
Revisiting the Security Model for Timed-Release
Encryption with Pre-Open Capability

Alexander W. Dent1 and Qiang Tang1,2

1 Royal Holloway, University of London,
Egham, Surrey TW20 0EX, UK.

2 Departement d’Informatique, École Normale Supérieure
45 Rue d’Ulm, 75230 Paris Cedex 05, France

Abstract. The concept of timed-released encryption with pre-open ca-
pability (TRE-PC) was introduced by Hwang, Yum and Lee. In a TRE-
PC scheme, a message is encrypted in such a way that it can only be
decrypted at a certain point in time or if the sender releases a piece
of trapdoor information known as a pre-open key. This paper examines
the security model for a TRE-PC scheme, demonstrates that a TRE-PC
scheme can be constructed using a KEM–DEM approach, and provides
an efficient example of a TRE-PC scheme.

1 Introduction

The concept of Timed-Release Encryption (TRE) is attributed to May [15]. In
a TRE scheme, a message is encrypted in such a way that it can be decrypted
by an authorised receiver only after a certain point in time. An unauthorised
receiver should not be able to determine any information about the message
from the ciphertext, and an authorised receiver should not be able to determine
any information about the message before the stated release time. It is worth
mentioning that some other timed primitives have been developed, for example,
“price via processing” by Dwork and Naor [12], timed key escrow by Bellare and
Goldwasser [1,2], and timed commitments by Boneh and Noar [5].

In the literature, there are two approaches used to construct TRE schemes.
One approach is based on Merkle’s time-lock puzzle technique [16] and involves
encrypting the message in such a way that any computer attempting to decrypt
the message will take at least a certain amount of time to solve the underlying
computational problem [1,7,17]. The other approach is to use a trusted time
server, which, at an appointed time, will assist in releasing a secret to help de-
crypt the ciphertext (e.g. [6,9,17]). Generally, time-server-based schemes require
interaction between the server and the users, and should prevent possible ma-
licious behaviour of the time server. In this paper, we shall only be concerned
with public-key TRE schemes that make use of time servers.

In standard TRE schemes, the receiver can only decrypt the ciphertext at
(or after) the release time. If the sender changes its mind after the ciphertext
is sent, and wishes the receiver to decrypt the message immediately, then the

only thing that the sender can do is to re-send the plaintext to the receiver in
such a way that the receiver can immediately decrypt the message. However,
in some circumstances, we may need a special kind of TRE schemes, in which
a mechanism enables the receiver to decrypt the ciphertext before the release
time without requiring the sender to re-send the plaintext. Recently, Hwang,
Yum, and Lee [14] proposed such a scheme, which they term a Timed-Release
Encryption Scheme with Pre-Open Capability (TRE-PC). In a TRE-PC scheme,
a message is encrypted in such a way that it can only be decrypted at a certain
point in time, or if the sender releases a piece of trapdoor information called a
pre-open key. It should be infeasible for any user except for the intended receiver
to determine any information about the message from the ciphertext, and the
receiver should only be able to determine any information about the message
after the release time or if they are given the pre-open key. In the HYL model,
a trusted time server is required to periodically issue a timestamp, but real-
time interaction between the trusted time server and the messege senders is not
needed.

Rivest, Shamir, and Wagner gave a number of applications of Timed Released
Encryption including electronic auctions, key escrow, chess moves, release of
documents over time, payment schedules, press releases and etc. [17]. As a special
type of TRE scheme, a TRE-PC scheme is always a possible substitute of a
standard TRE scheme in all the possible applications where the latter is used.
In fact, we can argue that TRE-PC scheme is more suitable than the general
TRE scheme in most of these applications. Taking the electronic auction as
an example, normally bidders in an auction seal their bid so that it can be
opened after the bidding period is closed. However, if a bidder wishes to confirm
their bid to the auctioneer at some point before the pre-defined open time, then
they may come across some problems if a standard TRE scheme is adopted.
Document escrow provides another useful example. Many legal systems require
that classified governmental information is disclosed after a certain period of
time. This can be achieved by using a TRE-PC scheme, through which the
classified information can be encrypted by the public key of a special agent which
is responsible for disclosing classified information. Note that no original classified
information is required to be stored, and in the case that the information needs
to be prematurely released, a pre-open key can be sent to the special agent which
is able to decrypt the encrypted classified information.

Our contribution This paper makes three important contributions. First, we
analyse the security model for TRE-PC schemes proposed by Hwang, Yum, and
Lee [14] and show that it contains several deficiencies. We propose a new security
model for a TRE-PC scheme. Second, we propose a new construction paradigm
for a TRE-PC scheme based on the KEM-DEM approach of Cramer and Shoup
[8,18]. We show that a TRE-PC scheme can be efficiently constructed from a
TRE-PC KEM and a standard DEM. Lastly, we propose an efficient new TRE-
PC KEM and prove its security in the random oracle model.

2 The Security Model for a TRE-PC Scheme

2.1 Notation

Let N = {0, 1, 2, . . .} be the set of natural numbers and {0, 1}∗ the set of all bit
strings. If k ∈ N then {0, 1}k is the set of bit strings of length k and 1k is the
string of k ones. If A is a randomised algorithm, then y

$← A(x; O) denotes the
assignment to y of the output of A when run on input x with fresh random coins
and with access to oracle O; we write y ← A(x; O) if A is deterministic. If S is a
finite set, then x

$← S denotes the random generation of an element x ∈ S using
the uniform distribution. A function ν : N → [0, 1] is said to be negligible if for
all c ∈ N there exists a kc ∈ N such that ν(k) < k−c for all k > kc.

