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Abstract. The 7 pairing is an efficient computation technique based on a gen-
eralization of the Duursma Lee method for calculating the Tate pairing. The
pairing can be computed very efficiently on genus 2 hyperelliptic curves.
In this paper it is demonstrated that this pairing operation is well suited
to a dedicated parallel hardware implementation. An 7 pairing processor
is described in detail and the architectures required for such a system are
discussed. Prototype implementation results are presented over a base field
of Fy10s and the advantages of implementing the pairing on the dedicated
processor are discussed.
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1 Introduction

Cryptosystems based on bilinear pairings are becoming increasingly popular [6].
Pairings were originally introduced to cryptography as attacks capable of reducing
the Discrete Logarithm Problem (DLP) on some elliptic curves to the DLP on finite
fields [18, 8]. However, successful cryptographic applications based on these pair-
ings have followed, including a one-round tripartite Diffie-Helman (DH) proto-
col [12], Identity Based Encryption (IBE) schemes [3], Identity Based Identification
schemes [15], signature schemes [22, 4] and key exchange schemes [25].

It follows that efficient implementation of bilinear pairings is vital for the prac-
tical application of these schemes. Pairings are used to map the DLP from the di-
visor class group of a curve C'(F,) to the multiplicative subgroup . of some ex-
tension of the basefield. The value k is known as the embedding degree or security
multiplier. For security, k should be sufficiently large without compromising effec-
tive implementation. To date, the implementation aspects of the Tate pairing have
attracted the most attention in the literature since it can be computed efficiently [19,
9,1]. The key to efficient Tate pairing calculation over supersingular curves lies in
the shrewd selection of points, yielded by a particular mapping (of the type dis-
cussed in [27]) from C'(IF,) to C(IF,x ). The so called tower of extensions idea (see [11,
21] for examples of successful usage) for performing operations in [ in terms of
operations in F, is also employed.

The Tate pairing computation was improved and generalised to the case of
hyperelliptic curves in [7], resulting in the Duursma Lee (DL) algorithm. Further
optimisations of this algorithm appeared in [16,24, 10]. In [2] it was clarified how
the DL methods can be employed in a more general sense. They call their clar-
ification the 7 pairing. A fast octupling on genus 2 hyperelliptic curves was also
observed and this was incorporated into the genus 2 pairing computation. This re-
sults in a very efficient pairing computation on genus 2 hyperelliptic curves. This



is beneficial for two reasons. Firstly, genus 2 hyperelliptic curves offer a maximum
security multiplier of 12, while elliptic curves offer a maximum of 6. This offers
clear implications for a smaller field size in the genus 2 case for the same secu-
rity. Secondly, the maximum security multiplier is achieved in characteristic 2 in
the genus 2 case, whilst, in contrast, it is achieved in characteristic 3 in the elliptic
case. From an implementation standpoint, the genus 2 case is preferable since field
operations are generally easier to perform in characteristic 2. However, it must be
noted that there is a trade-off between the reduced field size and the added com-
plexity of computing the pairing in genus 2. Further work on speeding up the DL
methods has appeared recently in [2], resulting in the nr pairing.

In [14], observations were made on the parallelization of a characteristic 3 Mod-
ified Duursma Lee (MDL) Algorithm, based on optimisations presented in [16]. It
was suggested that a significant reduction in computation time could be achieved
through parallelization of operations on an embedded system. The 7 pairing is
also an excellent candidate for implementation on a dedicated system. This paper
describes how parallelization of the 7 pairing can be achieved in the characteris-
tic 2 genus 2 case. An 7 pairing processor architecture is also described. Results
returned by the architecture when prototyped on a Field Programmable Gate Ar-
ray (FPGA) are also provided and discussed. The architectures are easily ported
to an ASIC implementation. For a real-world system, it would be interesting to
know how fast and costly an ASIC version would be for use in a server. For use in
a hand-held device where small hardware is desirable, it would be interesting to
know how small the hardware could be made if we are willing to tolerate having
the computation time rise by some factor.

This paper is organised as follows: Section 2 briefly outlines some related work
in the area. Section 3 provides the necessary mathematical preliminaries. Section
4 describes how the 7 pairing is computed in practice. Section 5 develops archi-
tectures required for implementing the pairing on a dedicated processor. Section
6 presents the results returned by the processor and compares them with results
of other pairing implementations. Finally, Section 7 draws some conclusions from
the work.

2 Related Work

Given the effort invested in algorithmically optimising the Tate pairing, and the
well known security and speed advantages of dedicated cryptographic hardware
[23], it is somewhat surprising to find that the implementation of these pairings on
dedicated systems has received little attention in the literature to date. An archi-
tecture for a characteristic 3 implementation of the Tate pairing, based on the MDL
algorithm, is proposed in [14]. Here, the suitability of MDL for parallelization on a
dedicated hardware processor is discussed. However, only an estimate of the num-
ber of clock cycles an MDL Tate pairing would return on the proposed architecture
is presented. To the authors” knowledge, no other dedicated implementation of a
pairing based on genus 2 hyperelliptic curves has appeared in the literature to date.
Furthermore, it appears that this paper presents the first hardware implementation
of a bilinear pairing in characteristic 2.

