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Abstract

We present an identity-based cryptosystem that features fully anonymous ciphertexts and
hierarchical key delegation. We give a proof of security in the standard model, based on the mild
Decision Linear complexity assumption in bilinear groups. The system is efficient and practical,
with small ciphertexts of size linear in the depth of the hierarchy. Applications include search
on encrypted data, fully private communication, etc.

Our results resolve two open problems pertaining to anonymous identity-based encryption,
our scheme being the first to offer provable anonymity in the standard model, in addition to
being the first to realize fully anonymous HIBE at all levels in the hierarchy.

1 Introduction

The cryptographic primitive of Identity-Based Encryption (IBE) allows a sender to encrypt a
message for a receiver using only the receiver’s identity as a public key. Recently, there has been
interest in “anonymous” identity-based encryption systems, where the ciphertext does not leak the
identity of the recipient. In addition to their obvious privacy benefits, anonymous IBE systems can
be leveraged to construct Public key Encryption with Keyword Search (PEKS) schemes, as was
first observed by Boneh et al. [10] and later formalized by Abdalla et al. [1]. Roughly speaking,
PEKS is a form of public key encryption that allows an encryptor to make a document serarchable
by keywords, and where the capabilities to search on particular keywords are delegated by a central
authority. Anonymous HIBE further enables sophisticated access policies for PEKS and ID-based
PEKS.

Prior to this paper, the only IBE system known to be inherently anonymous was that of Boneh
and Franklin [11]. Although they did not state it explicitly, the anonymity of their scheme followed
readily from their proof of semantic security. This was noticed by Boyen [13], who gave an ID-based
signeryption with a formalization of sender and recipient anonymity. One drawback of the Boneh-
Franklin IBE paradigm is that its security proofs are set in the random oracle model. More recently,
a number of IBE schemes [15, 5, 6, 32, 17, 27] have been proven secure outside of the random oracle
model, but none of these schemes is anonymous. In particular, in the efficient schemes of Boneh
and Boyen [5] and Waters [32], the identity is deterministically encoded in a simple manner within
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the exponent of an element of the bilinear group G. When these schemes are implemented using a
“symmetric” bilinear pairing e : G x G — G, it becomes trivial to test whether a given ciphertext
was encrypted for a candidate identity.

A tempting workaround to this problem is to use an “asymmetric” pairing e : G x G — G in
the schemes that allow it, such as Boneh and Boyen’s “BB;” and “BBs”, and Waters’ by extension.
In those schemes, and under the additional assumption that Decision Diffie-Hellman is hard in G,
one may prevent the use of the pairing as a direct test of whether a ciphertext is for a particular
identity. Unfortunately, turning this observation into a formal security reduction would at the very
least require making a strong assumption that is patently false in bilinear groups with symmetric
pairings, and the approach would still fail to generalize to hierarchical IBE for fundamental reasons
that are discussed later. Ideally, one would like a scheme that works indifferently with symmetric
and asymmetric pairings, and generalizes to hierarchical identities.

The first anonymous IBE without random oracles was unveiled at the CRYPTO’05 Rump
Session by one of the authors, and is now described in Section 4. In a nutshell, the identity is
split randomly into two blind components to prevent its recognition by using the bilinear map,
without making unduly strong assumptions. A second anonymous IBE without random oracles
was recently proposed by Gentry [20], based on a different principle. In Gentry’s scheme, the
identity of a ciphertext cannot be tested because a crucial element of the ciphertext lives in the
target group Gp rather than the bilinear group G. Gentry’s scheme is very efficient and has a
number of advantages, but unfortunately relies on a strong complexity assumption and does not
generalize to hierarchical IBE.

In spite of these recent achievements, creating an Anonymous Hierarchical IBE (A-HIBE)
scheme has remained a challenge. Even if we avail ourselves of random oracles, there simply
does not exist any known hierarchical identity-based encryption scheme which is also anonymous.
In particular, the Gentry-Silverberg [21] HIBE scheme is not anonymous, despite the fact that it
derives from the Boneh-Franklin IBE scheme, which is anonymous. The numerous applications to
searching on encrypted data motivated Abdalla et al. [1], in their CRYPTO’05 paper, to ask for
the creation of an Anonymous HIBE system, preferably without random oracles, as an important
open research problem.

1.1 Our Results

Our contribution is twofold. First, we build a simple and efficient Anonymous IBE scheme, and
give a proof of security without random oracles. Second, we generalize our construction into a
fully Anonymous HIBE scheme (i.e., anonymous at all levels in the hierarchy), again with a proof
without random oracles. Our approach gives a very efficient system in the non-hierarchical case, and
remains practical for the shallow hierarchies that are likely to be encountered in most applications.
The security of our systems is based on Boneh’s et al. [9] Decision Linear assumption, which is
arguably one of the mildest useful complexity assumptions in the realm of bilinear groups.

At first sight, our construction bears a superficial resemblance to Boneh and Boyen’s “BB;”
HIBE scheme [5, §4] — but with at least two big differences. First, we perform “linear splittings”
on various portions of the ciphertext, to thwart the trial-and-error identity guessing to which
other schemes fell prey. This idea gives us provable anonymity, even under symmetric pairings.
Second, we use multiple parallel HIBE systems and re-randomize the keys between them upon each
delegation. This is what lets us use the linear splitting technique at all levels of the hierarchy,
but also poses a technical challenge in the security reduction which must now simulate multiple



interacting HIBE systems at once. Solving this problem was the crucial step that gave us a hierarchy
without destroying anonymity.

1.2 Related Work

The concept of identity-based encryption was first proposed by Shamir [29] two decades ago. How-
ever, it was not until much later that Boneh and Franklin [11] and Cocks [18] presented the first
practical solutions. The Boneh-Franklin IBE scheme was based on groups with efficiently com-
putable bilinear maps, while the Cocks scheme was proven secure under the quadratic residuosity
problem, which relies on the hardness of factoring. The security of either scheme was only proven
in the random oracle model.

Canetti, Halevi, and Katz [15] suggested a weaker security notion for IBE, known as selective
identity or selective-ID, relative to which they were able to build an inefficient but secure IBE
scheme without using random oracles. Boneh and Boyen [5] presented two very efficient IBE
systems (“BB;” and “BB3”) with selective-ID security proofs, also without random oracles. The
same authors [6] then proposed a coding-theoretic extension to their “BB;” scheme that allowed
them to prove security for the full notion of adaptive identity or adaptive-ID security without
random oracles, but the construction was impractical. Waters [32] then proposed a much simpler
extension to “BB1” also with an adaptive-ID security proof without random oracles; its efficiency
was further improved in two recent independent papers, [17] and [27].

The notion of hierarchical identity-based encryption was first defined by Horwitz and Lynn [23],
and a construction in the random oracle model given by Gentry and Silverberg [21]. Canetti, Halevi,
and Katz [15] give the first HIBE with a (selective-ID) security proof without random oracles, but
that is not efficient. The first efficient HIBE scheme to be provably secure without random oracles is
the “BB1” system of Boneh and Boyen; further improvements include the HIBE scheme by Boneh,
Boyen, and Goh [7], which features shorter ciphertexts and private keys.

Nominally adaptive-ID secure HIBE schemes have been proposed, although all constructions
known to date [21, 32, 17, 27] are depth-limited because they suffer from an exponential security
degradation with the depth of the hierarchy. Qualitatively, this is no different than taking an
HIBE scheme with tight selective-ID security, such as BB; or BBG, and using one of the generic
transformations from [5, §7] to make it adaptive-ID secure. Quantitatively, the rate of decay
will differ between those approaches, which means that the number of useful hierarchy levels will
evolve similarly but not identically in function of the chosen group size and the desired security
bit strength. Accordingly, it remains an important open problem in identity-based cryptography
to devise an adaptive-ID secure HIBE scheme whose security degrades at most polynomially with
the depth of the hierarchy, under reasonable assumptions. (In this paper, we mostly leave aside
this issue of adaptive-ID security for HIBE.)

Encrypted search was studied by Song, Wagner, and Perrig [31], who presented the first scheme
for searching on encrypted data. Their scheme is in the symmetric-key setting where the same
party that encrypted the data would generate the keyword search capabilities. Boneh et al. [10]
introduced Public Key Encryption with Keyword Search (PEKS), where any party with access to a
public key could make an encrypted document that was searchable by keyword; they realized their
construction by applying the Boneh-Franklin IBE scheme. Abdalla et al. [1] recently formalized the
notion of Anonymous IBE and its relationship to PEKS. Additionally, they formalized the notion
of Anonymous HIBE and mentioned different applications for it. Using the GS system as a starting
point, they also gave an HIBE scheme that was anonymous at the first level, in the random oracle



model. Another view of Anonymous IBE is as a combination of identity-based encryption with the
property of key privacy, which was introduced by Bellare et al. [4].

1.3  Applications

In this section we discuss various applications of our fully anonymous HIBE system. The main
applications can be split into several broad categories.

Fully Private Communication. The first compelling application of anonymous IBE is for fully
private communication. Bellare et al. [4] argue that public key encryption systems that have the
“key privacy” property can be used for anonymous communication: for example, if one wishes to
hide the identity of a recipient one can encrypt a ciphertext with an anonymous IBE system and
post it on a public bulletin board. By the anonymity property, the ciphertext will betray neither
sender nor recipient identity, and since the bulletin board is public, this method will also be resistant
to traffic analysis. To compound this notion of key privacy, identity-based encryption is particularly
suited for untraceable anonymous communication, since, contrarily to public-key infrastructures,
the sender does not even need to query a directory for the public key of the recipient. For this
reason, anonymous IBE provides a very convincing solution to the problem of secure anonymous
communication, as it makes it harder to conduct traffic analysis attack on directory lookups.

