie-Hellman problem,
a closely related problem, and the decisional linear problem are hard. Our scheme is, to the best
of our knowledge, the currently most efficient convertible undeniable signature scheme which
provably fulfills all security requirements in the standard model.
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1 Introduction

Undeniable signatures, first introduced by Chaum and van Antwerpen [10], are like ordinary
signatures, except that verification of a signature requires interaction with the signer. Unlike
ordinary signatures, this enables a signer to control who can verify his signatures and when
verification is allowed. This feature makes undeniable signatures attractive when sensitive
data or confidential business agreements are being signed, since the signer is guaranteed that
only the relevant parties can verify his signature and no outsider will be able to link him to
the signed data. To preserve non-repudiation, an undeniable signature scheme furthermore
requires that a signer is able to disavow an invalid signature. Hence, a signer will either be
able to confirm or disavow the validity of any signature, and any dispute can be resolved by
letting the signer convince a judge about the validity or invalidity of the signature in question.
Since their introduction, a number of undeniable signature schemes have been proposed e.g.
[9,17,31,26,24, 32, 23].

In [6], Boyar, Chaum, Damgard and Pedersen introduced convertible undeniable signatures
which allow the signer to convert his undeniable signatures into publicly verifiable signatures.
Two types of conversions were introduced: selective conversion which enables the signer to
individually convert signatures, and universal conversion which enables the signer to convert
all (existing and future) signatures. A signer selectively converts a signature o on a message
m by releasing a token tk, which will convince any verifier that ¢ is indeed a valid signature



on m. Likewise, a signer universally converts all signatures by releasing a universal token
tk, which can be used as a token for any signature. This feature is desirable when public
verifiability is required after a period of time, which, for example, is the case for the problem
of keeping digital records of confidential political decision (e.g. see [15]). Another aspect of
the definition in [6] is that the private key material of the signer is divided into two parts: a
signing key sk and a verification key vk. The former is only used to sign messages, whereas the
latter is used to convert and confirm or disavow signatures. This property is useful in scenarios
where the signer is met with more verification requests than he has capacity to handle, or the
signer might become off-line or otherwise unavailable and therefor cannot handle verification
requests. In such scenarios, the signer will be able to delegate the verification by releasing vk
to a semi-trusted entity who will then have the capacity to verify signatures on behalf of the
signer. It is required that the scheme remains unforgeable, even for the semi-trusted entity
with the knowledge of vk.

Overview of prior work. The original scheme by Boyar et al. [6] was shown to be insecure
by Michels, Petersen and Horster [28] when an universal token is released. Michels et al. fur-
thermore proposed an updated scheme, but only heuristic arguments for the security of this
scheme were presented. Recently, Aimani and Vergnaud [4] provided an analysis of the up-
dated scheme in the generic group model. Furthermore, Damgard and Pedersen [15] proposed
two convertible undeniable signature schemes based on El Gamal signatures, but did not give
full proofs of invisibility, and Michels and Stadler [29] proposed a scheme based on Schnorr
signatures.

The first RSA based scheme was proposed by Gennaro, Rabin and Krawczyk [17] which
Miyazaki later improved [30] (see also [18]). Kurosawa and Takagi [25] proposed a (selective
convertible only) scheme which they claimed to be the first RSA based scheme secure in the
standard model, but it was shown by Phong, Kurosawa and Ogata [34] that the scheme does
not provide full invisibility. Phong et al. furthermore proposed a new selective and universally
convertible RSA based scheme secure in the standard model.

Laguillaumie and Vergnaud [27] defined and proposed a pairing-based time-selective con-
vertible undeniable signatures which allow conversion of signatures constructed in a given
time period, and Monnerat and Vaudenay [31] pointed out that their MOVA undeniable sig-
nature scheme supports selective conversion although a formal analysis is not given. Recently,
Huang, Mu, Susilo and Wu [22] proposed the currently most efficient scheme in the ran-
dom oracle model which supports both selective and universal conversion. Yuen, Au, Liu and
Susilo [39] proposed a selective and universal convertible standard model scheme, but it was
shown by Phong, Kurosawa and Ogata [33] that the scheme is not invisible for the standard
definition of invisibility. Phong et al. furthermore proposed two efficient schemes which are
claimed to be the first practical discrete logarithm based schemes both providing selective
and universal conversion and being provably secure in the standard model. However, as we
discuss in Section 4, these schemes do not provide token soundness. Lastly, Huang and Wong
[20] proposed a scheme with even shorter signatures than the schemes by Phong et al., but
only prove the scheme to be invisible according to a weaker definition of invisibility which
does not guarantee signer anonymity. In fact, it is fairly easy to see that the scheme does not
provide anonymity, which will be highlighted in Section 4.

An intuitive approach to the construction of a convertible undeniable signature scheme is
to use an encryption scheme to encrypt (parts of) an ordinary signature, and this is indeed
the approach used in [15,33]. Aimani [2, 3] proposed a generic construction based on a certain



class of encryption and signature schemes. However, this approach does not provide selective
conversion as described above; while a signer is able to extract a valid public verifiable sig-
nature from an undeniable signature, a verifier will not receive any proof that the received
publicly verifiable signature corresponds to the undeniable signature i.e. the verifier does not
receive a token which allows him to independently verify the undeniable signature, but only
a publicly verifiable signature derived from the undeniable signature. It should be noted that
a designated confirmer signature, in which the signer holds both signer and confirmer key
pairs, will not automatically yield a selective and universal convertible signature scheme for
a similar reason; the ability of the confirmer to extract a publicly verifiable signature from
an undeniable signature does not necessarily imply the ability to provide a token which will
convince a verifier of the validity of the original signature.

All of the early proposed schemes [6,28,15,17] implement the above described separation
of the signer’s key material into a signer key and verification key, which allows delegation of
the verification. However, despite the practical advantages of this property, it is not considered
in the formalization, security model or the concrete schemes presented in most recent papers
[27,25,22,39,2,34,33] (we note that [20] discuss delegation of verification as an extension).
In these schemes, only the ability of the signer to confirm, disavow and convert signatures
is considered and no explicit mechanism is provided for delegating this ability. Note that
although the possession of an universal token allows verification of any signature, this does
not necessarily provide the ability to efficiently prove validity to a third party in a non-
transferable way.

Our Contribution. We present an updated definition and security model for schemes allowing
delegation, and highlight a new security property, token soundness, which is not formally
treated in previous security models'. Token soundness guarantee that a malicious signer (or
delegated verifier) cannot produce a token such that an invalid signature/message pair ap-
pears valid. This is different from the ordinary completeness requirement which only considers
honestly generated tokens, and will furthermore, in combination with unforgeability of un-
deniable signatures, guarantee unforgeability of message/signature/token tuples (see Section
4). We also note that the recently proposed schemes by Phong, Kurosawa and Ogata [33] do
not provide token soundness, and hence allows a malicious signer to fool potential verifiers.