2.2 The HYL Security Model

In the paper that proposes the concept of timed-release encryption with pre-open
capability, Hwang, Yum, and Lee [14] propose a security model against which
the security of a TRE-PC scheme could be assessed. We refer to this model
as the HYL model. A TRE-PC scheme proposed in the HYL model consists
of six polynomial-time algorithms. A Setup algorithm is initially executed by a
trusted time server. This algorithm outputs a series of system parameters and
a master key for the time server. The time server uses this master key with the
ExtTS algorithm to create a “timestamp” for a time t. A user generates their
own encryption and decryption keys using the GenPK algorithm. Encryption can
then be performed using the Enc algorithm and a pre-open key generated using
the GenRK algorithm. These two algorithms must both take the same randomly
generated secret value v as input if the pre-open key is going to help decrypt
the ciphertext. Lastly, a ciphertext can be decrypted using the Dec algorithm,
either using the appropriate timestamp or the pre-open key.

The HYL security model claims to consider two types of adversary: an out-
sider attacker (which could be “either a dishonest time server or an eavesdropper
who tries to decrypt a legal receiver’s ciphertext”) and an inside attacker (who
tries to decrypt a ciphertext before the release time without the pre-open key).
Due to size constraints, we will not reproduce the HYL security models which
can be found in the full version of the paper [11]. However, we suggest that the
HYL model is incomplete and does not model all of the possible attacks that
can be made against a TRE-PC scheme. In particular,

1. In the HYL model, the decryption process is described by one single algo-
rithm, which works in two different modes depending on the input. We feel
it is therefore more appropriate to formalise the decryption process as two
independent algorithms.

2. In the HYL model, the means by which the secret value v used by the
Enc and GenRK algorithms is generated is never specified. We consider it
more appropriate to remove the concept of a secret value, and have a single
encryption algorithm that outputs both a ciphertext and the pre-open key
for that ciphertext.

3. In the HYL model for an inside attacker, the attacker is able to obtain a
timestamp for any time period except for the release time of the challenge
ciphertext. In reality a receiver will only ever attempt to mount this attack
before the release time of the challenge ciphertext. Hence, the HYL model
is too strict. This is a problem as it is often advantageous if the timestamp
for a given time period enables the receiver to decrypt all the messages that
were encrypted for release at earlier times.

4. The HYL model does not give an outside attacker access to the pre-open
key. However, it is realistic to assume that an outside attacker might be able
to observe the pre-open key as it is being sent to the legitimate receiver.

5. The HYL model claims that an outside attacker captures the abilities of
“either a dishonest time server or an eavesdropper who tries to decrypt a
legal receiver’s ciphertext”. However, an outside attacker is not given access
to the time server’s master key and therefore does not model a dishonest
time server.

6. A TRE-PC scheme allows the sender to release pre-open key which enable
the receiver to decrypt a ciphertext before its release time. In some circum-
stances, the sender may wish to make the receiver decrypt a false message
different from which was originally sent, by sending a false pre-open key to
the receiver. This type of attack is not considered in the HYL model.

2.3 A new security model for TRE-PC schemes

We propose a new formulation and security model for a TRE-PC schemes. In
our formulation, a TRE-PC scheme Π is given by six probabilistic, polynomial
time algorithms:

1. Setup: Run by the time server, this setup algorithm takes a security pa-
rameter 1` as input, and generates a secret master-key mk and the global
parameters param. We assume that all subsequent algorithms takes param
implicitly as an input.

2. Gen: Run by a user, this user key generation algorithm takes a security
parameter 1` as input, and generates a public/private key pair (pkr, skr).

3. Ext: Run by the time server, this timestamp extraction algorithm takes mk
and a time t as input, and generates a timestamp TSt for the time t.

4. Enc: Run by a sender, this encryption algorithm takes a message m, a release
time t, and the receiver’s public key as input, and returns a ciphertext C
and its pre-open key VC . It should be noted that initially the sender should
send the ciphertext C in company with the release time t to the receiver,
therefore the receiver can know the release time of C. The sender stores the
pre-open key VC and publishes it when pre-opening the ciphertext C.

5. DecRK: Run by the receiver, this decryption algorithm takes a ciphertext C,
the pre-open key VC , and the receiver’s private key as input, and returns
either the plaintext or an error message (⊥). In reality, the receiver can only
run this algorithm after the sender releases the pre-open key VC .

6. DecPK: Run by the receiver, this decryption algorithm takes a ciphertext C,
a timestamp TSt which is determined by the release time accompanied with
C, and the receiver’s private key as input, and returns either the plaintext
or an error message (⊥).

In the proposed model, we consider the following four kinds of adversaries:

– Outside adversaries who do not know the master key of the time server and
wish to break the confidentiality of a message.

– Curious time servers who knows the master key of the time server and wish
to break the confidentiality of a message.

– Legal but curious receivers who try to decrypt the ciphertext before the
release time without the pre-open key.

– Legal but malicious senders who try to make the receiver recover a false
message different from which was originally sent.

This gives rise to four separate security models, shown in Fig. 1. All of these
models mirror the standard definition for confidentiality in public-key encryption
except for the binding model, which models the capability of an attacker to
produce a ciphertext for which the two decryption algorithms return different
messages. Each attacker may have access to one or more of the following oracles:

1. An Ext oracle that takes a time t as input and outputs the timestamp TSt =
Ext(t,mk).

2. A DecPK oracle that takes as input a ciphertext C and a time t, and outputs
DecPK(C, TSt, skr). Note that t need not be the “correct” release time for
C.

3. A DecRK oracle that takes as input a ciphertext C and a pre-open key V , and
outputs DecRK(C, V, skr). Note that V need not be the “correct” pre-open
key for C.

For each of the IND games, a probabilistic, polynomial-time attacker A =
(A1,A2) is deemed to have won if it outputs a value b′ = b. A’s advantage
is defined to be |Pr[b′ = b] − 1/2|. We may now formally define the security
models for formalising the security against the above four types of adversaries.