Search on Encrypted Data. The second main application of anonymous (H)IBE is for en-
crypted search. As mentioned earlier, anonymous IBE and HIBE give several application in the
Public-key Encryption with Keyword Search (PEKS) domain, proposed by Boneh et al. [10], and
further discussed by Abdalla et al. [1]. As a simple example of real-world application of our scheme,
PEKS is a useful primitive for building secure audit logs [33, 19]. Furthermore, one can leverage
the hierarchical identities in our anonymous HIBE in several interesting ways. For example, we can
use a two-level anonymous HIBE scheme where the first level is an identity and the second level is
a keyword. This gives us the first implementation of the Identity-Based Encryption with Keyword
Search (IBEKS) primitive asked for in [1]. With this primitive, someone with the private key for
an identity can delegate out search capabilities for encryptions to their identity, without requiring
a central authority to act as the delegator. Conversely, by using certain keywords such as “Top
Secret” at the first level of the hierarchy, it is possible to broadcast innocent-looking ciphertexts
that require a certain clearance to decrypt, without even hinting at the fact that their payload
might be valuable. We can create more refined search capabilities with a deeper hierarchy.

As the last applications we mention, forward-secure public-key encryption [15] and forward-
secure HIBE [34] are not hard to construct from HIBE systems with certain algebraic properties [7].
Without going into details, we mention that we can implement Anonymous fs-HIBE with our scheme
by embedding a time component within the hierarchy, while preserving the anonymity property.

2 Background

Recall that a pairing is an efficiently computable [26], non-degenerate function, e : G x G — G,
with the bilinearity property that e(g”, §°) = e(g,§)"°. Here, G, G, and G are all multiplicative
groups of prime order p, respectively generated by g, g, and e(g, g). It is asymmetric if G # G.



We call bilinear instance a tuple G = [p, G,G,Gr, 9,9, e|]. We assume an efficient generation
procedure that on input a security parameter ¥ € N outputs G <& Gen(1*) where log,(p) = O(%).
We write Z), = Z/pZ for the set of residues modp and Z; = Z, \ {0} for its multiplicative group.

2.1 Assumptions

Since bilinear groups first appeared in cryptography half a decade ago [24], several years after their
first use in cryptanalysis [25], bilinear maps or pairings have been used in a large variety of ways
under many different complexity assumptions. Some of them are very strong; others are weaker.
Informally, we say that an assumption is mild if it is tautological in the generic group model [30], and
also “efficiently falsifiable” [28] in the sense that its problem instances are stated non-interactively
and concisely (e.g., independently of the number of adversarial queries or such large quantity).
Most IBE and HIBE schemes mentioned in Introduction (except “BBs” and the Factoring-based
system by Cocks) are based on mild bilinear complexity assumptions, such as BDH [24, 11] and
Linear [9]. In this paper, our goal is to rely only on mild assumptions.

Decision BDH: The Bilinear DH assumption was first used by Joux [24], and gained popularity
for its role in the Boneh-Franklin IBE system [11]. The decisional assumption posits the
hardness of the D-BDH problem, which we state in asymmetric bilinear groups as:

Given a tuple [g,9%,9%,3,5%,9%,7] € G3 x G3 x Gr for random exponents
[21, 22, 23] € (Zp)3, decide whether Z = e(g, §)* *2%.

Decision Linear: The Linear assumption was first proposed by Boneh, Boyen, and Shacham for
group signatures [9]. Its decisional form posits the hardness of the D-Linear problem, which
can be stated in asymmetric bilinear groups as follows:

Given a tuple [g, g%, g%, g% %, g%2%,§,0",5%2, 7] € G® x G3 x G for random
21, 22, 23, 24] € (Zp)*, decide whether Z = g#3+24,

We remark that the elements g, g%, §*2 € G3 were not explicitly included in Boneh’s et al.
original formulation.

“Hard” means algorithmically non-solvable with probability 1/2+ Q(poly(X)~1) in time O(poly (X))
for efficiently generated random “bilinear instances” [p, G, G,Gr, g, §,e] < Gen(1*), as ¥ — +oc.

These assumptions allow but not require the groups G and G to be distinct, and similarly we
make no representation one way or the other regarding the existence of computable homomorphisms
between G and (G, in either direction. This is the most general formulation. It has two main benefits:
(1) since it comes with fewer restrictions, it is potentially more robust and increases our confidence
in the assumptions we make; and (2) it gives us the flexibility to implement the bilinear pairing
on a broad variety of algebraic curves with attractive computational characteristics [2], whereas
symmetric pairings tend to be confined to supersingular curves, to name this one distinction.

Note that if we let G = G and g = g, our assumptions regain their familiar “symmetric” forms:

Given [g, g, g2, g%, Z] € G*x Gr for random [z1, 22, 23] € (Z,)3, decide whether Z = e(g, g)*1 %2 7.
Given [g, g1, g°2, g°1 %3, g?2*4, Z] € G® x G for random |21, 29, 23, z4] € (Zp)*, decide if Z = g=+31,

As a rule of thumb, the remainder of this paper may be read in the context of symmetric pairings,
simply by dropping all “hats” () in the notation. Also note that D-Linear trivially implies D-BDH.



2.2 Models

We briefly precise the security notions that are implied by the concept of Anonymous IBE or HIBE.
We omit the formal definitions, which may be found in the literature [11, 1].

Confidentiality: This is the usual security notion of semantic security for encryption. It means
that no non-trivial information about the message can be feasibly gleaned from the ciphertext.

Anonymity: Recipient anonymity is the property that the adversary be unable to distinguish the
encryption of a chosen message for a first chosen identity from the encryption of the same
message for a second chosen identity. Equivalently, the adversary must be unable to decide
whether a ciphertext was encrypted for a chosen identity, or for a random identity.

3 Intuition

Before we present our scheme we first explain why it is difficult to implement anonymous IBE
without random oracles, as well as any form of anonymous HIBE even in the random oracle model.
We then give some intuition behind our solution.

3.1 The Difficulty

Recall that in the basic Boneh-Franklin IBE system [11], an encryption of a message Msg to some
identity Id, takes the following form,

CT=[C, o] =g e(H(ld),Q)"Msg] € G xGr,

where H is a random oracle, r is a random exponent, and g and @ are public system parameters.
A crucial observation is that the one element of the ciphertext in the bilinear group G, namely, g",
is just a random element that gives no information about the identity of the recipient. The reason
why only one element in G is needed is because private keys in the Boneh-Franklin scheme are
deterministic — there will be no randomness in the private key to cancel out. Since the proof of
semantic security is based on the fact that C5 is indistinguishable from random without the private
key for ID, it follows that the scheme is also anonymous since C5 is the only part of the ciphertext
on which the recipient identity has any bearing.

More recently, there have been a number of IBE schemes proven secure without random oracles,
such as BTE from [15], BB and BBy from [5], and Waters’ [32]. However, in all these schemes the
proof of security requires that randomness be injected into the private key generation. Since the
private keys are randomized, some extra information is needed in the ciphertext in order to cancel
out the randomness upon decryption. To illustrate, consider the encryption of a message Msg to
an identity Id in the BB; Boneh-Boyen system,

CT=[Cy, Cy, C3]=1{4g", (¢%93)", e(g1,2)" Msg} € G*xGr,

where r is chosen by the encryptor and g, g1, g3, and e(g1, §2) are public system parameters. Notice,
there are now two elements in G, and between them there is enough redundancy to determine
whether a ciphertext was intended for a given identity Id, simply by testing whether the tuple
[9, 9\ g3, C1, O3] is Diffie-Hellman, using the bilinear map,

2

e(C1, 4 g3) = e(Ca, 9) -



We see that the extra ciphertext components which are seemingly necessary in IBE schemes without
random oracles, in fact contribute to leaking the identity of the intended recipient of a ciphertext.

A similar argument can be made for why none of the existing HIBE schemes is anonymous,
even though some of them use random oracles. Indeed, all known HIBE schemes, including the
Gentry-Silverberg system in the random oracle model, rely on randomization in order to properly
delegate private keys down the hierarchy in a collusion-resistant manner. Since the randomization
is performed not just by the master authority, but by anyone who has the power to delegate a key,
the elements needed for it are distributed as part of the public parameters. Because of this, we end
up in the same situation as above, where the extra components needed to either perform or cancel
the randomization will also provide a test for the addressee’s identity.

Since having randomized keys seems to be fundamental to designing (H)IBE systems without
random oracles, we aim to design a system where the necessary extra information will be hidden to
a computationally bounded adversary. Thus, even though we cannot prevent the ciphertext from
containing information about the recipient, we can design our system such that this information
cannot be easily tested from the public parameters and ciphertext alone.

3.2 Our Approach

As mentioned in the introduction, we can prevent a single-level identity to be testable by performing
some sort of blinding, by splitting the identity into two randomized complementary components.
Indeed, building a “flat” anonymous IBE system turns out to be reasonably straightforward using
our linear splitting technique to hide the recipient identity behind some randomization.

Complications arise when one tries to support hierarchical key generation. In a nutshell, to
prevent collusion attacks in HIBE, “parents” must independently re-randomize the private keys
they give to their “children”. In all known HIBE schemes, re-randomization is enabled by listing a
number of supplemental components in the public system parameters. Why this breaks anonymity
is because the same mechanism that allows private keys to be publicly re-randomized, also allows
ciphertexts to be publicly tested for recipient identities. Random oracles offer no protection against
this.

To circumvent this obstable, we need to make the re-randomization elements non-public, and tie
them to each individual private key. In practical terms, this means that private keys must convey
extra components (although not too many). The real difficulty is that each set of re-randomization
components constitutes a full-fledged HIBE in its own right, which must be simulated together with
its peers in the security proof (their number grows linearly with the maximal depth). Because these
systems are not independent but interact with each other, we are left with the task of simulating
multiple HIBE subsystems that are globally constrained by a set of linear relations. A novelty of
our proof technique is a method to endow the simulator with enough degrees of freedom to reduce
a system of unknown keys to a single instance of the presumed hard problem.