We then propose a convertible undeniable signature scheme which allows verification del-
egation and is provably secure in the standard model assuming the computational co-Diffie-
Hellman problem, a closely related problem, and the decisional linear problem are hard (see
Section 2). Our scheme is the most efficient scheme, in terms of signature size, that provably
fulfills all security properties of a convertible undeniable signature scheme in the standard
model (see Section 6 for a comparison).

2 Preliminaries

Negligible function. A function € : N — [0, 1] is said to be negligible if for all ¢ > 0 there exists
an n. such that for all n > n. e(n) < 1/n°.

Bilinear maps. Our scheme makes use of groups equipped with a bilinear map (we refer the
reader to [5] for a detailed description of these maps). To instantiate our schemes, we consider

1 We note that [20] independently proposed a similar security property which they refer to as non-claimability,
but that our results were made public [37] well ahead of those from [20].



a generator G that on input 1¥ outputs a description of groups G1, G, and G of prime order
p where 28 < p < 281 4 bilinear map e : G; x Gy — Gz and an isomorphism v : Gy — G.
We will use the notation P = (e, Gy, G, Gr, p, ) as a shorthand for the output of G.

The discrete logarithm problem. Given a group G of order p, where 2¥ < p < 281 and random

elements g, h € G, the discrete logarithm problem in G is defined as computing = € Z, such
that g5 = h. We say that the discrete logarithm problem is hard in G if all polynomial time
algorithms have negligible probability (in the parameter k) of solving the problem.

The computational co-Diffie-Hellman problem. GivenP = (e, Gy, Ga, G, p, ¢), elements g2, g5
G2 and h € G where a is a random element in Z,, the computational co-Diffie-Hellman
problem in the bilinear groups (G1,Gs) is to compute h* € G;. We say the computational
co-Diffie-Hellman problem is hard in (G, G2) if all polynomial time algorithms have negligible
probability (in the parameter k) of solving the problem.

Besides the above defined problem, we will also consider the following variant: Given
P = (e,G1,G2,Gr,p,v), elements g2, g5, h € Gy where a is a random element in Z,, compute
(h*) € G1. We will refer to this problem as the computational ¢-Diffie-Hellman problem to
distinguish it from the above, and say that the problem is hard in (G1,Gs) if all polynomial
time algorithms have negligible probability (in the parameter k) of solving the problem.

The decisional linear problem. Given a group G of order p, where 2F < p < 251 and elements
u,v,u”,vY, h, h* € G where x,y are random elements in Zj,, the decisional linear problem in
G is to decide whether z = = + y or z is a random element in Z,. We say the decisional
linear problem is hard in G if all polynomial time algorithms have negligible probability (in
the parameter k) of solving the the problem.

3 Convertible Undeniable Signatures

A convertible undeniable signature (CUS) scheme consists of the following algorithms and
protocols:

— Setup: Given input 1%, this algorithm outputs a set of public parameters par.

— KeyGen: Given par, this algorithm outputs a public key pk, a private verification key vk
and a private signing key sk. The verification key vk will be used as private prover input in
the confirm/disavow protocols, and to selectively convert signatures, whereas the signing
key will only be used to sign messages.

— Sign: Given par, sk and a message m, this algorithm outputs an undeniable signature o.

— Convert: Given par, vk and (m, o), this algorithm returns a verification token tk, for o
if (m, o) is a valid message/signature pair. Otherwise, the algorithm returns L.

— Verify: Given par, pk, (m, o) and tk,, this algorithm returns either accept or reject.

— (Confirm, Viy,): A pair of interactive algorithms for confirming validity of a signature.
Both algorithms take as common input par, pk and (m, o). The algorithm Confirm takes as
an additional private input the verification key vk. While Confirm has no local output, the
algorithm V.., will output either accept or reject after having interacted with Confirm.

— (Disavow, Vy;s): A pair of interactive algorithms for disavowing validity of a signature.
Similar to the above, both algorithms take as common input par, pk and (m, o), and the
algorithm Disavow takes the verification key vk as an additional private input. Disavow
has no local output, but Vg4 will output either accept or reject after having interacted
with Disavow.



Expgk’—jound ( 1 k )

par «— Setup(1*)

(pk*,m*, ", tk}, st) — A(par)

z 2 {A(st) < Vyis }(par, pk™, m*, o*)

if Verify(par, pk*, m*, 0", tk}) = acceptA
z = accept
output 1

else output 0

Expg
par «— Setup(1%)
(pk, vk, sk) < KeyGen(par)
(m*,0*) «— A°(par, pk, vk)
if (m*,0") € {(m,0);0 < Sign(par, sk,m)}
output 1
else output 0

sujicma(lk)

Fig. 1. Token soundness and unforgeability experiments

Note that the above definition does not explicitly mention how a universal token is generated
or how signatures are verified using this token since this functionality follows directly from
the separation of the private key material into a signing key sk and a verification key vk. More
precisely, a universal token corresponds to vk, and using this, any signature can be verified
using the Convert algorithm. We assume that given (pk,vk) it can be verified that vk is a
verification key for the public key pk.

We use the notation {Confirm(vk) <> Vo }(par, pk, m,o) to denote the interaction be-
tween Confirm and V., with the common input (par, pk, m,o) and the private input vk to
the Confirm algorithm (a similar notation is used for Disavow and Vg;s). We furthermore use
z «—9 {Confirm(vk) < Vo }(par, pk, m,o) to denote the output of V.., upon completion of
the protocol i.e. z will be either accept or reject.

Correctness. It is required that for all parameters par « Setup(1¥), all keys (pk, vk, sk) «
KeyGen(par), all messages m € {0,1}*, and all signatures o <« Sign(par, sk, m), that the
interaction z «—9 {Confirm(vk) < V.o, }(par, pk,m, o) yields z = accept. Furthermore, it is
required that for all tk, < Convert(par,vk,m,o) that Verify(par, pk,m,o,tk,) = accept.
Lastly, it is required that for any (m',¢’) & {(m, o) : 0 < Sign(par, sk,m)}, the interaction
2!« {Disavow(vk) < Vs }(par,pk,m’,o’)} yields 2’ = accept.

4 Security Model

A CUS scheme is required to provide token soundness, unforgeability, invisibility and non-
impersonation, which will be defined below. Besides this, both the confirm and disavow pro-
tocols are required to be zero-knowledge proofs [19] to guarantee soundness of the protocols
and transcript simulatability. The latter property will in combination with invisibility of the
scheme provide what is commonly referred to as non-transferability (see below).