Definition 1 (Outsider Security). A TRE-PC scheme Π is said to be IND-
TR-CCAOS secure if every polynomial-time attacker A that does not query the
DecPK oracle on the input (C∗, t∗) or the DecRK oracle on the input (C∗, VC∗)
has negligible advantage.

Definition 2 (Time Server Security). A TRE-PC scheme Π is said to be
IND-TR-CCATS secure if every polynomial-time attacker A that does not query
the DecPK oracle on the input (C∗, t∗) or the DecRK oracle on the input (C∗, VC∗)
has negligible advantage.

Definition 3 (Insider Security). A TRE-PC scheme Π is said to be IND-
TR-CPAIS secure if every polynomial-time attacker A that does not query the
Ext oracle on any time t ≥ t∗ has negligible advantage.

The use of the phrase ‘CPA’ in the definition of insider security may be mis-
leading: since the attacker knows the user’s secret key skr, the attacker does not
gain any advantage from being given access to a DecRK oracle or a DecPK oracle
for any time t < t∗. Hence, there is no point to proposing a IND-TR-CCAIS
security model. For the other two IND security definitions, we may propose
analogous CPA definitions in the usual way.

Definition 4 (Binding). A TRE-PC scheme Π is said to be binding if, for
every polynomial-time attacker A that outputs a triple (C∗, t∗, V ∗), we have that
the probability that

⊥6= DecPK(C∗, TSt∗ , skr) 6= DecRK(C∗, V ∗, skr) 6=⊥

is negligible.

It is worth stressing that we have adopted the notation “binding” which is a
property of commitment schemes such as that in [5]. The binding property for
TRE-PC schemes guarantees that, if the adversary has encrypted some message
then it cannot release a pre-open key to force the receiver to decrypt a false
message which is different from which was original sent. It is easy to see that
this is an analog to the binding property in commitment schemes. The difference
is that explicit proofs are usually required in commitment schemes, while no
such proofs are required in a TRE-PC scheme (as shown later in our scheme).
We further point out that if the receiver obtains ⊥ in the decryption then it
can confirm that the sender has malfunctioned. The formalisation of ciphertext
validity, as that in [9], is outside the scope of this paper.

In fact, the binding of a TRE-PC scheme is also concerned with the secure
transportation of the pre-open key when the sender decides to open the encrypted
message before the pre-defined release time. If the TRE-PC scheme is binding,
then the pre-open key does not need to be integrity protected; otherwise, the
pre-open key should be integrity protected to guarantee that the receiver will
obtain the message which the sender has intended to send.

The relationship between these notions of security is given in Fig. 2. In this
figure, “A −→ B” means that if a scheme is secure in the sense of A then
it is secure in the sense of B and “A 6−→ B” means that we can construct a
scheme which is secure in the sense of A but not secure in the sense of B. Given
the relations in the figure, one can easily deduce the relation between any two
security notions. Proofs of these relations can be found in the full version of the
paper [11].

3 TRE-PC KEMs

The use of a symmetric encryption scheme as a subroutine of an asymmetric
encryption schemes has long been known as a useful technique for improving
the efficiency of asymmetric encryption. Cramer and Shoup [8,18] formalised
one approach to producing such hybrid asymmetric encryption schemes. This

IND-TR-CCAOS

1. (param, mk)
$← Setup(1`)

2. (pkr, skr)
$← Gen(1`)

3. (m0, m1, t
∗, state)

$←
A1(param, pkr;Ext, DecRK, DecPK)

4. b
$← {0, 1}

5. (C∗, VC∗)
$← Enc(mb, t

∗, pkr)

6. b′
$←

A2(C
∗, VC∗ , state;Ext, DecRK, DecPK)

IND-TR-CCATS

1. (param, mk)
$← Setup(1`)

2. (pkr, skr)
$← Gen(1`)

3. (m0, m1, t
∗, state)

$←
A1(param, pkr, mk;DecRK, DecPK)

4. b
$← {0, 1}

5. (C∗, VC∗)
$← Enc(mb, t

∗, pkr)

6. b′
$←

A2(C
∗, VC∗ , state;DecRK, DecPK)

IND-TR-CPAIS

1. (param, mk)
$← Setup(1`)

2. (pkr, skr)
$← Gen(1`)

3. (m0, m1, t
∗, state)

$←
A1(param, pkr, skr;Ext)

4. b
$← {0, 1}

5. (C∗, VC∗)
$← Enc(mb, t

∗, pkr)

6. b′
$← A2(C

∗, state; Ext)

BINDING

1. (param, mk)
$← Setup(1`)

2. (pkr, skr)
$← Gen(1`)

3. (C∗, t∗, V ∗)
$←

A(param, pkr;Ext, DecRK, DecPK)

Fig. 1. Security models for a TRE-PC scheme

Fig. 2. Relations among the security notions

‘KEM–DEM’ approach has subsequently been applied to various other branches
of asymmetric cryptography [3,4,10] and this section will explain how it can be
applied to TRE-PC schemes.

A KEM-DEM scheme is composed of an asymmetric KEM and a symmetric
DEM. The KEM random generates a symmetric key and an encapsulation (en-
cryption) of that key. This symmetric key is then used by the DEM to encrypt
a message. In this section, we first define a variant of KEM, namely, TRE-PC
KEM, and then show that a secure TRE-PC scheme can be constructed from a
secure TRE-PC KEM and a standard DEM.

3.1 Definitions of TRE-PC KEM

For the simplicity of description, the notation KEM refers to TRE-PC KEM in
the following definition. A KEM consists of six probabilistic, polynomial-time
algorithms:

– KEM.Setup: This algorithm takes a security parameter 1` as input, and gen-
erates a secret master-key mk and the public parameters param. We assume
that all subsequent algorithms take param implicitly as an input

– KEM.Ext: This algorithm takes the master private key mk and a time t as
input, and generates a timestamp TSt.