A notable feature of our construction is that it can be implemented using all known instanti-
ations of the bilinear pairing (whether symmetric or asymmetric, with our without a computable
or invertible homomorphism, etc.). To cover all grounds, we first describe a “flat” anonymous IBE
using the symmetric notation, for ease of exposition, and then move to the full HIBE using the
general asymmetric notation without assuming any homomorphism, for maximum generality.



4 A Primer : Anonymous IBE

We start by describing an Anonymous IBE scheme that is semantically secure against selective-
ID chosen plaintext attacks. This construction will illustrate our basic technique of “splitting”
the bilinear group elements into two pieces to protect against the attacks described in the previous
section. In the next section we will describe our full Anonymous HIBE scheme, and in the appendix
mention how to achieve adaptive-ID and chosen ciphertext security.

For simplicity, and also to show that we get anonymity even when using symmetric pairings,
we describe the IBE system (and the IBE system only) in the special case where G = G:

Setup The setup algorithm chooses a random generator g € G, random group elements gg, g1 € G,
and random exponents w, t1,%2,13,%4 € Zp. It keeps these exponents as the master key, Msk.
The corresponding system parameters are published as:

Pub— [Q=e(g,9)"", g, go, g1, v1 =g, va =g, v3=g", u=g"] .

Extract(Msk, Id) To issue a private key for identity Id, the key extraction authority chooses two
random exponents r1,ry € Zp, and computes the private key, Pvkiy = [do, d1, d2, d3, d4], as:

PVkId - |:g’r‘1t1t2~|>1”2153t47 gfwtz (gog|1d>f7”1t27 g*UJtl (gog|1d)77‘1t1, <gogid)frgt4’ (gog|1d)f1”2t3 ] )

Encrypt(Pub,|d, M) Encrypting a message Msg € G for an identity Id € Z, works as follows.
The algorithm chooses random exponents s, s1, s2 € Zj,, and creates the ciphertext as:

CT =[C',Co,C1,Co, Ca, Cr ] = | @M, (gogt?)*, v}, vt 0™, vi? |

Decrypt(Pvky4,C') The decryption algorithm attempts to decrypt a ciphertext CT by computing:

Cl e(C(), d()) e(C’l, dl) e(CQ, d2) e(Cg, d3) e(C4, d4) = Msg .

Proving Security. We prove security using a hybrid experiment. Let [C’, Cy, Cy,Ca, Cs, Cy]
denote the challenge ciphertext given to the adversary during a real attack. Additionally, let R
be a random element of G, and R/, R” be random elements of G. We define the following hybrid
games which differ on what challenge ciphertext is given by the simulator to the adversary:

[y : The challenge ciphertext is CTg = [C’, Cy, Cy, Ca, Cs3, Cy].

I'; : The challenge ciphertext is CT; = [R, Cy, C1, C2, C3, Cy].

Iy : The challenge ciphertext is CTy = [R, Cy, R/, C3, C3, Cy).

I's : The challenge ciphertext is CTg = [R, Cy, R', Ca, R”, Cy].

We remark that the challenge ciphertext in I's leaks no information about the identity since it is

composed of six random group elements, whereas in I'g the challenge is well formed. We show that
the transitions from I'y to I'; to I's to I's are all computationally indistinguishable.

Lemma 1 (semantic security). Under the (t,€)-Decision BDH assumption, there is no adversary
running in time t that distinguishes between the games I'g and I'1 with advantage greater than e.



Proof. The proof from this lemma essentially follows from the security of the Boneh-Boyen selective-
ID scheme. Suppose there is an adversary that can distinguish between game I'g and I'y with
advantage €. Then we build a simulator that plays the Decision BDH game with advantage e.

The simulator receives a D-BDH challenge [g, g**, g*2, g**, Z] where Z is either e(g, g)*1*2%3 or a
random element of G with equal probability. The game proceeds as follows:

¢ Init: The adversary announces the identity Id* it wants to be challenged upon.

o Setup: The simulator chooses random exponents t1,t2,3,t4,y € Z,. It retains the generator g,
and sets gg = (gzl)_'d*gy and g1 = g**. The public parameters are published as:

Pub — [ Q =e(¢*",9%2)"™, g, go, g1, v1 =g, v2a =g, v3=g", va=g"] .

Note that this implies that w = z125.

© Phase 1: Suppose the adversary requests a key for identity Id # Id*. The simulator picks random
exponents 71,72 € Zy, and issues a private key as: Pvkig = [do, d1, d2, d3, ds] —

_ =1 _Yy _ _Y _ _ _
(g72) 1 g™ gt ((g72) T (gogi)™) 2, ((97) @5 (gogi®)™) ™™, (gogr’) "™, (gogi®) ™"

This is a well formed secret key for random exponents 77 = r; — z3/(ld — 1d*) and 75 = 7.

¢ Challenge: Upon receiving a message Msg from the adversary, the simulator chooses s1, s2 € Z,
and outputs the challenge ciphertext as:

CT =[C,Co,C1,C2,C5,Ca ] = [ Z7M2 M, (g7)Y, (g7)1g™"", g™1™2, (¢7) g%, g™ | |

We can let s = 23 and see that if Z = e(g,¢)***2*® the simulator is playing game I’y with the
adversary, otherwise the simulator is playing game I'y with the adversary.

o Phase 2: The simulator answers the queries in the same way as Phase 1.

¢ Guess: The simulator outputs a guess ~, which the simulator forwards as its own guess for the
D-BDH game.

Since the simulator plays game I'g if and only the given D-BDH instance was well formed, the
simulator’s advantage in the D-BDH game is exactly e. O

Lemma 2 (anonymity, part 1). Under the (t,€)-Decision linear assumption, no adversary that
runs in time t can distinguish between the games I'y and 'y with advantage greater than €.

Proof. Suppose the existence of an adversary A that distinguishes between the two games with
advantage €. Then we construct a simulator that wins the Decision Linear game as follows.

The simulator takes in a D-Linear instance [g, g*, g*2, g*1%3, g*2*4 7], where Z is either g#31T%
or random in G with equal probability. For convenience, we rewrite this as [g, g*!, g*2, g*'1%3,Y, ¢°]
for s such that g5 = Z, and consider the task of deciding whether Y = ¢#2(5=23) which is equivalent.
The simulator plays the game in the following stages.

o Init: The adversary A gives the simulator the challenge identity Id*.

o Setup: The simulator first chooses random exponents «, y, t3, t4, w. It lets g in the simulation be
as in the instance, and sets v; = ¢*2 and vy = ¢g*'. The public key is published as: Pub «

Q =e(g*,92), g, 9o = (¢°2) 7Y, g1 = (92)%, v1 = (97), va = (¢°), v3 = ¢'3, v4 = g



If we pose t1 = 29 and t3 = 21, we note that the public key is distributed as in the real scheme.

¢ Phase 1: To answer a private key extraction query for an identity Id # Id*, the simulator chooses
random exponents 1,72 € Zy, and outputs a key given by: Pvkiq = [do, d1,d2, d3, d4] —

g7y, () (g e n (g T gl (7)) |

If, instead of r; and 79, we consider this pair of uniform random exponents,

= Tla(ld — |d*) = n Yz171
YT ald = 1dY) ety 2T gt (a(ld = 1dF)zg + y)

then we see that the private key is well formed, since it can be rewritten as:

PVkId = gr~1t1t2+r~2t3t4’ g—wtg (gog'ld)_ﬂt?, g_wtl (gog'ld)_fltl, (goglld)_rét”‘? (goglld)—@t?) }

¢ Challenge: The simulator gets from the adversary a message M which it can discard, and responds
with a challenge ciphertext for the identity |d*. Pose s; = z3. To proceed, the simulator picks a
random exponent sy € Z, and a random element R € Gr, and outputs the ciphertext as:

CT =[C",Co,C1,C2,C3,Ca] = [ R, (¢°)Y, Y, (¢7%), (9°)"%g 2", g™ ] .

IfY = g2(5=%) je. g5 =7 = g% then O] = vy °t and Cy = v3'; all parts of the challenge but
C' are thus well formed, and the simulator behaved as in game I'y. If instead Y is independent of
21, %2, 8, S1, S2, which happens when Z is random, then the simulator responded as in game I's.

© Phase 2: The simulator answer the query in the same way as Phase 1.

o Qutput: The adversary outputs a bit v to guess which hybrid game the simulator has been
playing. To conclude, the simulator forwards v as its own answer in the Decision-Linear game.
By the simulation setup the advantage of the simulator will be exactly that of the adversary. [

Lemma 3 (anonymity, part 2). Under the (t,€)-Decision linear assumption, no adversary that
runs in time t can distinguish between the games I's and I's with advantage greater than €.

Proof. This argument follows almost identically to that of Lemma 2, except where the simulation
is done over the parameters v and v4 in place of v1 and vs. The other difference is that the g* term
that appeared in di, ds without interfering with the simulation, does not even appear in ds,ds. O

5 The Scheme : Anonymous HIBE

We now describe our full Anonymous HIBE scheme without random oracles. Anonymity is provided
by the splitting technique and hybrid proof introduced in the previous section. In addition, to
thwart the multiple avenues for user collusion enabled by the hierarchy, the keys are re-randomized
between all siblings and all children. Roughly speaking, this is done by using several parallel HIBE
systems, which are recombined at random every time a new private key is issued. In the proof of
security, this extra complication is handled by a “multi-secret simulator”, that is able to simulate
multiple interacting HIBE systems under a set of constraints. This is an information theoretic
proof that sits on top of the hybrid argument, which is computational.