4.1 Token Soundness

The soundness of the confirm and disavow protocols intuitively captures the requirement that
a signer cannot “cheat” when interacting with a verifier in the confirm or disavow protocol
i.e. he cannot convince a verifier that a signature is both valid and invalid. However, it does
not guarantee that a cheating signer cannot produce a token tk, and a message/signature
pair (m, o) such that Verify(par, pk, m,o,tk,) = accept, but (m, o) can be disavowed. This
requirement, which we will refer to as token soundness, is somewhat surprisingly not formally
treated in the used security models for convertible undeniable signatures. Token soundness of



a CUS scheme S is defined via the experiment Exp%£°®4(1¥) shown in Figure 1. We define

the advantage of the algorithm A as
Advgli;lsound _ Pr[Expglj;‘sound(lk) _ 1]

Definition 1 A CUS scheme is said to have token soundness if for all polynomial time
tk-sound

algorithms A, the advantage Advg™ s negligible in the security parameter k.

We note that the recently proposed schemes by Phong, Kurosawa and Ogata [33] do not
provide token soundness as defined above. More specifically, the schemes in [33] make use
of NIZK proofs as tokens, and a signer will construct a token for a selective conversion of
a signature by generating a NIZK proof of the validity of the signature. However, since the
common reference string (CRS) used by the NIZK proofs is stored as part of the public signer
key (i.e. the CRS will be generated by the signer), a malicious signer will, by the properties
of the NIZK proofs, be able to generate a CRS which is indistinguishable from an honestly
generated one, and which allows the signer to simulate the NIZK proofs. Hence, the malicious
signer can break the token soundness of the schemes by simulating a NIZK proof for an invalid
signature. This scenario can be avoid be letting the verifier generate the CRS, but this will
tie a conversion to a single verifier and will not provide public verifiability. Alternatively, the
CRS could be generate by a trusted third party. However, both of these options limit the
practical applicability of the scheme.

4.2 Unforgeability

Strong unforgeability against a chosen message attack for a CUS scheme S is defined via the
experiment Expguj'cma(lk) shown in Figure 1. In the experiment, A has access to the oracle

O ={0sign} which is defined as follows
— Ogign: Given a message m, the oracle returns o « Sign(par, sk, m).

It is required that A did not obtain ¢* by submitting m* to Og;gy. Note that since A is given
the verification key vk, A can convert signatures and run the confirm and disavow protocols
by himself, and there is no need to provide A with oracles for these tasks. The advantage of
A is defined as

AAVE ™ = PrExpE (1) = 1]
Definition 2 A CUS scheme is said to be strongly unforgeable if for all polynomial time

suf-cma

algorithms A, the advantage Adv gy 1s negligible in the security parameter k.

While the above definition does not involve tokens, it will, in combination with token sound-
ness, guarantee that an adversary without the knowledge of sk cannot produce (m,o,tk,)
such that Verify(par, pk, m,c) = accept without having obtained (m,o) from the signer.
This follows easily from the following observation. If the adversary does produce (m, o, tk,),
then if (m, o) is a valid message/signature pair, the adversary has broken the above defined
unforgeability property, whereas if (m, o) is not a valid message/signature pair, the token
soundness of the scheme has been broken, which should not be possible even for an adversary
knowing sk.

We furthermore stress the importance of giving A access to vk in the above definition.
This guarantees that if a signer delegates the verification operation by releasing vk to a semi-
trusted entity, this entity will not be able to forge new signatures, but only verify existing
ones.



Expisstxzcma(lk) Expgl:};\cma(lk) .
par < Setup(1¥)
(pk, vk, sk) < KeyGen(par)
(m*, 0", st) « A° (par, pk)
if (m*,0") € {(m,0);0 < Sign(par, sk,m)}
z <2 {A(st) < Veon}(par,pk,m*,c*)
else
z —2 {A(st) < Vyis }H(par, pk,m*,c™)
if z = accept
output 1
else output 0

par «— Setup(1*)

(pk, vk, sk) < KeyGen(par)
(m*, st) «— A (par, pk)

b+ {0,1}

ifb=0set 0" «— S

else set o™ «— Sign(par, sk, m)
b — A% (st,a™)

if b =b' output 1

else output 0

Fig. 2. Invisibility and non-impersonation experiments

4.3 Invisibility

Invisibility against a chosen message attack for a CUS scheme S is defined via the exper-
iment Expg?j‘cma(lk) shown in Figure 2. In the experiment, S denotes the signature space
and is defined as § = {o : (pk,vk, sk) «— KeyGen(par);m «— M;o « Sign(par,sk,m)}
where M is the message space given in par. Furthermore, A has access to the oracles

O = {Osign; Oconv, Oconf/pis} Which are defined as follows:

— Ogign: Defined as in the unforgeability experiment.

— Oconw: Given a message/signature pair (m, o), this oracle returns tk, < Convert(par, vk, m, o)
if (m,o0) € {(m/,0’) : o' < Sign(par, sk,m)}. Otherwise the oracle returns L.

— OConf/Dis: Given a message signature pair (m, o), this oracle interacts with .A by running
Confirm(par,vk,m,o) if (m,o) € {(m',0’) : o/ «— Sign(par,sk,m)}. Otherwise, the
oracle interacts with A by running Disavow(par, vk, m, o).

It is required that A does not query (m*,o*) to the convert or confirm/disavow oracles. We
define the advantage of A in the experiment as

MG — | PriExpi (1) = 1]~ 1/2)

Definition 3 A CUS scheme is said to be invisible if for all polynomial time algorithms A

the advantage Advgﬁ‘c”’“ 1s negligible in the security parameter k.

Note that the only requirement in the above definition is that .4 did not submit (m*, o*) to the
convert or confirm/disavow oracles. Hence, a deterministic scheme cannot satisfy the above
definition since access to the signing oracle is not restricted (i.e. for a deterministic scheme,
an adversary can simply submit m* to Og;gn, and compare the received signature with o*).
Furthermore, A is allowed to submit (m*, o) where o # ¢*, and (m, o*) where m # m* to the
convert and confirm/disavow oracles. While a deterministic scheme should be able to satisfy
a security definition where these type of queries are allowed, some security models (e.g. [39])
do not allow the former type of query, and thereby further weaken the obtain security. These
issues might be a concern in a scenario where the entropy of the signed messages is small i.e.
the security of a signature on a message which the signer has previously signed might not be
guaranteed. However, with the above security notion, these concerns are eliminated.
Another aspect of the above security notion which we would like to highlight is the def-
inition of §. We note that anyone can sample & and that when using this definition of S,
invisibility implies anonymity i.e. the inability for an adversary to distinguish between signa-
tures constructed by different users (see [16, 22] for a formal proof of this). Some schemes (e.g.