– KEM.Gen: This algorithm takes a security parameter 1` as input, and outputs
a user’s public/private key pair (pkr, skr).

– KEM.Encap: This algorithm takes a release time t and a public key pkr as
input, and outputs (K, C, VC), where K is a symmetric key, C is a ciphertext,
VC is the pre-open key of C.

– KEM.DecapRK: This algorithm takes a ciphertext C, a pre-open key VC , and
the receiver’s private key skr as input, and returns either the encapsulated
key K or an error message ⊥.

– KEM.DecapPK: This decryption algorithm takes a ciphertext C, a timestamp
TSt which is determined by the release time accompanied with C, and the
receiver’s private key skr as input, and returns either the encapsulated key
K or an error message ⊥.

We assume that there exist a function KeyLen(`) such that the symmetric keys
output by a particular TRE-PC KEM (with security parameter `) are exactly
KeyLen(`)-bits long.

3.2 Security Definitions of TRE-PC KEM

Just as for a TRE-PC scheme, we actually define four separate security notions
for a TRE-PC KEM, one for each of the different types of attacker. These security
games are shown in Fig. 3. Once again, each attacker may have access to one or
more of the following oracles:

1. An Ext oracle that takes a time t as input and outputs the timestamp TSt =
Ext(t,mk).

IND-TR-CCAOS

1. (param, mk)
$← Setup(1`)

2. (pkr, skr)
$← Gen(1`)

3. (t∗, state)
$←

A1(param, pkr;Ext, DecapRK, DecapPK)

4. b
$← {0, 1}

5. (K0, C
∗, VC∗)

$← Encap(t∗, pkr)

6. K1
$← {0, 1}KeyLen(`)

7. b′
$←

A2(Kb, C
∗, VC∗ , state; Ext, DecRK, DecPK)

IND-TR-CCATS

1. (param, mk)
$← Setup(1`)

2. (pkr, skr)
$← Gen(1`)

3. (t∗, state)
$←

A1(param, pkr, mk;DecRK, DecPK)

4. b
$← {0, 1}

5. (K0, C
∗, VC∗)

$← Encap(t∗, pkr)

6. K1
$← {0, 1}KeyLen(`)

7. b′
$←

A2(Kb, C
∗, VC∗ , state;DecRK, DecPK)

IND-TR-CPAIS

1. (param, mk)
$← Setup(1`)

2. (pkr, skr)
$← Gen(1`)

3. (t∗, state)
$←

A1(param, pkr, skr;Ext)

4. b
$← {0, 1}

5. (K0, C
∗, VC∗)

$← Encap(t∗, pkr)

6. K1
$← {0, 1}KeyLen(`)

7. b′
$← A2(Kb, C

∗, state; Ext)

BINDING

1. (param, mk)
$← Setup(1`)

2. (pkr, skr)
$← Gen(1`)

3. (C∗, t∗, V ∗)
$←

A(param, pkr;Ext, DecRK, DecPK)

Fig. 3. Security models for a TRE-PC KEM

2. A DecapPK oracle that takes as input an encapsulation C and a time t, and
outputs either the encapsulated key K or an error message ⊥.

3. A DecapRK oracle that takes as input an encapsulation C and a pre-open key
V , and outputs either the encapsulated key K or an error message ⊥.

For each of the IND games, a probabilistic, polynomial-time attacker A =
(A1,A2) is deemed to have won if it outputs a value b′ = b. A’s advantage is
defined to be |Pr[b′ = b]− 1/2|.

The formal definitions for the security of a TRE-PC KEM mirror those of a
full TRE-PC scheme:

Definition 5 (Outsider Security). A TRE-PC KEM Π is said to be IND-
TR-CCAOS secure if every polynomial-time attacker A that does not query the
DecapPK oracle on the input (C∗, t∗) or the DecapRK oracle on the input (C∗, VC∗)
has negligible advantage.

Definition 6 (Time Server Security). A TRE-PC KEM Π is said to be
IND-TR-CCATS secure if every polynomial-time attacker A that does not query
the DecapPK oracle on the input (C∗, t∗) or the DecapRK oracle on the input
(C∗, VC∗) has negligible advantage.

Definition 7 (Insider Security). A TRE-PC KEM Π is said to be IND-TR-
CPAIS secure if every polynomial-time attacker A that does not query the Ext
oracle on any time t ≥ t∗ has negligible advantage.

Definition 8 (Binding). A TRE-PC KEM Π is said to be binding if, for every
polynomial-time attacker A that outputs a triple (C∗, t∗, V ∗), we have that the
probability that

⊥6= DecapPK(C∗, TSt∗ , skr) 6= DecapRK(C∗, V ∗, skr) 6=⊥
is negligible.

3.3 Construction of TRE-PC Schemes

As might be expected, we show that the combination of a secure TRE-PC KEM
and a secure DEM is a secure TRE-PC scheme. We first recall the definition of
a DEM [8,18]. A DEM consists of the following two polynomial-time algorithms:

– DEM.Enc: A deterministic, polynomial-time encryption algorithm which, on
the input a message m and a symmetric key K, outputs a ciphertext C.

– DEM.Dec: A deterministic, polynomial-time decryption algorithm which, on
the input a ciphertext C and a symmetric key K, outputs a message m or
an error message ⊥.

We assume that the range of possible keys K is the same as that of the
associated TRE-PC KEM, i.e. {0, 1}KeyLen(`). We also assume that the TRE-PC
KEM and DEM are sound in that the appropriate decapsulation/decryption
algorithms ‘undo’ the effects of the encapsulation/encryption algorithms. We
may now construct a TRE-PC scheme from a TRE-PC KEM and a DEM:

– The Setup, Ext, and Gen algorithms are given by the KEM.Setup, KEM.Ext,
and KEM.Gen algorithms, respectively.