For the most part, we focus on security against selective-identity, chosen plaintext attacks. In
Appendix A we mention how to secure the scheme against adaptive-ID and CCA2 adversaries.
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Setup(1*, D) To generate the public system parameters and the corresponding master secret key,
given a security parameter ¥ € N in unary, and the hierarchy’s maximum depth D € N, the
setup algorithm first generates a bilinear instance G = [p,G, G, Gr, g, g, €] <& Gen(1*). Then:

1. Select 7+ 5 D + D? random integers modulo p (some of them forcibly non-zero):
w, [, By [Ong le=0,...0 In=0,.14D Es L) x ((Z))* x (Zp)'TP)*TP
2. Publish G and the system parameters Pub € Gy x G2(1+DP) 2+D) giyen by:

|: [gan 9n,l) gﬁn en,é ]

Q, [[ane, boelio,. D n=0,.1+p — €(9,9)%, z:o,.A.,D}

n=0,...,1+D

3. Retain the master secret key Msk € G1+G+D) (2+D) comprising the elements:

~om  ~0n

N A [ g g ’ g |
w’ [ an’ b’l’“ [ yn! ]4:077D ]HZO,,1+D — gw, [ [ AQln, ﬁn en,é ] ]
J £=0,....D | p,—0... 14D

yeey

~

Extract(Pub, Msk, Id) To extract a private key for an identity Id = [ly, I1,...,I1] € (Z;)HL
where L € {1,..., D} and by convention Iy = 1, using the master key Msk:

1. Pick 6 + 5D + D? random integers: [pn, [pnmlm=0....1+Dln=0...1+D €5 (Z,)BETP)C+D),
2. Compute the key’s decryption portion: kaﬁfcrypt = ko, [kn,(a), kn,(b)In=0,...14D —

1+D L
AIZ on on 542D
o [T [T @, { by } €G :
n=0 /=0 n=0,...,1+D
3. The re-randomization part: karerand [fm 0, [fmn (a) fmn(b] 0,. 7l—i-D] =0,..,1+4D
1+D L
[ H H AIZ an [d;pn,m’ [;T_Lpn,m:| ] c G(5+2D) (2+D) )
n=0 ¢=0 n=0,...,14-D D
4. And then the delegation components: kalddeleg [, [ham.glm=0....14D)e=14L....D —
1+D 1+D
H (?gn,f)pn [ H (Qn,é)pn’m] e GB+D)(D-L)

The full private key is issued as the concatenation: Pvkjg = Pvk(k™P" || Pykigrand || pyk(ieics,

A more intuitive way to visualize the private key is as a rectangular array in GBHD)Ix(5+3D~L) with

kaﬁfcrypt in the upper left corner, Pvki§™®d in the lower left, and kalcheleg on the right side:

[ ko k1 () k1,(b) O ko ][ hisr hosr ...  hp |
f0,0 f0,0,(a) f0,0,(a) s fO,1+D,(a) fO,1+D,(a) h0,1+L hO,2+L s hO,D
fio fiow@ o - Siiep(e) fiiipge) hiaie Moy oo hip

f1+D,0 f1+D,0,(a) f1+D,0,(a) s f1+D,1+D,(a) f1+D,1+D,(a) _h1+D,1+L h1+D,2+L s h1+D,D_
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Each row on the left can be viewed as a private key in an independent HIBE system (with generalized
linear splitting as in Section 4). The main difference is that only kaﬁfcrypt contains the secret 0.
The rows of kafgrand are independent HIBE keys for the same Id that do not permit decryption.
The elements on the right side provide the delegation functionality: each column in kaﬁfleg extends

the hierarchy down one level. Delegation works as follows:
Derive(Pub, Pvkqz—1,!dz) This algorithm derives a private key for Id = [Io, I1,...,I1] € (Z;)HL
where L € {2,...,D} and Iy = 1, given a private key of the parent. Let that be PvkigjL—1 =
ko, [kn(a)s Bn, )], [fm.05 [fmon,(a)s Fmn,)]]s ey (B elle=1,...p] for n,m € {0,..., 1+ D}.
1. Pick 645 D+D? random integers: [T, [Tm.m/lm/=o0....1+D)m=0...1+D Es (Zp)E+TD) C+D),

2. Compute for the decryption portion: ka;idecrypt =k, [k::%(a), k;7(b)]n:0’...71+p —

1+D 1+D 1+D 1+D
(kO H (fm,O)ﬂm) (hf H (hm,ﬁ)ﬂ-m)ILa [kn,(a) H (fm,n,(a))ﬂ-m7 kn,(b) H (fm,n,(b))ﬂ-m]
m=0 m=0 m=0 m=0 n=0,...,1+D
3. For re-randomization: Pvki§™ard = [frr 00| él,n(a), ,,/n/n(b)]n:07...,1+D]m/:0,...,1+D -
14D 1+D 14D 14D
(H (fm,O)ﬂ—m’m/)(H (hm,ﬁ)ﬂm’ml)ILa [ H (fm7n,(a))7rm’m/7 H (fm,n,(b))ﬁm’m/ ]
m=0 m=0 m=0 m=0 n=0,...,1+D m'=0,....1+D
4. And then for delegation: ka?deleg = [y, (" lmr=0,... 1+ Dle=1+L,..0 —
1+D 1+D
hﬁ H (hm,é)wmv [ H (hm,f)ﬂm’m/ ]
m=0 m=0 m/=0,...,1+D ¢=1+1L,...,.D

The subordinate private key is the concatenation: Pvky = kaﬁfcrypt || Pvkisrand | kaﬁfleg.

Derive and Extract create private keys with the same structure and distribution. The derivation
process in Derive merges two distinct operations: delegation and re-randomization.

— Re-randomization occurs first, conceptually speaking. Very simply, we take a random linear
combination of all the rows of the big array on page 11. The first row is treated a bit differently:

it does not intervene into any other row’s re-randomization, and its own coeflicient is set to 1.

— Delegation targets the leftmost elements of kaﬁfcrypt and kafé’rand, where identities appear.

Imagine kaﬁfcrypt, Pvkisandand kaﬁfleg after re-randomization. Delegation to sub-identity I,

deleg
|

“consumes” the first column of Pvk;"°: each element is raised to the power of I, and the result

is aggregated into its target, the leftmost element of kaﬁfcrypt or Pvkis™@™d on the same row:
[ ko - ku@ kow -] [ he Rhun ... hp] [k ] [e R, ... Rp]
Joo - Jon(a) fom@ ---| [Por hoisr .- hop foo -] |® Poasr -+ hop
) ‘ . o :
Fro oo Fa Fom) | e homres - Bp (AP () P AR Y

We now turn to the encryption and decryption methods.
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Encrypt(Pub, Id,Msg) To encrypt a message encoded as a group element Msg € G for a given

identity Id = [Io(= 1), I1,...,I] at level L, the encryption algorithm proceeds as follows:
1. Select 3 + D random integers: 7, [rp]p=0,..1+D €s (Zp)3+D.

2. Output the ciphertext: CT = E, co,[cp (4), Cn,(b)|n=0,...1+D

I Tn I r—rn
Msg- Q™" g7, (H bﬁ€> ) (H a{ie) € Gp x G*2P
£=0 =0

n=0,...,1+D
Encryption is very cheap with a bit of caching since the exponentiation bases never change.

Decrypt(Pub, Pvky4, CT) To decrypt a ciphertext CT, using (the decryption portion of) a private
key kaﬁjecrypt = [ko, [Fn,(a), En,)In=o0,...,1+D] , the decryption algorithm outputs:

14D
Msg — E-e(co, ko) [ e(cn @) Fn a) €(Cn)s kin,) € Cr -

n=0

All the pairings in the product can be computed at once using a “multi-pairing” approach [22],
which is similar to multi-exponentiation. One can also exploit the fact that all the k... are
fixed for a given recipient to perform advantageous pre-computations [3].

6 Properties

We formally state the main properties of the A-HIBE scheme given in the previous section, and
discuss how to achieve security against active attacks.

6.1 Consistency

The following theorems show that extracted and delegated private keys are identically distributed,
and that extraction, encryption, and decryption, are consistent. We remark that Theorem 4 is not
essential for the security model, but it is nice to have and it is also useful to prove Theorem 5.
Proofs are given in Appendix B.

Theorem 4. Private keys calculated by Derive and Extract have the same distribution.
Theorem 5. The Anonymous HIBE scheme is internally consistent.

Proofs. Detailed proofs of these theorems are given in Appendix B. O

6.2 Security

We now state the basic security theorems for the A-HIBE scheme. The selective-ID security re-
ductions are almost tight and hold in the standard model. We only consider recipient anonymity,
since sender anonymity is trivially attainable in an unauthenticated encryption scheme. Informal
arguments and full proofs may be found in Appendix C.

13



Theorem 6 (Confidentiality). Suppose that G upholds the (7,€)-Decision BDH assumption.
Then, against a selective-ID adversary that makes at most q private key extraction queries, the
HIBE scheme of Section 5 is (q, 7, €)-IND-sID-CPA secure in G with 7 ~ 7 and € = e—(3+ D) q/p.

Theorem 7 (Anonymity). Suppose that G upholds the (7, €)-Decision Linear assumption. Then,
against a selective-ID adversary that makes q private key extraction queries, the HIBE scheme of
Section 5 is (q,7,€)-ANON-sID-CPA secure in G with T~ 1 and € =€ — (2+ D) (7+3D)q/p.

Proofs. Detailed proofs of these theorems are given in Appendices C.1 and C.2. O

6.3 Active Adversaries

We briefly mention how to strengthen the scheme against active attacks. See also Appendix A.

Adaptive-ID Security. Security against “full” adaptive-identity attacks in the standard model
can be achieved in a number of ways. The most elegant uses Waters [32] hashing technique,
originally proposed for the BB; scheme, but which is also applicable here. Alternatively, we may
use one of the two transformations described in [5, §7]; these are simple and generic (one of them
uses random oracles), but incur a substantial security degradation, which must be compensated by
increasing the size of the bilinear groups for a fixed security level.

None of these methods is very satisfactory in the HIBE case, because security always degrades
exponentially with the depth of the hierarchy. In other words, to achieve any desired final bit
strength, we need to increase the bilinear group bit size, logy(p), linearly with the depth of the
hieararchy. Practically, this makes the system more computationally demanding. Theoretically,
this means that the adaptive-ID security reduction is not polynomial in the depth of the hierarchy.
Indeed, this is symptomatic of the fact that none of HIBE schemes known to date is “asymptotically
secure” (i.e., with a polynomial security reduction in all parameters), in the adaptive-ID security
model, even among those that rely on random oracles.