Exptslt;i\mp—cma ( 1 k )

par «— Setup(1*)

(pk, vk, sk) < KeyGen(par)

(m*, 0", tky) «— A° (par, pk)

if Verify(par, pk, m*, 0", tk}) = accept
output 1

else output 0

Fig. 3. Token non-impersonation experiment

[15,23,21,20]) use a more restricted definition limiting S to signatures from the signer i.e.
S ={o:m«— M;o «— Sign(par, sk,m)}. This not only removes the guarantee of anonymity,
but might also make it difficult for users other than the signer to sample S. The latter can po-
tentially have an impact on the non-transferability of the scheme, which we will discuss below.
Regarding anonymity, we note that in the recent scheme by Huang and Wong [20], it is in fact
easy to link valid signatures to a signer. This can be seen as follows: A public key in [20] is given
by pk = (g9, X = ¢*,Y = gMY k), where g is a generator of a group G of order p and u € G
is a random element, and a signature is given by o = (o1, 09, 03) = (Hy(m)Y#+9) Y5 u*) for
a random value s € Z,. Hence, if o is a valid signature, it can be checked whether pk is the
public key of the signer by checking whether e(Y, 03) = e(02,u) holds.

A note on non-transferability. The security notion non-transferability captures the property
that a verifier who learns whether a given signature is valid or not by interacting with the
signer in the confirm or disavow protocols, should not be able to prove this knowledge to a
third party. More specifically, the verify should be able to “fake” any evidence of the validity
of a signature obtain by interacting with the signer. When introducing convertible undeniable
signatures, Boyar, Chaum, Damgard and Pedersen [6] referred to this property as undeniability
and defined the property as a verifier’s ability to produce fake signature/transcript pairs
indistinguishable from real ones.

The above definition of invisibility guarantees that a valid signature from a signer cannot
be distinguished from any other element in S, and allows any user to sample §. Furthermore,
since the confirm and disavow protocols are required to be zero-knowledge proofs, transcript
simulatability of these protocols is guaranteed. Hence, it is easy to see that a verifier can
produce fake signature/transcript pairs indistinguishable from real ones, implying that non-
transferability is already achieved with the above security requirements.

4.4 Non-impersonation

While soundness informally guarantees that a prover cannot “cheat”, it does not prevent a
third party from impersonating the prover. This was pointed out by Kurosawa and Heng [24],
and Huang et al. [22] furthermore noticed that, for convertible schemes, this might be an issue
for token generation as well.

Non-impersonation against a chosen message attack for a CUS scheme S'is defined via the
experiment Exp?i_cma(lk) shown in Figure 2. In the experiment, A4 has access to the oracles
O = {Osign, Oconvs Oconf/pis} defined as the invisibility definition. It is required that A
does not submit (m*, 0*) to the confirm/disavow oracle. We define the advantage of A in the
experiment as

imp-cma imp-cma

Advg = Pr[Exp&A (1k) =1]



Definition 4 A CUS scheme is said to be resistant to impersonation attacks if for all poly-
nomial time algorithms A, the advantage Advé’"ﬁ(cm 1s negligible in the security parameter

k.

Token non-impersonation against a chosen message attack for a CUS scheme S is defined
via the experiment Expgkxmp_cma(lk) shown in Figure 3. A has access to the oracles O =
{Osigns Oconvs Ocon s / pis} defined as in the above. It is required that .4 does not submit

(m*,0*) to the conversion oracle. The advantage of A in the experiment is defined as
Adv:cgk;\imp—cma — PI‘[Engk;\imp—cma(lk) _ 1]

Definition 5 A CUS scheme is said to be resistant to token impersonation attacks if for
all polynomial time algorithms A, the advantage Advgkxmp_cma 1s negligible in the security

parameter k.

5 A Concrete Convertible Undeniable Signature Scheme

In this section we present a CUS scheme provable secure in the standard model. Our scheme
is based on a similar approach to the basic designated confirmer signature scheme by Schuldt
et al. [36], but we employ different proof systems and provide a token generation method.
Furthermore, our scheme does not require verifiers to hold public/private key pairs and avoids
the key registration requirement of [36]. In the description of the scheme we use the notation
ZKPK{w: R(w)} to mean a zero-knowledge proof of knowledge of w such that the relation
R(w) holds. We discuss the implementation details of these proofs below.

— Setup: Compute P = (e,G1,Go,Gr,p,vp) «— G(1F), pick go € Gy and set g; «— (go).
Furthermore, choose a collision resistant hash function family H = {Hyx : {0,1}* — Z,}
indexed by a key k € K. Return par = (P, g1, g2, H).

— KeyGen : Given par, pick o,z,y < Z,, h «— Gy and wy «— Go, and set w; «— g,
v — g{l and vy «— gg_l. Furthermore, pick ug,...,u, < G2, and define F(m) =
uo [[7—, w;"* where m; is the i¢th bit of m. Finally pick a hash key k € K and set pk =
(k, wy, w2, v1,v2, h,ug, ..., uy), vk = (x,y) and sk = w§. Return (pk, vk, sk).

— Sign : Given input (par,sk,m), where sk = w§, pick random a,b,s < Z,, compute
t — Hye(1(v1)?|[1(v2)?||m) and M = g§ht, and return

o = (1), (v2)", Y(w§ F(M)*?), s).
— Convert : Given (par,vk,m,o) where o = (01,092,03,s) and vk = (z,y), check that
e(o3,92) = e(wr,w2)e(cfoy, F(M)) where M = gih' and t = Hy(o1||o2||m), and return
L if this is not the case. Otherwise, return the token tk, = (o, 03).

— Verify : Given (par, pk,m,o,tky,) where pk = (k, w1, wa, v1,v2, h, ug, - .., up), 0’ = (01,092,03,s)
and tk, = (tky,tks), return accept if

e(tky,v1) = e(01,92), e(tha,v2) = e(o2,92), and e(03,g92) = e(wy, wa)e(thithky, F(M))

where M = gih' and ¢ = Hy(o1||o2||m).

2 We assume that the description of group elements in G, is less than n bits.



— (Confirm, Ve, ): Given the common input (par,pk,m,o), where ¢ = (01,02,03,s) and
pk = (k, w1, wa,v1,v2, h,ug,...,u,), and the additional private input vk = (z,y) to the
Confirm algorithm, (Confirm, V,,) is executed as

ZKPK{(z,y):v] = g2 ANv§ = ga Ne(o1, F(M))*e(oa, F(M))Y = e(o3, g2) /e(w1,w2)}

where M = gih' and t = Hy(o1||oa||m).
— (Disavow, Vy;s): Given same common input as in (Confirm, V,,,) and private input vk =
(x,y) to the Disavow algorithm, (Disavow, V) is executed as

ZKPK{(z,y) : v = g2 Avj = g2 Ae(or, F(M))"e(02, F(M))" # e(03, g2)/e(w1, w2)}
where M = gih! and t = Hy(o1||o2||m).

Implementation of ZKPK. We note that it is possible to construct sigma protocols for the
confirm and disavow protocols by using a combination of well known sigma protocols for
proving knowledge of a discrete logarithm, equality of discrete logarithms, and inequality of
discrete logarithms (see [8,7]). The zero-knowledge proofs of knowledge in the above scheme
can then be obtained by using the transformation proposed by Cramer et al. [12] which
converts a sigma protocol into a perfect zero-knowledge proof of knowledge. The resulting
zero-knowledge proofs are efficient 4-move protocols, and no additional hardness assumptions
are required in the transformation. In Appendix A, we give a more detailed description of
how the protocols are implemented.