– The encryption algorithm Enc(m, t, pkr) works in two steps. It first runs
(K,C1, VC) $← KEM.Encap(t, pkr), and then computes C2 ← DEM.Enc(m,K).
The ciphertext is C ← (C1, C2) and the pre-open key is VC .

– The decryption algorithm DecRK(C, VC , skr) works in two steps. It first
runs K ← KEM.DecapRK(C1, VC , skr), and then outputs the message m ←
DEM.Dec(C2,K). If K =⊥, this decryption outputs ⊥.

– The decryption algorithm DecPK(C, TSt, skr) works in two steps. It first
runs K ← KEM.DecapPK(C1, TSt, skr), and then outputs the message m ←
DEM.Dec(C2,K). If K =⊥, this decryption outputs ⊥.

We also use the notion of one-time IND-CCA and IND-CPA security for a
DEM that was proposed by Cramer and Shoup [8,18]. It is not difficult to see
that we can now prove the following theorems about a TRE-PC constructed
from a TRE-PC KEM and a DEM. The proofs for the IND security of the
composition are similar to those of Cramer and Shoup [8,18] and can be found
in the full version of the paper [11]. Note that TRE-PC KEM and and the DEM
are trivially required to be sound.

Theorem 1. Let a hybrid TRE-PC scheme be formed from a TRE-PC KEM
and a DEM. If the TRE-PC KEM is IND-TR-CCAOS secure and the DEM is
IND-CCA secure, then the TRE-PC scheme is IND-TR-CCAOS secure.

Theorem 2. Let a hybrid TRE-PC scheme be formed from a TRE-PC KEM
and a DEM. If the TRE-PC KEM is IND-TR-CCATS secure and the DEM is
IND-CCA secure, then the TRE-PC scheme is IND-TR-CCATS secure.

Theorem 3. Let a hybrid TRE-PC scheme be formed from a TRE-PC KEM
and a DEM. If the TRE-PC KEM is IND-TR-CPAIS secure and the DEM is
IND-CPA secure, then the TRE-PC scheme is IND-TR-CPAIS secure.

Theorem 4. Let a hybrid TRE-PC scheme be formed from a TRE-PC KEM
and a DEM. If the TRE-PC KEM is binding, then the TRE-PC scheme is bind-
ing.

4 An Efficient TRE-PC KEM

In this section, we propose a concrete instantiation of a TRE-PC KEM. The
scheme we propose shares similarities with the scheme proposed by Hwang, Yum
and Lee [14]; however, our scheme is substantially simpler and, when used with
a suitable DEM, gives rise to a more efficient TRE-PC scheme.

4.1 The Description

Our scheme makes use of a bilinear map on a group. In other words, we assume
the existence of an instance generating algorithm that, given a security parameter
1`, outputs a group description (G1,GT , P, q, ê), where G1 and GT are additively
written groups of prime order q, P is a generator of G1, and ê : G1×G1 → GT is
a polynomial-time computable, non-degenerate, bilinear map. This is normally
instantiated by a super-singular elliptic curve of small embedding degree; for
more details the reader is referred to the paper of Galbraith, Paterson and Smart
[13].

The algorithms of the TRE-PC KEM are defined as follows:

– KEM.Setup: This algorithm takes the security parameter 1` as input, gen-
erates a group structure (G1,GT , P, q, ê) of the required security level and
chooses three hash functions:

H1 : {0, 1}∗ → G1 H2 : G1×G1×GT → {0, 1}` H3 : G1×GT → {0, 1}KeyLen(`) .

The algorithm then chooses a random element s
$← Zq and sets S ← sP . The

public parameters are param ← (G1,GT , P, q, ê, H1,H2, H3, S); the master
private key is mk ← s.

– KEM.Ext: This algorithm takes the master secret mk and a time t as input,
and returns TSt ← sH1(t).

– KEM.Gen: This algorithm randomly generates x
$← Zq, and outputs the

public/private keys skr ← x and pkr ← xP .
– KEM.Encap: This algorithm takes a release time t and the receiver’s public

key pkr as input, and returns (K,C, VC), which are computed as follows:
1. Randomly generate r

$← Zq and v
$← Zq.

2. Compute Qt ← H1(t), X1 ← r · pkr, X2 ← ê(S, Qt)v.
3. Compute C1 ← rP , C2 ← vP , C3 ← H2(C2, X1, X2).
4. Compute K ← H3(X1, X2), VC ← vQt and C ← (C1, C2, C3).

– KEM.DecRK: This algorithm takes a ciphertext C = (C1, C2, C3), the pre-
open key VC = vQt, and the private key skr = x as input, and runs as
follows:
1. Compute X1 ← xC1 and X2 ← ê(S, VC).
2. Check whether C3 = H2(C2, X1, X2). If not, output ⊥ and halt.
3. Otherwise, return K ← H3(X1, X2).

– KEM.DecPK: This algorithm takes a ciphertext C = (C1, C2, C3), the times-
tamp TSt, and the private key skr = x as input, and runs as follows:
1. Compute X1 ← xC1 and X2 = ê(C2, TSt).
2. Check whether C3 = H2(C2, X1, X2). If not, output ⊥ and halt.
3. Otherwise, return K ← H3(X1, X2).