CCAZ2 Security. Several efficient transformations from CPA-secure HIBE to CCA2-secure HIBE
can be used to obtain CCA2 security. The original method of Canetti, Halevi, and Katz [16] and
the more efficient version due to Boneh and Katz [12] are generic. The method of Boyen, Mei,
and Waters [14] is not, but is compatible with the present scheme and is slightly more economical.
None of these transformations will have an adverse impact on anonymity.

7 Conclusion

We presented a provably anonymous IBE and HIBE scheme without random oracles, which resolves
an open question from CRYPTO 2005 regarding the existence of anonymous HIBE systems.

Our constructions make use of a novel “linear-splitting” technique which prevents an attacker
from testing the intended recipient of ciphertexts, yet allows for the use of randomized private IBE
keys. In the hierarchical case, we add to this a new “multi-simulation” proof device that permits
multiple HIBE subsystems to concurrently re-randomize each other. Security is based solely on the
Linear assumption in bilinear groups.

Our basic scheme is very efficient, a factor two slower than (non-anonymous) Boneh-Boyen BB;
and BBy encryption, and quite faster than Boneh-Franklin. The full hierarchical scheme remains

14



practical with its quadratic private key size, and its linear ciphertext size, encryption time, and
decryption time, as functions of the depth of the hierarchy.
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A Extensions

In this section, we describe a number of interesting extensions that can boost the security and
usefulness of our Anonymous HIBE scheme.

Adaptive-ID Security. It is not difficult to modify the algorithms given in Section 5 to achieve
provable security against adaptive-identity attacks in the standard model. The generalization is
similar to that proposed by Waters and others [32, 27, 17] for the Boneh-Boyen BB; scheme [5].
In the selective-ID scheme, each identity component I, was a single integer in Z; (that could
result from hashing an identity string using a collision resistant hash function). In the adaptive-ID
scheme, we express this identity component as a vector of sub-components which are small integers.
In other words, each I, € Z; becomes a vector I = Toq,... Leq) € {1,... , R} for some small
fixed R and d. Essentially, what we have done is to represent the integers Iy as vectors of d digits
in radix R. The reasons why this is useful have to do with providing a sparse set of adversarially
unpredictable collisions, for the adaptive-ID proof of security, and are discussed in [32, 27, 17].

CCA2 Security. In an HIBE system, whether selective-ID or adaptive-ID, it is very easy to
leverage basic CPA security into CCA2 security in a generic manner for the two security goals we
care about, IND and ANON. The approach is due to Canetti, Halevi, and Katz [16], and involves
adding one level to the HIBE identity hierarchy; the extra identity component at the bottom is
then used to protect the rest of the ciphertext against tampering. This can be done either via
a signature scheme as originally suggested in [16], a combination of message authentication code
and commitment as proposed in [12], or a mere collision-resistant hash function as in [14]. Among
these, the CHK method is the most general and versatile, while the BK and BMW approaches are
a bit more efficient, and especially the latter for key encapsulation (it is however not generic, but
is compatible with our construction).

In all case we end up adding one level to the hierarchy. Fortunately, the added level need
not be anonymous, since the “identity” it corresponds to is a function of the ciphertext itself and
is independent of sender and recipient; it is also already public. Thus, the extra level can be
implemented using a cheaper method, e.g., using one layer of the BB; HIBE scheme which will
mesh nicely into our A-HIBE construction.

Threshold. It is a known result [8] that non-interactive CCA2 threshold systems are easy to
construct from certain identity-based encryption schemes. In a similar vein, it is easy to extend
our basic anonymous HIBE to support non-interactive threshold key generation and/or decryption.
We refer to [8] for the specifics of the transformation.

17



Compression. Lastly, we mention a simple optimization of our scheme that gives slightly shorter
private keys and ciphertexts. Recall that Id = [lo,...,I1] where Iy = 1, so clearly there is no
anonymity requirement on Iy. The ramifications of this observation are that it is possible to let
the indices n and m range not from 0 but from 1 to 1 + D in the private keys and the ciphertexts.
The identity component Iy = 1 is still present; however, we no longer make any effort to hide it.
As a result, the Anonynous IBE ciphertext overhead is reduced from 7 down to 5 elements of G;
for Anonymous HIBE of depth D, the overhead is brought down to 3 + 2 D elements of G.

B Consistency Proofs

We now prove the consistency properties of the Anonymous HIBE scheme stated in Section 6.1.
To prove Theorem 5, we need to show that, with respect to the public parameter and the
reference key extraction definitions, the mechanisms for key extraction, delegation, encryption, and
decryption, are all consistent. It is useful to start with the proof of Theorem 4, i.e., establish that
the keys obtained by delegation are “the same” as those created directly from the master secret.

Proof of Theorem 4. We need to show that, for any given Id, private keys produced by Derive are
distributed identically as those created by Extract.

We focus on the decryption, re-randomization, and delegation portions of the private key, one
set at a time. The notation is the same as in the scheme description. To show that the decryption
portion is correctly distributed, Vn € {0,...,1+ D}, it suffices to pose,

1+D
p'/n = pn+ Z Pnm Tm -

m=0
which allows us to rewrite the relevant components as in the reference algorithm,

1+D L

ko= [T ([] (o)) [Fay By 1 = [dﬁpl"a b ] :

n=0 (=0

Similarly, it can be seen that the remainder of the subordinate private key is correctly distributed,
as, Vm' € {0,...,1+ D},Vn € {0,...,1+ D}, the substitutions,

1+D

/

Pnm! = E Pnm Tmm!' -
m=0

let us rewrite the re-randomization components in canonical form,

14D L , ,
~ / ’ A_pn,'m/ A_pn,'m/
frln’,[) = H (H (yn,z)ll)p”’m ) [f%/,n,(a)a f;z/,m(b) ] = [an ; bn )
n=0 ¢=0
as well as the delegation components, V¢ € {1+ L,..., D},
14+D 14D ,
he =11 Gne)™ h o = T @)
n=0 n=0

It follows that private keys produced by Extract and Derive have the same distribution and can be
used indifferently. O
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Proof of Theorem 5. To establish the theorem, it suffices to prove that, with respect to the public
parameter and the reference key extraction definitions, the mechanisms for key extraction, delega-
tion, encryption, and decryption, are all correct.

Since we have already shown in Theorem 4 that the private keys generated by Extract and
Derive have the same distribution (for a given identity), we only need to consider one type of key.
The key specification from Extract is the obvious choice.

We show that the Decrypt algorithm will successfully decrypt any ciphertext created by the
Encrypt algorithm for a matching identity. Indeed,

A 1+D L ~
e(g",w Hnio 1T~ (yn,ﬂ)[[ Pr)
1+D L I, A~ Pn L 1, _ 7Pn
150 e((TTio by ) anr) e((TTizg ay )™=, bi™)

Msg - Q7" - =Msg-Q " -e(g",w) = Msg .

In summary, our Anonymous HIBE scheme is consistent, and furthermore Extract and Derive
induce the same distribution over the private keys, as required. O

C  Security Proofs

We now turn to the formal proofs of the security theorems stated in Section 6.2.

C.1 Confidentiality

We prove confidentiality (i.e., semantic security) using a reduction from D-BDH. The proof is not
unlike that of other HIBE systems (it vaguely resembles Boneh and Boyen’s BB; scheme), in that
we build a simulator that, lacking the component w of the master key Msk, is nonetheless able
to simulate all private keys except for the challenge identity selected by the adversary (and that
identity’s ancestors).

There is a novel difficulty, however. Recall from the description of the scheme that a private
key consists not only of decryption components k. but also of re-randomization components f. that
are essentially the same as the k. with different randomization exponents. So far so good. The
problem is that the private key also contains a number of delegation components h., each of which
is required to be “compatible” with the k. or f. on the same row (i.e., use the same randomization).
As a result, the simulator must simulate not one but many unknown randomization exponents at
once, in order to ensure the simultaneous compatibility of all the h..

We solve this problem by introducing extra degrees of freedom in the simulation, in order to
“decouple” the various unknowns, and show that there exists an assignment to the extra coeflicients
that will satisfy the original constraints. This is one of the reason why we need a large enough
number of re-randomization rows f., in order to give us enough degrees of freedom to feed the h..

The formal proof follows.

Proof of Theorem 6. We prove the theorem using the usual indistinguishability game.

To show semantic security from the Decision BDH assumption, suppose a D-BDH problem
instance is given as a tuple [g, ¢*, g%, g, 3%, 5%, Z] € G> x G3 x G for random 21, 22, 23] € (Z,)3,
such that the test element Z € Gr is equal either to e(g, §)** *>* or to e(g, §)** for random 24 € Z,.
For clarity, we rewrite the D-BDH instance supplied to our reduction algorithm, B, as,

[gvgl7g3vg>glag2az] € G3 X @3 X GT .
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The reduction proceeds as follows.
o Open :

The adversary A opens the game by announcing the identity Id* = [I§, 7, ..., I].] it wishes to
attack, and where A is allowed to choose the number of hierarchical components, L* € {1,..., D}.
The zero-th component is fixed to Iy = 1.

o Setup :

To create public parameters, the simulator B first draws a tuple of random non-zero integers
[, Bnln=0,..1+D Es (Z;)Q(“D), as well as, for each n = 0,...,1+ D, a vector of pairs of random
integers [Qnyg,e_mg]g:o,m,p Cs (ZP)Q(HD), each subject to the constraint that Zsz*o én,g Iy} =0
(mod p). Next, the simulator assigns,

Q7 e(glagQ) (: e(gvg)Z1 22)7

A 9_” 0_”7-’ n
[ [ @nes bngle=0...D ln=0,..14D ] [ { (g9n,e 91 yen, (99"’[’ 91 l)ﬁ L—O b }
=00 | p—o...14D

=U,...,

The adversary is provided with the public system parameters, Pub, which comprise G and the
elements 2 and [[an, ¢, b ¢)e=0,...D]n=0,....1+D; their distribution is the same as in the real scheme.