5.1 Security

The soundness and the zero-knowledge property of the confirm and disavow protocols is
guaranteed by the transformation by Cramer et al. [12], and we refer the reader to [12] for
proofs of these properties.

The token soundness of the scheme is implied by the properties of the bilinear map in
combination with the proof of knowledge property of the disavow protocol (which is achieved
without requiring any intractability assumptions [12]).

Theorem 6 If the disavow protocol is a zero-knowledge proof of knowledge, then the above
CUS scheme has token soundness.

The proof is given in Appendix C.
The unforgeability of the above CUS scheme is based on the unforgeability of the signature
scheme by Waters [38] which we recall in Appendix B.

Theorem 7 Assume that the hash function family H is collision resistant, the discrete loga-
rithm problem is hard in Ga, and that Waters signature scheme is (weakly) unforgeable. Then
the above CUS scheme is strongly unforgeable.

We note that Waters’ signature scheme is (weakly) unforgeable assuming the computational
co-Diffie-Hellman problem is hard [38]. Furthermore, collision resistant hash functions can be
constructed based on the discrete logarithm assumption [14], which imply that the unforge-
ability of the above scheme can be reduced to the computational co-Diffie-Hellman problem
alone. The proof of the theorem is given in Appendix D.
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Theorem 8 Assume the above CUS scheme is strongly unforgeable and that the decision
linear problem is hard in Gy. Then the above CUS scheme is invisible.

The proof of the above theorem is given in Appendix E.
Lastly, the following theorems show that the above CUS scheme is resistant to imperson-
ation and token impersonation attacks.

Theorem 9 Assume the above CUS scheme is strongly unforgeable and that the the discrete
logarithm problem is hard in Gao. Then the above CUS scheme is resistant to impersonation
attacks.

Theorem 10 Assume the above CUS scheme is strongly unforgeable and that the computa-
tional 1-Diffie-Hellman problem is hard in (G, Ga). Then the above CUS scheme is resistant
to token impersonation attacks.

The strategy of the proof of the first theorem is to make use of the proof of knowledge property
of the used proof systems to extract the verification key which, in the simulation, will contain
an unknown discrete logarithm. Otherwise, the simulation is very similar to that of Theorem
8, and can easily be derived from this. The strategy of the proof of the second theorem is to
return a signature in one of the adversary’s signature queries such that a conversion will reveal
the solution to a computational -Diffie-Hellman problem?3. The strong unforgeability of the
scheme will ensure that the signature converted by the adversary in a token impersonation
attack was constructed by the simulator, and the remaining part of the simulation is similar
to that of Theorem 8. We omit the details of the proofs here.

6 Comparison

In Table 1 we compare the recently proposed standard model CUS schemes [40, 34, 33, 20] and
our proposed scheme described above. All schemes support selective and universal conversion
and are instantiated to provide approximately 80-bits of security. Note that the scheme YALS
requires both a verification key and a signature of a one-time signature scheme to be included
as part of a undeniable signature, which leads to a slightly larger signature size.

While the schemes PKO-4 and HW have slightly smaller signatures than our scheme, they do
not provide both token soundness and anonymity. Hence, our scheme provides the smallest
signature size of the CUS schemes which provably satisfies all desired security requirements.
Furthermore, we note that the security of our scheme rests on weaker and more natural
security assumptions compared to those of PKO-4 and HW.

Lastly we note that while delegation of verification is discussed as an extension to the
scheme HW, the confirm and disavow protocols defined for the schemes YALS, PKO-3 and
PKO-4 make use of the same private key material as signature generation. Delegation of
verification for PKO-1 and PKO-2 is not discussed in [34], but it seems that these schemes
can be extended to provide this.

3 More specifically, a simulator given P and a 1)-Diffie-Hellman instance g,¢% h' € G2 will set go «— g%,
v1 — g, ui — g% with random d; «— Z, for 0 < i < n, and generate the remaining elements of par and pk
as in an ordinary scheme. Then, for a message m, the signature o = (01, 02,03, s) constructed by picking
7, b,s < Ly, setting a1 — P(h')", g2 — h(v2)®, t «— Hy(o1||o2||m), M «— gih' (where h is from pk) and
o3 — Y(ws (b)) (doTEi=1 &M p()[)*)| will have a conversion token of the form tk, = (1(h')", g}) for a
known value r.

11



lScheme [ Signature Size [ Token-Soundness [ Anonymity [ Assumptions ‘

PKO-1 [34] 2128 yes yes sRSA + DNR
PKO-2 [34] 2048 yes yes sRSA + DIV + DNR
YALS [40] 1180 yes yes CDH + DLIN
PKO-3 [33] 680 no yes g¢-SDH + DLIN
PKO-4 [33] 580 no yes ¢-SDH + DLIN
HW [20] 510 yes no ¢-HSDH + ¢-DHSDH
ours 680 yes yes 1-CDH + DLIN

Table 1. Comparison of CUS schemes. All pairing-based schemes are assumed to be instantiated with an
elliptic curve group equipped with an asymmetric pairing using group elements of size 170 bits, and the
RSA-based schemes are assumed to use an RSA group with a 1024 bit modulus. Furthermore, the discrete
logarithm-based one-time signature scheme described in [1] and implemented in an elliptic curve group with
group elements of size 160 bits, is used to instantiate the YALS [40] scheme. In the assumptions column, the
abbreviations sRSA, DNR, DIV, ¢-SDH, DLIN, CDH, ¢-HSDH, ¢-DHSDH and -CDH stands for strong RSA,
decisional N-th residuosity, division intractability, ¢ strong Diffie-Hellman, decisional linear, computational
Diffie-Hellman, ¢ hidden strong Diffie-Hellman, ¢ decisional hidden strong Diffie-Hellman and computational
1-Diffie-Hellman (see the respective papers for a description of these assumptions).

7 Conclusion

We have given an updated definition and security model for convertible undeniable signature
schemes which supports delegation of verification, and highlighted a new security property,
token soundness, which is not formally captured by existing security models. We then proposed
a new convertible undeniable signature scheme. Our scheme is the most efficient scheme in
terms of signature size which provably fulfills all security requirements in the standard model,
and is furthermore based on weak and natural security assumptions.
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A Implementation of Confirm and Disavow Protocols

Before discussing the details of the implementation of the confirm and disavow protocols for
the scheme presented in Section 5, we briefly recall the definition of a Sigma protocol.

A sigma protocol for a binary relation R is a 3-move protocol between a prover and a
verifier. Both prover and verifier receive a common input x, but the prover receives a witness
w such that (z,w) € R as an additional private input. In the first move of the protocol, the
prover sends a “commitment” message a, in the second move, the verifier sends a random
“challenge” message ¢, and in the final move, the prover sends a “response” message z. Given
the response message, the verifier either accepts or rejects the proof. A sigma protocol is
required to have two security properties:

— Special honest verifier zero-knowledge: There exists a simulation algorithm Simy that given
input « and a challenge message ¢, outputs an accepting transcript (a, ¢, z) < Simy(z, c).
We require that the simulated (a,c, z) is perfectly indistinguishable from the transcript
of a real interaction, conditioned on the event that the verifier chooses ¢ as his challenge
message.