4.2 Security results

The security of our scheme is based on two principles: that it is infeasible for
any attacker who does not know the private key skr = x to compute the value
X1 = xC∗1 and that it is infeasible for any attacker who does not know either the
master private key, the pre-open key or the appropriate timestamp to compute
the value X2 = ê(P, P)rvs for the given value of C∗2 . We prove the security of
our scheme in the random oracle model under the following assumptions:

Definition 9 (Computational Diffie-Hellman). Given a group description
(G1,GT , P, q, ê) generated at a security level 1` and a pair of group elements
(αP, βP), where α, β

$← Zq, the computational Diffie-Hellman (CDH) problem
is to determine αβP . The CDH assumption is that no probabilistic, polynomial-
time algorithm can solve this problem with non-negligible probability.

Definition 10 (Bilinear Diffie-Hellman). Given a group description (G1,GT , P, q, ê)
generated at a security level 1` and a triple of group elements (αP, βP, γP),
where α, β, γ

$← Zq, the Bilinear Diffie-Hellman (BDH) problem is to deter-
mine ê(P, P)αβγ . The BDH assumption is that no probabilistic, polynomial-time
algorithm can solve this problem with non-negligible probability.

These computational assumptions allow us to prove the follow theorems
about the IND security of our scheme.

Theorem 5. The TRE-PC KEM is IND-TR-CCATS secure in the random or-
acle model under the CDH assumption.

Proof. We construct an algorithm B which solves the CDH problem with non-
negligible probability whenever A breaks the IND-TR-CCATS security of the
TRE-PC KEM with non-negligible advantage. Let A = (A1,A2) be an IND-
TR-CCATS attacker with non-negligible advantage. B runs as follows:

1. Receive an instance of the group on which the CDH problem is to be solved
(G1,GT , P, q, ê) and a CDH challenge (αP, βP).

2. Game setup: Randomly select s
$← Zq and set S = sP . The public parame-

ters are param ← (G1,GT , P, q, ê,H1, H2, H3, S) and the master private key
is mk ← s. Set the user’s public key to be pkr ← αP .

3. Phase 1: B executes A1 on the input (param, pkr,mk). A1 has access to
several oracles during its execution (we assume, without loss of generality,
that A never queries the random oracles with the same value twice):
– If A queries the random oracle Hi with a new input Z, then B random

generates a value Y from the appropriate range, stores (Z, Y) in Hi-list
and returns Y .

– If A queries the KEM.DecapRK oracle on the input C = (C1, C2, C3) and
VC , then B runs as follows:
(a) Check whether there exists an input Z = (z1, z2, z3) on the H2-list

such that z1 = C2, ê(C1, pkr) = ê(z2, P) and z3 = ê(S, VC). If not,
B returns ⊥ to A.

(b) Check whether C3 = H2(z1, z2, z3). If not, B returns ⊥ to A.
(c) If both checks succeed, then B returns K ← H3(z2, z3) to A.

– If A queries the KEM.DecapPK oracle on the input C = (C1, C2, C3) and
t, then B runs as follows:
(a) Compute TSt = sH1(t).
(b) Check whether there exists an input Z = (z1, z2, z3) on the H2-list

such that z1 = C2, ê(C1, pkr) = ê(z2, P) and z3 = ê(C2, TSt). If not,
B returns ⊥ to A.

(c) Check whether C3 = H2(z1, z2, z3). If not, B returns ⊥ to A.
(d) If both checks succeed, then B returns K ← H3(z2, z3) to A.

A1 terminates by outputting a challenge release time t∗ and some state
information state.

4. Challenge: B sets C∗1 ← βP (the CDH challenge element). B also randomly
selects v

$← Zq, C∗3
$← {0, 1}`, K

$← {0, 1}KeyLen(`) and sets C∗2 ← vP ,
VC∗ ← vH1(t∗). . The challenge ciphertext is set as C∗ ← (C∗1 , C∗2 , C∗3).

5. Phase 2: B executesA2 on the input (K,C∗, VC∗ , state). During its execution,
A2 may query several oracles, these oracle queries are answered in the same
way as in Phase 1. A2 terminates by outputting a bit b′.

6. B random selects an input Z on either the H2-list or the H3-list in such a
way that all inputs are equally likely to be chosen. If Z = (z1, z2, z3) is an
input on the H2-list, then B outputs z2. If Z = (z1, z2) is an input on the
H3-list, then B outputs z1.

We analyse this algorithm and show two things. First, that the environment
that A can only distinguish the simulated environment from a real attack en-
vironment with negligible probability (up until the point in which A makes a

critical query to a hash function). Second, if A succeeds in breaking the security
of the TRE-PC KEM, then it must make a critical query with non-negligible
probability and that such a critical query allows B to recover the solution to the
CDH problem with non-negligible probability.

Suppose A makes at most qi queries to the random oracles Hi, qRK queries
to the KEM.DecapRK oracle and qPK queries to the KEM.DecapPK oracle. We
define a critical query to be either:

– a query (z1, z2, z3) to the H2 oracle such that z1 = C∗2 , z2 = αβP and
z3 = ê(S, VC∗), or

– a query to the (z1, z2) to the H3 oracle such that z1 = αβP and z2 =
ê(C∗2 , TSt∗).

Note that the simulation of the random oracles is perfect up until the point
where a critical query is made. Again, up until the point where a critical query is
made, the simulation of the KEM.DecapRK algorithm is perfect unless A submits
a query (C1, C2, C3) and VC to the decapsulation oracle such that A has not
queried the H2 oracle on the input z1 = C2, z2 = rαP and z2 = ê(S, VC), where
C1 = rP , and yet H2(z1, z2, z3) = C3. It is clear that, since H2 is a random
oracle, these conditions will hold with probability 1/2`, which is negligible. This
argument can also be used to show that the simulation of KEM.DecapPK is
sufficient correct up until the point where a critical query is made.