To complete the setup, the simulator computes what it can of the private key. Notice that
the public parameter simulation pegs the exponent w from the real scheme to the product of the
exponents z; and 2y, which are implicitly defined by the Decision Linear instance but unknown
to the simulator. B thus partially computes the master key, Msk, as, (omitting the crossed-out
element)

§<)7

S A o - 000 O
[ Gn, bn, [ Uneli=0,....D |n=o0,..,14D ] { g, %, (6% g, )* P emo, D 014D
o Query :

In the first probing phase, the adversary makes a number of extraction queries on adaptively
chosen identities distinct from Id* and all its prefixes. Suppose A makes such a query on Id =
[Io,...,Ir] such that 1 < L < D. To prepare a response, B starts by determining the identity
component of lowest index, L', such that I, # I}, letting L’ = L*+1 in the event that Id* is a prefix
of Id. According to the rules of the game, it is always the case that 1 < L’ < D. The construction of
the private key is a two-step process. In the first step, B creates a “prototype” private key for Id" =
[lo, ..., I;]; this identity is either equal to or a prefix of Id, but of course not of Id*. Define ©,, «

ZeL;o Op¢ Iy and ©,, «— Zéo Opne Iy for all m = 0,...,1+ D, and note that (Vn), ©,, # 0 (mod p)
except with some probability < (2+D)/p over the choice of [0, ¢], which is invisible to the adversary.
To proceed, B picks a tuple of random integers [pn, [fn.m)m=0....1+DJn=0.. 14D Es (Zp)E+TP)C+D),
It also selects a set of supplemental integers [xpn]n=0,..1+D €s (Zp)2+D in a manner to be specified

later. The simulator creates the decryption portion of the prototype private key for Id" as,

1+D L’

A Z;J;D xn ©On/6y, Iy \pn
]{30, ] 92 0 H H (ynlie)p )
— n=0 ¢=0 bl
[ Kn,a)s Fn () In=0,...14D 5060 = oxnfanOn
92 =" 92 " Inp=0,.,14D
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and the re-randomization portion as, for all m =0,...,1 4+ D,

fm 0 1+D L’ ~ _
s - ~Iy Pn,m [ ~—Pn,m i)_pn,m ]
[ 14D H H (yn,é) ) an » Un n=0,... 14D ’

fm1n1(a)7 fm,n,(b) ]TLZO, ’1 n=0 ¢=0 '

and also the delegation portion as, for all =1+ L',..., D,

he _gp /6 14D i 14D i
[ ) ] [ gy =0 Xn On. e H (Gn.0), [ H (in)pn,m]
[ hm,g ] =0,...,1+D n=0 n=0 m=0,.... 14D

Once it has calculated the prototype key, the simulator feeds it to the regular Derive algorithm,
and iteratively runs it using the sequence of identities [Iy,...,Ix] for k = L’ +1,..., L. The end
result is a private key for the requested identity; B gives it to A in response to the query.
According to Theorem 5, the simulator will issue a correctly distributed private key for Id
provided that it manages to construct a prototype key for Id’ that is itself correctly distributed. To
prove the latter, we consider the change of variables, p, = py, — 22 Xn/0n By Op, forn =0,...,1+D.
The new variables p,, are uniformly i.i.d. in Z,, but their values are unknown to B (as it lacks 23).
It is easy to see that under this substitution all [kn,(a),km(b)] always assume the same form as
in the real scheme, k, ) = an/B"G" P = gg"/"”@” (gom) 72X on fn On g — goPn - and also,
kn,m) = b As for Jm,o and [fp » (a), fmon, )], their expressions are unaffected by the change of
variables, and are already in the correct form by construction. The same applies to the Ay, . It

remains to show that kg and the h, are well-formed, too. On the one hand, we have,

1+D L’

ko _ g 1+D xn On/éy, H H ?jlég Pn
n
n=0 ¢=0
1+D _ 1+D L’
A_21+Dxnen/®’n "@n Aén n Pn ZZX”Z/OAan@n "I n
= s H((g i )a6> 1T 1] @eor
n=0 n=0 £=0
1+D L'
:(gzmz i HH Jé pn
n=0 ¢=0
On the other hand, we have, for / =1+ L',..., D,
_ 14D
_ <14D 5
he = gy > e Xn On.e/On H (n.0)7
n=0
_ 1+D B _ 1+D
D 0, 4/0n R 0, 22 Xn/an Bn On )
— g, om0 Xnntf (H ((g""*e G ’[)C“”B”> ) (H (%,z)”“)
n=0 n=0
B _ 1+D
= (™ ZQ)Eiig Xn On,/On H (Gn.0)""
n=0

These values, kg and the hy, will assume the correct form provided that,

1+D 4D
anzl, V€€{1+L/,...7D}:anen’g/(:)nzo,
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which constitutes a linear system of 1+ D — L’ equations of 2+ D unknowns. It is easy to argue that
this system admits a solution with overwhelming probability. The equations for £ € {1+ L,..., D}
together form an under-determined homogeneous linear sub-system, whose solutions fill a vectorial
sub-space of dimension at least (2 + D) — (1+ D — L') > 2 in (Z,)?>*?, unless the sub-system is
defective, which happens with probability at most 1/p since all the coefficients én’g /©,, are random.
The outstanding equation is then readily satisfied. It remains to argue that setting the [x.] in this
manner leaves unimpaired the proper randomization of the key. This is clearly the case since a
solution for [x.] can be found prior to selecting any of the randomization exponents [p.].

¢ Challenge :

When the adversary is ready to accept a challenge on the previously chosen target identity Id*, it
gives two message Msg, and Msg; to the simulator. The simulator selects a tuple of random integers
[Pnln=o...1+D €s (Zp)1*P, picks a random bit § €5 {0, 1}, and outputs the challenge ciphertext,

Msgs - Z
CT* = E, ¢, ] . Sgs y 93,

n ﬁn L:* en, I* —I'n n L:* 971, I*
[ na)s Cny(b) In=0,..,14+D [ (g7 )P Zimo Ot I (gg g )om 2o One I o1t D
The challenge will have the same distribution as in a real attack whenever the Decision BDH tuple

originally given to B was legitimate, i.e., when Z = e(g1, g2)**. To see this, pose r = z3, note that

co = g3 = g7, and rewrite, for every n =0,...,1+ D,
L* L* BnTn L a " L "
Cn,(a) — (grn)ﬁn ZZ:O Hn,él — (gZZ:O 9771,4 Ié g(l)) — (H (gen,é glnve)ﬁn Ie) — <H (bn7€)12> ,
=0 =0

L* ) (r—rn) > (r—rn)
T ,—Tn\On L—* n ; — n 6"’ Qn ; — ;
Cn) = (g g~ m)om Do Ot I = <H (9" g,™") If) = (H (an,e)14> :

(=0 (=0

thus exploiting the fact that tho én’g I} (mod p) = 0 for the target identity. On the contrary,
whenever Z is a random element of Gp, which happens when B was given a bogus Decision BDH
tuple, the challenge CT™ is statistically independent of ¢ in the view of the adversary.

o Query :
In the second probing phase, the adversary makes a number of additional private key queries

on adaptively chosen identities distinct from Id* and all its prefixes, exactly as in the first phase.
The simulator responds as before.

o Outcome :

Eventually, the adversary emits a guess be {0,1} as to which message the challenge ciphertext
CT* is an encryption of. The simulator forwards 1 if & = § and 0 otherwise as its own guess
regarding whether the input it initially received was a valid Decision BDH tuple.

This completes the simulation.

It is easy to see that the reduction works, since the simulation is perfect from beginning to end,
unless the given BDH tuple was invalid, in which case the plaintext is independent of the challenge,
as required. Since the reduction is time-efficient, and almost tight except for a tiny (3+D)/p total
probability of encountering an error condition upon each query, the theorem follows. O
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C.2 Anonymity

The HIBE anonymity proof is based on the same type of simulation as for semantic security, except
that now the reduction is from D-Linear instead of D-BDH. As in the IBE scheme of Section 4,
we use “linear splittings” to conceal the identity in the ciphertext. We build a simulator that uses
the given D-Linear tuple to perform such “splitting” for each identity component at a time. The
complete proof is thus a hybrid argument; it consists of a sequence of games, where at each step,
we show that the adversary cannot recognize a valid pair [c,, (4), ¢y, )] from a random pair [x, %] in
the challenge ciphertext, for each n € {0,...,1+ D}.

Consider step 0 for the sake of illustration. The simulator must reduce the Decision Linear
problem to the dilemma [cov(a), 007(1))] vs. [x, | presented to the adversary. To do so, the simulator
will omit to choose secret exponents [ayg, Gp; instead, it will use the D-Linear instance to simulate
the key extraction process without knowing the components [Jo ¢J¢—o,...,p in the master key.

We will face the same difficultly as in Section C.1 that responding to HIBE private key queries
requires the simulation of not one but many interconnected secret randomization exponents. This,
and the linear splitting, are all issues we have already encountered in earlier proofs. However, their
combined appearance in this proof causes interactions that seriously complicate matters. For this
reason, the formal proof of Theorem 7 will be fairly involved.

Combining Anonymity and Semantic Security. Since we have already established semantic
security, all we need to show is a reduction in the restricted anonymity game in which the challenge
ciphertext is a random message that is not given to the adversary.

We devise a hybrid experiment that consists of a sequence of games where the adversary is
given progressively garbled challenges. At one end, the challenge ciphertext is genuine, exactly as
in a real attack environment; at the other, it is random and thus independent of the identity. In
the entire experiment, the adversary is given truthful public parameters and access to a private
key oracle as in a real attack, so that the games in the sequence differ only in how the challenge
ciphertexts are formed.