— Special soundness: There exists an algorithm WExty that, given two accepting transcripts,
(a,c,z) and (a, ', 2'), for input = which have the same commitment message a but different
challenge messages ¢ # ¢/, can extract a witness w such that (z,w) € R.

Below, we will make use of sigma protocols for proving various relations among discrete
logarithms, and we will use the notation

X{(y,2) : ¢°* = hAuv® =e}

to mean a sigma protocol in which the prover receives the private input (y, z) and proves to
the verifier that the equations ¢g* = h and uYv®* = e holds for group elements g,h € G and
u,v,e € G’ where G and G’ might be different groups of the same order. Such sigma protocols
are relatively straightforward to construct using the principle of the well-known protocol for
proving knowledge of a discrete logarithm by Schnorr [35] as a building block, and we refer
the reader to the analysis by Camenisch and Stadler [8] for more details.

To implement the zero-knowledge proofs of knowledge for the confirm and disavow proto-
cols, we employ the transformation proposed by Cramer, Damgard and MacKenzie [12] which
converts a sigma protocol into a perfect zero-knowledge proof of knowledge. As a tool, the
transform makes use of the well known technique by Cramer, Damgard and Shoenmakers [13]
for constructing a witness indistinguishable “OR” proof from sigma protocols i.e. a sigma
protocol X' for relation R and a sigma protocol X’ for relation R’ is combined into a sigma
protocol, denoted X'V X’ which for common input (z,2’) and a witness w, proves that either
(z,w) € R or (2/,w) € R". Given that X' and X’ both have challenge space Z,, and if we,
without loss of generality, assume that the prover knows a witness w such that (z,w) € R,
X'V X' is implemented as follows.

1. The prover honestly computes the first message a of X, picks random ¢’ and runs (o, ¢/, 2) «—
Simyy(2/, ). Then (a,d’) is sent to the verifier.

2. The verifier sends a randomly chosen ¢ to prover.

3. The prover computes ¢ < ¢—c mod p, respond honestly to ¢ with the message z following
X, and sends (¢, ¢, z, 2’) to the verifier who checks that ¢ = ¢+¢ mod p and that (a, ¢, 2)
and (d/,c,2') are accepting transcripts of X and X".
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In the above protocol, the verifier is unable to determine which relation the prover holds a
witness for. We refer the reader to [13] for a detailed analysis of the protocol.

The transformation for obtaining a zero-knowledge proof of knowledge works as follows.
Let X be a sigma protocol for a relation R with messages (a,c, z). Consider the following
commitment scheme induced by Y and a fixed common input x:

— To commit to a value ¢ in the challenge space of X, simulate a transcript (a,c,z) «
Simy(x,c), and return a as a commitment on c.

— To open a commitment a, reveal the corresponding (c, z).

— A verifier verifies the opening by confirming that (a, ¢, z) is an accepting transcript of X.

Furthermore, for this commitment scheme, assume there is a sigma protocol X’ for proving
knowledge of a committed value i.e. a sigma protocol for the relation R’ with common input
' = (z,a) and witness w’ = (¢, z) (this is the only needed assumption). Then we can obtain
a perfect zero-knowledge proof for (z,w) € R, where z is the common input and w is the

witness held by the prover, as follows:

1. Using the commitment scheme induced by X and z, the verifier commits to a random
value in the challenge space of X, and then proves knowledge of this value to the prover
using Y. (If the verifier does not provide an accepting proof, the prover will abort.) Let
com denote the commitment sent by the verifier.

2. The prover then proves to the verifier that he knows either the witness w or an opening
of com using the sigma protocol X'V 2.

Although the above protocol is a six move protocol, it can easily be reduced to a four move
protocol by combining the second and third moves of the sigma protocol in step 1 with the
first and second moves of the sigma protocol in step 2.

In [12], Cramer, Damgard and MacKenzie show that the protocol resulting from the above
transformation is a perfect zero-knowledge proof of knowledge with knowledge error at most
27! assuming X uses t-bit challenges. We refer the reader to [12] for the details.

To obtain a zero-knowledge proof for (Confirm, V.,,) with common input (par, pk, o, m),
we construct the following sigma protocol:

Ysta{(z,y) 1 vf = g2 Av§ = ga Ae(o1, F(M))%e(o9, F(M))Y = (a3, g2)/e(w1, w2) }

where M = gih! and t = Hy(o1||o2||m). A commitment to a value ¢ € Z, constructed
using Ys;q and (par, pk,o,m) will be of the form (a1, a2,a3) = (vi'gy ©,v5%9; ¢, €7 e5e5€)
where e = e(o1, F(M)), ea = e(o2, F(M)), e3 = e(03, g2)/e(wi,w2), and 21,22 «— Z, are
random values. The corresponding opening is (c, 21, 22), and a verifier accept the opening if
(a1,a2,as,c, 21, 22) is a valid transcript of X'g;4. The following sigma protocol proves knowledge
of an opening.

/ . .21 ,—C __ zZ2 —C __ zZ1 22 —C __
Yoalle, z1,22) 10795 “ = a1 Nv52g; € = as N ej'es?es = as}

Hence, by applying the above transformation to Yg;q and X%, ,, a zero-knowledge proof for
(Confirm, V) is obtained.

To obtain a zero-knowledge proof for (Disavow, Vy;s) with common input (par, pk,m, o),
we apply the same strategy as above. Firstly, we construct a sigma protocol X{(z,y) : vf =

g2 ANvy = g2 ANefel # es} by adapting the technique used in the proof of inequality of discrete
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logarithms by Camenish and Shoup [7]. More specifically, a prover first chooses r «— Z,,
computes C «— (efef/e3)", and then interacts with the verifier in the protocol

f:E»‘td{(()t,ﬁ,r) : vf‘gz_r =1A ’UQBQQ_T =1A e(f‘egegr _ C}

where o = xr and § = yr. A verifier will only accept a proof if C # 1. A commitment
to a value ¢ € Z, constructed using Xgiq and (par, pk,o,m) is of the form (a1, as,a3,C) =
(V" gy ", 03 gy 7, i e’ e3 O, C) where zq, 23, 2 «— Z, and C « Gy are random values.
To prove knowledge of the opening (¢, zq, 23, 2r), the following sigma protocol can be used

3 L Za,—% 23—z Za P8 —Zr (V—C
Yoalle, za, 28, 20) 101795 7 = a1 ANvy gy " = ag Nef®ey e C™° = ag}

Hence, by applying the above transformation to Xg;q and f/Std we obtain a zero-knowledge
proof for (Disavow, Vg;s).