Let n2 and n3 be the maximum number of possible entries on the H2- and
H3-lists respectively. Note that

n2 = q2 and n3 = q3 + qRK + qPK

due to the way in which the decapsulation oracles are simulated. If a critical
query is made, then B will output the solution to the CDH problem with proba-
bility at least 1/n2 +n3. Let E be the event that a critical query is made and let
E′ be the event that the critical H3 query is made, and note that Pr[E] ≥ Pr[E′].
Since H3 is a random oracle, a standard argument shows that Pr[E′] is greater
than or equal to A’s advantage. Therefore, since A has non-negligible advantage,
we must have that B has a non-negligible probability of output the solution to
the CDH problem. ut

Theorem 6. The TRE-PC KEM scheme is IND-TR-CPAIS secure in the ran-
dom oracle model under the BDH assumption.

Proof. The proof of this theorem is similar to the proof of IND-TR-CCATS se-
curity, although slightly more complex. Again, we construct an algorithm B that
solves the BDH problem with non-negligible probability whenever A breaks the
IND-TR-CPAIS security of the TRE-PC KEM with non-negligible advantage.
Let A = (A1,A2) be an IND-TR-CPAIS attacker with non-negligible advantage.

Suppose that A makes at most qi queries to the random oracles Hi, and qE

queries to the KEM.Ext oracle. B will keep track of the queries made to the Hi

oracle via a number of lists. In any execution of B, we shall see that the Hi-list
has at most ni elements on it, where

n1 = q1 + qE + 1 , n2 = q2 and n3 = q3 .

B runs as follows:

1. Receive an instance of the group on which the BDH problem is to be solved
(G1,GT , P, q, ê) and a BDH challenge (αP, βP, γP).

2. B randomly choose an integer j
$← {1, 2, . . . , n1}. This will define B’s guess

for the challenge release time.
3. Game setup: Set S ← αP and define the public parameters to be param ←

(G1,GT , P, q, ê,H1, H2, H3, S). Randomly select x
$← Zq, set skr ← x and

pkr ← xP .
4. Phase 1: B executes A1 on the input (param, pkr, skr). A1 has access to

several oracles during its execution (we assume, without loss of generality,
that A never queries the random oracles with the same value twice):
– If A (or the KEM.Ext oracle) queries the random oracle H1 with a new

input t and this is not the j-th new query to the H1 oracle, then B random
generates a value y

$← Zq, sets Y ← yP , stores (t, y, Y) in H1-list and
returns Y .

– If A (or the KEM.Ext oracle) queries the random oracle H1 with a new
input t and this is the j-th new query to the H1 oracle, then B adds
(t,⊥, γP) to the H1-list and returns γP to A.

– If A queries the random oracle H2 or H3 with a new input Z, then B
random generates a value Y from the appropriate range, stores (Z, Y)
in the appropriate Hi-list and returns Y .

– If A queries the KEM.Ext oracle on the time t, then compute H1(t),
extract the appropriate element y from the H1-list entry (t, y, Y), and
returns yS to A. If there exists no element y, i.e. if t was the j-th query
to the H1 oracle, then B terminates its entire execution by outputting a
random group element from GT .

A1 terminates by outputting a challenge release time t∗ and some state
information state.

5. If the H1 oracle has not been queried on t∗, then B “queries” H1 on t∗.
6. If t∗ is not the j-th query to the H1 oracle, then B terminates its entire

execution by outputting a random group element from GT .
7. Challenge: B randomly chooses r∗ $← Zq and sets C∗1 ← r∗P . B sets C∗2 ← βP

and randomly selects C∗3
$← {0, 1}` and K

$← {0, 1}KeyLen(`). The challenge
ciphertext is defined to be C∗ = (C∗1 , C∗2 , C∗3).

8. Phase 2: B executes A2 on the input (K, C∗, state). During its execution,
A2 may query several oracles, these oracle queries are answered in the same
way as in Phase 1. A2 terminates by outputting a bit b′.

9. B random selects an input Z on either the H2-list or the H3-list in such a
way that all inputs are equally likely to be chosen. If Z = (z1, z2, z3) is an
input on the H2-list, then B outputs z3. If Z = (z1, z2) is an input on the
H3-list, then B outputs z2.

Again we show that the environment provided by B to A almost exactly
simulates the attack environment in which A expects to run up until either the
simulation terminates because t∗ is not the j-th query to H1 or a critical oracle
query is made. We define a critical oracle query to be either:

– a query (z1, z2, z3) to the H2 oracle such that z1 = C∗2 , z2 = r∗xP and
z3 = ê(C∗2 , TSt∗) = ê(P, P)αβγ , or

– a query to the (z1, z2) to the H3 oracle such that z1 = r∗xP and z2 =
ê(C∗2 , TSt∗) = ê(P, P)αβγ .

We note that the simulation of the random oracles and the extraction oracle is
perfect up until the point in which a critical oracle query is made. Furthermore,
we note that the probability that we make an incorrect choice of j is 1/n1.

Let E be the event that a critical oracle query is made and let E′ be the event
that the critical H3 oracle query is made. Note that Pr[E] ≥ Pr[E′]. Now, by a
standard argument, since H3 is a random oracle, A’s advantage in breaking the
IND-TR-CPAIS security of the TRE-PC KEM is less than or equal to Pr[E′].
Furthermore, if E occurs, then B has at least a 1/n2+n3 chance of outputting the
correct solution to the CDH problem. This means that if A has a non-negligible
advantage ε of breaking the IND-TR-CPAIS security of the TRE-PC KEM, then
B has a non-negligible probability of at least ε/n1(n2 + n3) of solving the CDH
problem. ut

The binding of the scheme can be proven directly in the random oracle model,
or in the standard model under the following assumption.

Definition 11 (Collision Resistance). A hash function H generated at se-
curity level 1` is collision resistance if the probability that any polynomial-time
algorithm can find a pair of inputs x 6= y such that H(x) = H(y) is negligible as
a function of the security parameter.