Let each instance of the symbol *x denote an element sampled independently at random from
the appropriate group. The challenges are then specified as follows:

CT a1 = [E; 0, [co,(a) C0,(5)]s - - - » [C14-D,(a)» C14-D,(v)]] — genuine ciphertext, as in a real attack;

CTg = [*, co; [co,(a)s Co,0)], - - - 5 [¢14-D,(a)> C14D,v)]] — ciphertext for a random message;

CT){ = [*7 €o, [*a *]7 [Cl,(a)a Cl,(b)]a sy [CI+D,((1)7 Cl-l—D,(b)H — first “linear pair” is random;

CT,, =[x cos [xs K5 -5 5% [enya)s Cny )]s - - -5 [C14D,(a)s €140, 1) ]] — increasingly many corruptions;
CTi4py = oo, o *]s -, o *] [€14D,(a), €14 D,v)]] — last remaining “linear pair”;

CT’(k2 D) = [*, co, [*, %], ..., [*,*]] — all “linear pairs” replaced by random;

CT ndom = [* %, [*, %], ..., [*,*]] — completely random ciphertext, ipso facto anonymous.

For each transition from one game to the next, we need to show that the adversary cannot tell the
two games apart with non-negligible advantage. We already note the following:
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e The last two games, CTZ‘2 +p) and CT andom» are exactly the same since the only outstanding

component, ¢y = ¢", is random and independent of the entire attack and thus amounts to *
(it is independent because there are no other components that depend on 7).

e The very first transition, from CTy,,; to CTy, corresponds exactly to the semantic security

indistinguishability result we proved in the previous section, so we already know that the
adversary cannot distinguish between them.

For these reasons, we only need to focus on the intermediate transitions. In all of them, the
element E of the ciphertext is set to x, which means that the simulator may completely disregard
the challenge plaintext chosen by the adversary.

Proof of Theorem 7. It suffices to show that each of the middle 2 + D transitions (from CT; to
CT; , for i = 0,...,1 + D) is indistinguishable by the adversary. We show each of them to be
indistinguishable under the Decision Linear assumption, in Lemmata 8 and 9. These results will
establish the theorem. O

Lemma 8. In the setting of Theorem 7, no adversary can distinguish Game #0 from Game #1,
i time T =~ 7, with advantage € ~ €, while making no more than q private key extraction queries.

Proof. We reduce the Decision Linear problem in G to the adversary’s task in the stated attack.
We build a reduction algorithm, B, that provides the adversary, A, with a simulated attack envi-
ronment. Algorithm B is given as input a Decision Linear problem instance consisting of a tuple
lg,97, 972, g7 %, g7 %, §, 571,972, 7] € G° x G3 x G for random exponents [21, 22, 23, 24] € (Zp)*,
where the test element Z € G is either equal to g*37# or is a random element ¢g* for some z5 € Z,,.
For clarity, the problem instance supplied to B will be rewritten as,

[979179279317g42ag7g1ag27Z] S G5 X GS xG.

The simulation is described as follows.

o Open :
The adversary A opens the game by announcing the identity Id* = [I§, I}, ..., I.] it wishes
to attack, where A is allowed to choose the number of hierarchical components, L* € {1,..., D},

although we impose that Ij = 1 as usual.
o Setup :

To create public parameters, the simulator B starts by drawing a tuple of random non-zero inte-
gers [w, [, Bnln=1,....1+D] €s (Z;)?’”D, and a vector of random integers [0y ¢l¢=0,..p Es (Zp)HD.
Foreachn =1,...,14+D, it also selects a vector of pairs of integers [0, 4, §n7g]g:07.”7p €s (Zy)? (1+D),

subject to the constraint that ZZL:*(] 0,¢1; =0 (mod p), where it is noted that the elements with
indices greater than L* are left unconstrained. Next, the simulator assigns,

Q, [aoe, bos le=o,...D, ]€=0,...,D ’

~ 0 [%
e(ga g)w’ |: 91&@7 920’6
] - 7 g
|: |: (geme gln,e)an7 (90%4 gln,é)ﬁn i|

[ [an,Za bn,Z ]Z:O,...,D ]n:l,...,lJrD :|
¢=0,..D | =1, 14D

The adversary is provided with the public parameters, Pub, which include the context G and the
elements 2 and [[an, ¢, bp ¢le=0,....D]n=0,...1+D; their distribution is as in the real scheme.
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To complete the setup, the simulator computes what it can of the private key. Note that the
public parameter simulation pegs the exponents ag and Gy from the real scheme to the respective
unknowns z; and zo implicitly defined by the Decision Linear instance. B partially computes the
master key, Msk, as, (except for the crossed-out vector of g .)

. R P o 0
’LZJv [d(]’ b(]a {_?307_]73@ ]7 ] — gw, [ g 92, _[HOCOBO - ]l:U“”’D ] ’
~ R R R Aen

[ 5o, 8%, 1@ g e, |

[ dny bn> [ ?jn,@ ]K:O,.,.,D ]n:l,...,1+D n=1,..1+D
o Query :

In the first probing phase, the adversary makes a number of extraction queries on adaptively
chosen identities distinct from Id* and all its prefixes. Suppose that A makes such a query on Id =
[{o,...,Ir] where Iy = 1. To prepare a response, 3 starts by determining the identity component
of lowest index, L', such that I, # I;,, letting L' = L* 4+ 1 in the event that Id* is a prefix of Id.
Under the stated rules of query, such an L' € {1, ..., D} always exists and is uniquely defined in said
interval. The private key is constructed in two steps. In the first step, B creates a private key for the
identity Id" = [Io, ..., I}]. Notice that Id" is either equal to or a prefix of Id, but not of Id*. Define
Op — ZKL;O 0oy Forn=1,...,14 D, also define ©,, — Ztio O 1o and O, — ZKL;O 0.0 Iy, and
note that all ©,, # 0 (mod p) except with negligible probability < (1+D)/p over the choice of [0, ¢].
To proceed, B picks a tuple of random integers [po, [p0,m]m=0,...1+D] E€s (Zp)3+D, and, additionally,
picks a random tuple [Py, [Pnm]m=0,..1+D] Es (Zp):”D for every n = 1,...,1 + D. Moreover,
B selects a supplemental collection of integers, [xn, [Xnm)m=0...14D)n=1..1+D € (Z,)BETP)A+D)
subject to certain constraints to be discussed later. The simulator creates the decryption portion
of the prototype private key for Id" as,

[ ko, [Ko(a) ko) s ] _

L [kn,(a)7 kn,(b) ]n=1,..,,l+D

B 1+D 60 ﬁo Ll ﬁn
- ~—On/én ) ~—po (1+D) 7—po (1+D)
w H (92 ) Hynl:e ’ {ao » b ;
n=1

NPy XN P0OO0/On Bn T —p, AX1 PO O0/On an
|:anpn o , ann o

L n=1,...,1+D
and the re-randomization portion as, for all m =0,...,1+4+ D,
fm,Oa [fm,(),(a)a fm,O,(b) ]7
-
L [fm,n,(a)a fm,n,(b) ]nzl,...,lJrD
B 1+D @ ~ Ll ﬁn,m
~=On/6, 0 POm 1y 5 -Po.m (14+D) - —~po.m (1+D)
92 yn,é ’ Qg s Y0 )
n=1 =0 )
A _ﬁ'nnn ~AXn,m PO,m 90/(:)77. Bn A_ﬁnnn ~AXn,m PO,m @O/(:)n an ]
a g b g
i [ " 2 P 2 n=1,..,14D

and also the delegation portion as, for all { =1+ L',..., D,

h[ 1+D 1+D
[ ’ ] — [ H (yn!)pn, [ H (gn,ﬁ)pn’m] ]
m=0,...,1+D

[ iyt Im=0,...14D o it

=U,...,



Once this is done, the second step for B is, starting with the prototype private key for Id" calculated
above, to apply the Derive algorithm iteratively to obtain private keys for the sequence of identities
Idx, = [Lo, ..., Ix] as k is incremented from L'+ 1 to L. The end result is a private key Pvkq for the
requested identity |d = [y, ..., IL]. The simulator B gives this key to .4 in response to the query.

According to Theorem 5, the returned key for Id will be correctly distributed whenever the key
for Id" is. To see that the prototype key is indeed distributed correctly, we make the following
change of variables, foralln=1,...,14+ D,and m=0,..., 14+ D,

po=po(1+ D), po,m = po,m (L + D),
= —x 22 po Oo B —x 22 Po,m o
Pn = Pn n 0, v ) Pnm = Pn,m n,m én n B )

which lets us rewrite the various components in their usual form. In extenso,

1+D

O 5 L Pn
ko = w H (QQ_G"G#) " (H%&)
n=1 £=0
B T NG T - O "
= [T [ (9:°"") (H (9 n’ﬂgl"”)fﬂ) (H@{f@)
£=0

n=1 =0

_ _ ’ Pn
N sy . —0,6;1\O000 1 g \XnPoOo Ch ~ 21 20 ©,, \ X7 P0 ©0 ot (L N
o JT | (%) 7 (a8) (37+%) [T,
n=1 =0

114D 1% Pn
_ YD (x—1) 0, 651 5 L
o~ Apo®0 n= ~2Z1 22\ Xn PO 00 ,.[, AIﬁ
— W <92 ) H (g 1 2) P 2g—o Po,e Ie Hyn,Z
n=1 £=0
114D % Xn PO L’ Pn
~ th? (Xn_l) On enl
_ o [ AP0 OO0\ == ~ag Bo 0o o\, Ny,
— i (8% I ( (T mmoe) (113t
n=1 /=0 /=0
14D s /L St xn/4D)y g 14D L'
~ 2P0 ©o 2nZ1 (n=1) On O ~1¢ po ~Io pn ~ ALy pn
= (48°*) e [T Lot =a I TLaks
=0 n=1 ¢=0 n=0 ¢=0

where the last equation is predicated on the two following conditions,

1+D 14D
Z (xn—1)=0, Z (xn —1)0,0;1 =0; (1a.1b)
n=1 1
and as required, we find that kg (o) = g™ and ko) = I;apo; and also, forn=1,...,1+ D,
K (a) = P gy "0 TOm O — o gm0 2200 00/@n e g g 0 00/On O _ -pn
kn,(b) = B;ﬁn g;(n 0 ©0/6n an — E;Pn g—ﬁn Xn 22 A0 ©0/On an Bn g;m 50 ©0/6n an _ B;Pn '
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Using analogous calculations, we can derive a similar set of relations, such as, form =0,...,1+ D,