B Waters’ Signature Scheme

Below we recall the signature scheme by Waters [38]. Note that we make use of an asymmetric
bilinear map e : G; X Ga — Gp whereas the original scheme in [38] was defined using a
symmetric bilinear map e : G; x G; — Gr.

— Setup: Compute P = (e,G1, Gy, Gy, p,7p) «— G(1¥), pick go € Gy and set g; — 1(go).
Return par = (P, g1, g2).

— KeyGen : Given par, pick a « Z, and ws « G2, and set wy « gf*. Furthermore, pick
ug, - . ., Up — Go, and define F(m) = ug [}, u;"" where m; is the ith bit of m. Finally
set the public key to pk = (w1, ws, up,...,u,) and the private key to sk = wg. Return
(pk, sk).

— Sign : Given input (par, sk,m), where sk = w$ pick r «— Z,, compute o1 < ¢} and
o9 — P(w§F(m)"), and return the signature o = (01, 02).

— Verify : Given par, a public key pk = (w1, wa, ug, ..., uy), a message m and a signature
o = (01,02), return accept if e(o9, g2) = e(wy, wa)e(o1, F(m)).

It follows from the proof of security given in [38], that the above signature scheme is unforge-
able against a chosen message attack assuming the computational co-Diffie-Hellman problem
is hard in (Gq, G2).

C Proof of Theorem 6

Proof. Firstly, we show that if a signature passes the token verification, it must be a valid
signature. Consider a public key pk = (k, wi, wa,v1,v2, h,ug, ..., uy), a purported signature
o = (01,092,03,5) on a message m, and a token tk, = (tki,tks). There must exist unique
values a,b € Z, such that o1 = 9(v1)® and 3 = 9 (vq)’. Then, if the verification equations
e(tkr,v1) = e(o1,92) and e(tka, v2) = e(o2, g2) hold, we must have that tk; = g{ and tky = gll’.
Hence, we have tkitks = g™, Furthermore, if e(03,92) = e(wy,w2)e(g¢™, F(M)), where
M = g;h! and t = Hy(o1]|oz||m), also holds, we have that o3 = ¢ (w§F(M)**?), where
a = log,, wi. Hence, if the output of Verify(par, pk,m,o,tk,) is accept, o must be a valid
signature on m under the public key pk.
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Now assume that the adversary completes the disavow protocol for (pk, m, o) with non-
negligible probability. By the proof of knowledge property of the protocol, there exists a
knowledge extractor which is able to extract a witness («, 3, ) with non-negligible probability
such that v{ = g3, vg = g5 and e?eg/eg = C for some C # 1, where e; = e(o1, F(M)),
ez = e(o2, F(M)), and e3 = e(03, g2)/e(w1,w2). Letting » = log,, g2 and y = log,, g2, this
implies that & = zr and 8 = yr. Hence, we must have that (efe)/es)” # 1 which implies that
efey # e3. However, this contradicts that o is a valid signature on m under pk.

D Proof of Theorem 7

Proof. Assume that a successful adversary A that breaks the unforgeability of the CUS scheme
exists. Let (m*, 0*) denote the forgery output by A where o* = (07, 03, 03, s*), and let (m;, 0;)
denote the ith sign query and response where o; = (01,042, 043,5;). Furthermore, we let
M* = g§"h'", t* = Hy(of]|o3||m*), M; = g;'hti, and t; = H(0;1]|0i2||mi), where h is part of
the public key pk. Finally, let ¢ be the total number of sign queries made the adversary. We
then define three different types of forgeries:

1. A forgery where M* = M; and t* = t; for some ¢ € {1,...,q}.
2. A forgery where M* = M; and t* # t; for some i € {1,...,q}.
3. A forgery where M* # M; for alli € {1,...,q}.

If A is successful, he must produce a forgery of one of the above types. For each type, we
define algorithms By, By and B3 that breaks the collision resistance of Hy, solves the discrete
logarithm problem in Gs, and breaks the weak unforgeability of the Waters signature scheme,
respectively.

Type 1. Bi’s goal for this category forgery is, given a description of a hash function family H
and a random hash key k € K, to produce messages x1 # x2 such that Hy(z1) = Hy(x2). We
construct By as follows: Firstly, By runs P = (e, Gy, Go, Gr, p, 1) «— G(1¥), picks go < G and
sets g1 < ¥(g2) and par — (P, g1, 92, H). Then B; runs (pk, vk, sk) < KeyGen(par) but uses
the received hash key k in pk instead of picking a random key. Then By runs A with input
(par, pk, vk).

While running, A can ask sign queries m; which B; responds to by returning o; «
Sign(par, sk, m;). Eventually, A outputs a forgery (m*, c*) where o* is of the form (o7, 03, 03, s*).
Bi outputs messages x1 = of||o5||m* and xo2 = 0;1||0s2||m; where i is the index for which
M* = M; and t* = t;.

By succeeds if x1 # xo. Assume towards a contradiction that z1 = z2 i.e. of||os||m* =
oi1||oi2||me. Since A’s forgery is a type 1 forgery, we have that M; = g*hli = g* ht" = M*
and t; = t*. This implies that s; = s*. Furthermore, if ¢* is a valid signature, it must be
possible to write o3 as ¢(w$ F(M*)?*?) where a = log,, o} and b = log,, 5. However, since
ot = 0i1, 05 = 0;2 and M* = M;, we must have 0,3 = ¥(w$F(M;)***) = o%. Hence, we
have (o}, 035,0%,5%) = (0i1,0i2,03,s;) which contradicts A outputting a valid forgery.

Type 2. Bs’s goal in this category is, given P = (e, G1, Gy, G, p, 1) and elements go, ha € G,
to compute = = log,, ha. We construct By as follows: Firstly, By picks a hash function family
H, sets g1 «— ¥(g2) and par «— (P, g1, g2, H), and runs (pk, vk, sk) < KeyGen(par) but uses
the element h < v(hg) in pk instead of picking a random element in Gi. Then By runs A
with input (par, pk, vk).
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While running, A can ask sign queries which Bs responds to by returning o; < Sign(par, sk, m;).
Eventually, A outputs a forgery (m*,c*). Since A’s forgery is assumed to be of type 2, there
must be a i such that M; = g{"h' = g{"h!" = M* but t; # t*. Hence, By can compute
x = log,, h =log,, ha = (si — s¥)/(t" — t;).

Type 3. Bs’s goal in this category is to produce a forgery of the signature scheme by Waters. B3
interacts with a (weak) unforgeability challenger C which provides B3 with a signing oracle. Ini-
tially, Bs is given parameters par = (P, g1, g2, H) and a public key pk’ = (w1, w2, ug, . . ., up).
Firstly, B3 creates a public key pk by picking a hash key k € K, picking values ¢, z,y + Z,,, set-
ting h < ¢f, v1 g{l and vy «— gg_l, and finally setting pk = (k, w1, wa, v1,v2, b, Ug, . . ., Up).
Then Bs sets vk < (z,y) and runs A with input (par, pk, vk).