Theorem 7. If H2 is collision-resistant, then the TRE-PC KEM is binding.

Proof. Without loss of generality, suppose that at the end of the legitimate bind-
ing attack game the attacker outputs (C∗, t∗, VC∗), where C∗ = (C∗1 , C∗2 , C∗3).
Recalling the definitions of KEM.DecapRK and KEM.DecapPK from the previous
section, the attacker wins the game only if O1 6= O2, where

O1 = H3(X1, X
′
2), O2 = H3(X1, X

′′
2), X1 = skrC

∗
1 , X ′

2 = ê(S, VC∗),

X ′′
2 = ê(C∗2 , TSt∗), C∗3 = H2(C∗2 , X1, X

′
2), and C∗3 = H2(C∗2 , X1, X

′′
2).

If the attacker wins, then it is staightforward to verify that X ′
2 6= X ′′

2 ; oth-
erwise O1 = O2. Hence, if the attacker wins the game then this implies that the
attacker can find a collision for H2, where the two inputs are (C∗2 , X1, X

′
2) and

(C∗2 , X1, X
′′
2). Under the assumption that H2 is collision-resistant, it follows that

the attacker can only win the game with a negligible probability. ut

5 Conclusions

In this paper we have analysed the security model for TRE-PC schemes proposed
by Hwang, Yum, and Lee, and shown its defects. We proposed a new security
model which avoids the defects possessed by the HYL model. We also worked
out the complete relations among the security notions defined in the proposed
security model, introduced a new notion, i.e. TRE-PC KEM, and presented a
hybrid model to construct TRE-PC schemes.

Acknowledgements The work described in this paper has been supported in part
by the European Commission through the IST Programme under Contract IST-2002-
507932 ECRYPT. The information in this document reflects only the authors’ views, is
provided as is and no guarantee or warranty is given that the information is fit for any
particular purpose. The user thereof uses the information at its sole risk and liability.

References

1. M. Bellare and S. Goldwasser. Encapsulated key-escrow. Technical Report Tech.
Report MIT/LCS/TR-688, MIT LCS, 1996.

2. M. Bellare and S. Goldwasser. Verifiable partial key escrow. In Proceedings of
the 4th ACM conference on Computer and communications security, pages 78–91.
ACM Press, 1997.

3. K. Bentahar, P. Farshim, J. Malone-Lee, and N.P. Smart. Generic constructions
of identity-based and certificateless KEMs. Cryptology ePrint Archive: Report
2005/058, 2005.

4. T. E. Bjørstad and A. W. Dent. Building better signcryption schemes with tag-
kems. In M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, editors, Proceedings of the
9th International Conference on Theory and Practice of Public-Key Cryptography,
PKC 2006, volume 3958 of Lecture Notes in Computer Science, pages 491–507.
Springer-Verlag, 2006.

5. D. Boneh and M. Naor. Timed commitments. In M. Bellare, editor, Advances in
Cryptology - CRYPTO 2000, pages 236–254. Springer, 2000.

6. J. Cathalo, B. Libert, and J.-J. Quisquater. Efficient and non-interactive timed-
release encryption. In S. Qing, W. Mao, J. Lopez, and G. Wang, editors, Pro-
ceedings of the 7th International Conference on Information and Communica-
tions Security, volume 3783 of Lecture Notes in Computer Science, pages 291–303.
Springer-Verlag, 2005.

7. A. C. F. Chan and I. F. Blake. Scalable, server-passive, user-anonymous timed
release cryptography. In Proceedings of the 25th IEEE International Conference
on Distributed Computing Systems (ICDCS’05), pages 504–513. IEEE Computer
Society, 2005.

8. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33(1):167–226, 2004.

9. G. D. Crescenzo, R. Ostrovsky, and S. Rajagopalan. Conditional oblivious transfer
and timed-release encryption. In J. Stern, editor, Advances in Cryptology – EU-
ROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science, pages 74–89.
Springer-Verlag, 1999.

10. A. W. Dent. Hybrid signcryption schemes with outsider security. In J. Zhou,
J. Lopez, R. H. Deng, and F. Bao, editors, Proceedings of the 8th International
Information Security Conference, ISC 2005, volume 3650 of Lecture Notes in Com-
puter Science, pages 203–217. Springer-Verlag, 2005.

11. A. W. Dent and Q. Tang. Revisiting the security model for timed-release public-key
encryption with pre-open capability. http://eprint.iacr.org/2006/306, 2006.

12. C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In E. F.
Brickell, editor, Advances in Cryptology – CRYPTO ’92, volume 740 of Lecture
Notes in Computer Science, pages 139–147. Springer, 1992.

13. S.D. Galbraith, K.G. Paterson, and N.P. Smart. Pairings for cryptographers.
http://eprint.iacr.org/2006/165, 2006.

14. Y. Hwang, D. Yum, and P. Lee. Timed-release encryption with pre-open capability
and its application to certified e-mail system. In J. Zhou, J. Lopez, R. Deng,
and F. Bao, editors, Proceedings of the 8th International Information Security
Conference (ISC 2005), volume 3650 of Lecture Notes in Computer Science, pages
344–358. Springer, 2005.

15. T. C. May. Time-release crypto, 1993.
16. R. C. Merkle. Secure communications over insecure channels. Commun. ACM,

21(4):294–299, 1978.
17. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release

crypto. Technical Report Tech. Report MIT/LCS/TR-684, MIT LCS, 1996.
18. V. Shoup. Using hash functions as a hedge against chosen ciphertext attack. In

B. Preneel, editor, Advances in Cryptology — Eurocrypt 2000, volume 1807 of
Lecture Notes in Computer Science, pages 275–288. Springer-Verlag, 2000.