14D o 5 I Pnm
~—0, 6,1\ 0rom N
Jmo = H 92 ynZ
n=1 —
1+D
= ! >ty Xn,m/(14D) ,
o\ TP (m—1) @, 0,1 [ n=1 S
= (QQ PO,m O) = goéfpo,m H H R anm
/=0 n—=1 ¢—0
1+D L'
S
n=0 ¢=0

where for the last equality to hold we impose that, for all m =0,...,1+ D,

1+D 1+D
-1
g (Xnm—1)=0, g (Xnm —1)6,0,," =0; (2a,2b)
n=1 n=1
in addition, we have the required f,, o (0 = Gg Pom and fmo,0) = by Pom. and furthermore, for all
n=1,...,14D,
fm n a — anpn ,m g;’n ,m PO,m OO/@n Bn — anpn m g an Xn,m 22 P0,m Oo/@n an Bn g;n ,m PO,m 90/@71, Bn — &;Pn,m ,
fmn(b — b Pn,m Agn mpOmOO/Qn an _ b ang—ﬂan Zzpomeo/@n an Bn g;n mPOmOO/G)n an B;pn’m )

As for the remaining components of the key, if, for each ¢ = 1+L’,..., D, and each m = 0,...,1+D,

1+D g 1 1+D 1

> g =0 P G > i L) (3.4)

O, oy B Oy oy Br

then, we can equate, for every f =1+ L',..., D,

0

1+D n

0, _
(14 D)o = > xXn—(90/6.) | /14D ey \ /14D
__ (AZ1 220 =1 On ’Bn —Xn 0 "8 By an B ~ P,
he = (g ) m H 72 H Yn,e

14D 1+D y 1+D
_ (= 00.¢ po (14D A—21 22 Xn On. 0 n ”fenanﬁn ~Pn
= (g™ 0,¢P0 ( )) H § @nan,ﬁn H o H gy
n—=

1+D n_:1 _ 1+D 1+D
e (o5 (ot ()
T
= (g0 oty (H (9" g 7 ﬂ) (H 5)
1+D i o 1+D B
= (f0.0)™ (H () " @i‘;m) (H @Z’%)
1+g:1 1+D
= 0.0 I Gne)™ = ] (o)™
n=1 n=0
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and also, in the same way as above, for =1+ L',...,D,and m=0,...,1+ D,

1+D Y 0 , 50,m90 1+D - 1+D
AT Xn,mUn, ﬁ ~Pn, ~
hone = | 11 %2 v ) (I ) = I G
n=1 n=1 n=0

To conclude this part of the argument, it suffices to show that the simulator can always choose
a set of values for [Xn, [Xnmlm=0...14Dln=1, 14D Es (Z,)ETPI+D) to satisfy all the constraints
shown in (1-4), without jeopardizing the proper randomization of the prototype private key. As
regards the latter point, observe that the constraints (1-4) are independent of the randomization
exponents [p.], which means that the simulation can be freely randomized once the values for the
[x.] have been determined.

To see that a solution for [x,|n=1,..14+p always exists except with negligible probability, we first
observe that these variables constitute a set of 1 + D unknowns in a linear system of 2 + D — L’
equations given by (1a,1b,3). Since 2+D— L' < 1+ D, the system is never over-contrained. Next, we
note that (1a) and (1b) together admit at least a solution in (Zp)' ™2 (e.g., x1 = ... = x14p) = 1);
these two equations therefore define an admissible affine sub-space A; of dimension D — 1 in
(Zp)1*P. Then, remark that in (3), every unknown Y, has an independent random coefficient in
Zyp in every equation, so that (3) is a linear sub-system A x = b where the matrix A is random in
(Zp)(D —L)*(1+D). thus, unless A is deficient, the sub-system defines a random affine sub-space A
of dimension (1 + D) — (D — L) in (Z,)*P. Observe that P(A; N Ay = () < /p. It follows that
the entire system will be insoluble with negligible probability < 2/p.

The same can be said to show that a solution for [[xnm|m=0,..14+Dln=1,. 1+p almost always
exists, based on the fact that for each m = 0,...,1+4 D, the constraints (2a,2b,4) form an indepen-
dent linear system of 2 + D — L’ equations of 1 + D unknowns exactly as above. Overall, we infer
that the total probability that any of these 3 + D systems fails to admit a solution is < (3+D)2/p.
Thus, taking into account the earlier failure probability < (1+D)/p, the simulator will be in good
shape with probability > 1 — (7+3D)/p upon answering this particular query.

¢ Challenge :

When the adversary is ready to be challenged on the previously chosen target identity Id*, the
simulator selects a tuple of random integers [[rp]n=1,..1+D] €s (Zp)HD and gives to the adversary
the following challenge (where % is a random element of Gp, i.e., to encrypt a random message),

L* . L+ )
x T, | (gu)Zimofor i, (gg) imobori |

T — E, co, [ coa)s Co,m) | ] _

[ na)> Cny(b) In=1,..14D [ (g")P S0 ne i (T g~"m)on S 0,017 ]

n=1,...,1+D

The challenge is well formed whenever Z = ¢®37#4. This can be seen by posing r = 23 + 24 and
19 = z4, under which substitutions the ciphertext can be rewritten as in the scheme. In particular,

" L* 70
L7 0 I* «
Co(a) = 92 ol (H (bo,e)l‘f> :

=0

L L* r—rQ
(r—=m0) >0 bo,e I I*
CO,(b) — gl 0 ¢=0Y0,0 1y — (H (ao,e) Z) ,

£=0
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*

and furthermore, for every n =1,...,1 4+ D, since 0 = 5:0 O I} (mod p),

* Tn * Tn
L* . L* N BnTn L a . L .
Cn,(a) — 9/6n Tn ZZ:O en,e 1 — (922:0 0”74 Il g(l)) — (H (gen,e gl ’2)6”1 Ie ) — (H (bn7£)ll ,

=0 =0
L* (r—rn) L* (r—rn)
_ L* * 0, * *
Cn, (1) = g (77n) 2o fnt Ii — (H (ghme gy *)o If) = (H (%x)”) :
=0 =0

On the contrary, when Z = ¢* with z5 € 7Z, random and independent, co and all the pairs
[cn,(a),cm(b)] for n # 0 remain correctly jointly distributed, as can be shown by posing r = z5
and arguing exactly as above; however, the two components [cy (q),Co )] are now statistically
independent of Id* in the view of the adversary. To see why, observe that a computationally
unbounded adversary can uniquely determine r and all the r,, for n # 0 from the “good” part of
the ciphertext, however there will be no 7o that agrees with r, 1d*, and [cg (q), co,(t)]- Indeed, since
g31 = g7 and gao = g5* where [z3, z4] are independent of the rest of the simulation, it follows that
the pair [cg,(q), Co,()] Temains uniformly distributed in (G)? given Id* and the rest of the ciphertext.

o Query :

In the second probing phase, the adversary makes a number of additional extraction queries
on adaptively chosen identities distinct from Id* and all its prefixes, as in the first phase. The
simulator responds in the same manner.

o Qutcome :

Eventually, the adversary emits a guess as to whether or not the challenge ciphertext CT* was
addressed to Id*. The simulator forwards the adversary’s output to its own challenger as its own
guess as to whether the input it initially received was a valid Decision Linear tuple.

This concludes the description of the simulator.

The reduction is valid since the simulation is perfect from beginning to end, unless the given
instance of the Decision Linear problem was an invalid tuple, in which case the first “linear pair”
in the challenge ciphertext will be random. Specifically, the adversary is given a challenge that can
be either,

(€0, [€0,(a)s C0,0))s [€1,(a)s cL )5 - - -5 [e14D, (@) 1D, )]
or,
[607 [*) *]7 [Cl,(a)v Cl,(b)]? A [ClJrD,(a)a 01+D,(b)]] )

as required. The reduction is clearly time-efficient, and is tight except for a negligigle failure
probability < (7+3D)q/p for an attack that comprises ¢ queries. Hence, the lemma follows. O

Lemma 9. In the setting of Theorem 7, for each n = 1,...,1 4+ D, no adversary can distinguish
Game #n from Game #n + 1, in time T = 7, with advantage € =~ €, while making no more than q
private key extraction queries.

Proof. We can prove this lemma for each required transition almost exactly as the previous one, by
exchanging the roles played by [ag ¢, bo ¢, Jo,¢] with those played by [an, ¢, by ¢, Un,¢] in the simulation,
and taking care of the ramifications, etc. Specifically, ag and Sy will now be chosen by the simulator,
whereas the given instance of the Decision Linear problem will implicitly define o, = 21 and G, = 2s.
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The other difference with the previous proof concerns the construction of the challenge CT*.
As expected, [, (q); cm(b)] will be constructed using a technique analogous to the construction of
[007(@,007(,,)] in the previous proof, i.e., based on gs2 and g3; from the Decision Linear problem
instance. However, we need no longer construct any of the pairs [c,/ (q), cn/,(b)] for n’ < n, since the
dilemma to be faced by the adversary is to distinguish between

[co, [y %5 [ %)s [Cna)s nu )]s [Cnott (a)s Crr, )]s - - -5 [C14-D,(a)s C1eD, )]

and
[607 [*7 *]’ SRR [*7 *]7 [*7 *]a [Cn—i—l,(a)a Cn+1,(b)]7 SRR [cl—&—D,(a)? cl—‘,—D,(b)H .

We can simply set all the pairs that are random in both cases to randomly selected elements
[ (@) ¢ )] €s (G)?, for n’ < n. The rest of the proof is analogous to that of Lemma 8. O
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