While running, A can ask sign queries, which Bs responds to as follows:

— Sign queries: Given a message m, B3 picks random z < Z,, sets M «+ g7 and queries
M to its signing oracle to obtain a Waters signature o' = (g7, ¥ (w$F(M)")) on M.
Then Bs picks random 7’ « Z,, and computes o1 «— (g’l"g{/)‘l”f1 = (v))"" and oy —
(g7 /g5 )% = (v2)""". Note that since both r and 7/ will be uniformly distributed in
Zyp, so will r + 7" and r — 1’ (like the values @ and b in an ordinary signature). Lastly, B3
computes s «— z — cHy(o1||o2||m), sets o = (01, 02, (WG F(M)"), s), and returns o to A.
Note that s is uniformly distributed in Z, and that M = g*hHx(@llo2llm) Hence, o is a
valid signature on m, and is distributed as in the original unforgeability game.

Eventually, A outputs a forgery (m*, o*) where o* = (0§, 03,03, s*). B3 then computes o «
(07)*(0%)¥ and outputs the message M* and o’ «— (0}, 0%). Note that if A’s forgery is valid,
it follows that e(o3, g2) = e(wy,we)e(o), F(M*)), and since A’s forgery is assumed to be a
type 3 forgery, we have that M™* # M, for all i. Hence, the validity of B3’s forgery follows
directly from the validity of A’s forgery, and Bs successfully attacks the weak unforgeability
of the Waters signature scheme whenever A4 successfully attacks the CUS scheme. O

E Proof of Theorem 8

Proof. We assume that an adversary A breaking the invisibility of the CUS scheme exists.
Let forge be the event that A submits a convert or confirm/disavow query (m, o) where o
is a valid signature on m which was not obtained through a sign query m. In a successful
attack by A, either forge or —forge will occur. In the following we will construct algorithms
Bi and By which will break the strong unforgeability of the scheme if forge occurs, and the
decisional linear assumption if =forge occurs and A is successful, respectively.

First assume that the event forge happens. B; runs an unforgeability experiment, receives
the input (par, pk,vk), and forwards (par, pk) as input to 4. While running, A can ask sign,
convert and confirm/disavow queries. B; responds to these queries as follows. If A makes
a sign query, B; forwards this query to his own signing oracle, and returns the obtained
signature to A. If A makes a convert or confirm/disavow query (m,o), By first checks if o
was returned as a response to a sign query on m. If this is not the case, By checks if (m, o)
is valid (using vk), and if so, returns (m,o) as a forgery and halts. Otherwise, By either
returns tk, < Convert(par,vk, m,o) or L, or interacts with A running Confirm or Disavow,
depending on the query type and the validity of (m, o).

At some point, A outputs a challenge message m*. As in the invisibility experiment, B;
flips a random coin b «+— {0, 1} and returns a random ¢* «— S if b = 0. Otherwise, B; returns o*
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obtained by submitting m* to his own signing oracle. After receiving o*, A can ask additional
sign, convert and confirm/disavow queries which B; answers as above. If forge happens, it
is clear that Bj succeeds in winning in the unforgeability experiment.

Now assume that forge does not happen. Bs will attempt to solve the decisional linear
assumption i.e. By receives P = (e, Gy, G, G, p,¥) and elements u, v, u®,v¥Y, h, h* € Ga. By’s
goal is to decide if z = « +y. Firstly, By picks a hash family H = {Hy : {0,1}* — Z,} and an
element go < Go, and sets g1 < ¥(g2) and par «— (P, g1, g2, H). By then generates a public
key by choosing a < Z, and wy < G2, and setting w; < g¢¢, v1 < u, vo < v and hy < ¥(h).
Furthermore, By picks a hash key k € K and dp, ..., d, <+ Z,, and sets u; « hi for 1 <i<n,
pk — (k, w1, wa,v1,v2, h1,uo, ..., uy) and sk = w§. Lastly, By runs A with input (par, pk).

While running, A can ask sign, convert and confirm/disavow queries which are answered
as follows.

— Sign: Given a message m, B returns o = (1(v1)%, 1 (v2)?, (w§ F(M)*+?), s) « Sign(par, sk, m)
but remember the random choices a,b < Z, and stores (m, o, a,b).

— Conwvert: Given (m, o), By checks if o was returned as a response to a sign query m. If
this is not the case, By returns L. Otherwise, Bs recalls the random choices a, b used to
construct o, and returns tk, = (g¢, gll’).

— Confirm/Disavow: Given (m, o), By simulates the confirm protocol if o was returned as
a response to a sign query on m, but simulates the disavow protocol otherwise.

To simulate the confirm protocol, Bo interacts with A as follows. Upon receiving a com-
mitment com (constructed using Xg¢q) and the first message a of X%, from A, By choose
a random challenge ¢ « Z,, computes the first message a’ of Yg;q V X, as if an open-
ing of com is known (note that the computation of the first message @’ does not require
knowledge of an opening to com), and returns (a’, ¢) to A. When A responds with the last
message z of X%, , and a challenge ¢ for By, By checks if (a, ¢, z) is an accepting transcript
of Xgpq. If not, Bs returns L to A. Otherwise, By rewinds A and provides A with a new
challenge ¢ «— Z, for the X%, protocol. Hence, if A responds with a message Z such that
(a,¢,Z) is a valid transcript for X%, ,;, Bo can extract an opening of com and complete the
protocol Ygiq V E’St 4 honestly for any challenge ¢ sent by A (i.e. By learns a witness for
X%, and can therefore honestly run Yg;q V X%,,). If (a,¢, %) is an invalid transcript, Bo
returns 1 to A.

The simulation of the disavow protocol is similar to the above, except the protocols fg‘td

= -/
and Ygq V Xg;y are used.

At some stage, A outputs a challenge message m*. By constructs a challenge signature by
picking s* « Z, and computing t* « Hy(¢(u®)|[(v¥)||m*), M* « g{"hY" and o* «
(W(u®), (vY), (ws (h?) ot izt &MY %) wwhere (u®,vY, h?) are the elements received in the
decisional linear problem and h; is from pk. Note that if z is random, then o* will be a
random element in G$ x Zyp, whereas if z = x +y, o* will be a valid signature on m* since
(hZ)do+E§;1 diM; _ (hdo—i-E?:l diMi*)m—i—y = (uo [T, uj\/fi*)m-i-y = F(M*)+y.

Bs returns o* to A who can then ask additional sign, convert and confirm/disavow queries,
but is not allowed to query ¢* to the convert or confirm/disavow oracle. By answers these
queries as above. Eventually, A outputs a bit b which By forwards as his own solution to the
decisional linear problem.

Bsy’s simulation of the invisibility experiment for A is perfect if forge does not happen,
and it is clear that By will solve the decisional linear problem if A breaks the invisibility of
the scheme. O
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