3 Mathematical Preliminaries

Let F,, ¢ = p™ be a finite field, where p is known as the characteristic of the field.
A hyperelliptic curve C of genus g over I, is defined by an equation of the form
C : v + h(u)v = f(u) where f(u) € F,[u] is a monic polynomial with degree



2g + 1, and the degree of h(u) < g. A divisor is a finite formal sum of points on C,
ie.D = ZPi m;P; where m; > 0. The degree of a divisor is the sum ZPi m;.

A group law is defined on C via the degree zero divisor class group of the
curve. The divisor class group is isomorphic to the Jacobian Variety of C. A sub-
group G of the divisor class is said to have embedding degree k if the subgroup order
[ divides ¢* — 1, but does not divide ¢ — 1,V 0 < i < k. A subgroup of order [ is
known as an I-torsion group.

Let G = Jo(Fx) be the Jacobian Variety of C over IFx, and G[1] be the I-torsion
group and G/IG be the quotient group. The Tate pairing is a mapping:

() Gll] x G/IG — Fix/(Fl) 1)

The Tate pairing is well-defined, non-degenerate and bilinear. A restricted version
of the pairing, useful for cryptographic applications, can be used which retains all
of these properties. Let Gy = Jo(F,), G2 = Jo(Fy), and let G1[l] and G»[l] be the
respective l-torsion groups. The Tate pairing is now a mapping:

() 2 Gall] x Ga[l] — T @)

The Tate pairing is found as follows. Given points P € C[l|(F,) and Q €
C[l](Fg) it is clear that [P = 0 so that there is a rational function fp such that
the divisor of fp, denoted (fp) is equal to I(P) — [(c0). Now compute a divisor D
which is equivalent to (@) — (c0) such that the support of D is disjoint from the
support of fp. The value of the Tate pairing is then:

(P,Q), = fr(D) ®)

where fp(D) can be evaluated as [ [, fp(P;)"™ given D = > n; P;
The Tate pairing is only defined up to a multiple of an /th power. To obtain a
unique value, a reduced pairing e(:, -) must be defined:

e(P,Q) = (P,Q) V! @)

The value of the security multiplier £ must be large enough to provide an ap-
propiate level of security for the DLP but as k increases so too does the computa-
tional complexity of the pairing. This is a trade-off that a randomly selected curve
is unlikely to satisfy. The only classes of curves that are known to have appropiate
embedding degrees are supersingular curves (k < 6 in elliptic case and k¥ < 12 in
genus 2 hyperelliptic case) and MNT curves.

Much work has been performed in optimising the pairing computation on su-
persingular curves [1,9] and so from now on we will restrict ourselves to discus-
sion of these curves. One of the most important properties of such curves is the
existence of a distortion map 1 [27]. A distortion map is a non-trivial endomor-
phism which can be used to map an I-torsion point with coordinates in a base field
to an I-torsion point with coordinates in an extension field. The Tate pairing can
then be computed as e( P, 1(Q)), where coordinates of both P and () are elements
of the base-field. If the distortion map is chosen carefully, then divisions in Miller’s
Algorithm [19] used to compute the pairing can be eliminated [1].

4 The n Pairing

Using the DL optimisations established in [7], in [2] the ;) pairing is defined, which
is a generalisation of the DL algorithm for computing the Tate pairing. Let P and
(@ be points on a hyperelliptic curve C of genus g over F»,q = p™. Assume that a



suitable distortion map 1 is available which gives rise to denominator elimination.
Given an integer p and a point P, there exists a Miller function f, p such that
(fp,p) = p(P) — ([p]P) — (p — 1)(c0). Let D be the divisor D = (P) — (cc) having
order dividing ¢* + 1. The n pairing can ;tnheln be defined as:

1(P,Q) = fo.r(@) = [ lfopp@@)p" " (5)

i=0

This pairing is bilinear, and is related to the Tate pairing with:

(P(Q)) sy =n(P,Q)* 6)

As mentioned previously, the genus 2 hyperelliptic case is a good candidate for a
dedicated implementation due to its high embedding degree (k = 12) in charac-
teristic 2, which yields smaller hardware components for the same security. This
section outlines how the 7 pairing can be computed in this case. We consider the
curve C : y? +y = 2° + 2® + d, with d = 0 or 1 over Fam, where m is coprime to 6.

4.1 The distortion map ¥(Q)

A distortion map 1 is required to map elements from C(Fam) to C(Fg12m). Using
the tower of extensions idea, elements of the field Fyi2m are represented as 12-
tuples, i.e. Fai2m — F((2m)s)2. The irreducible polynomial on which the Fasm sub-
field is based in this case is f(z) = 2% + 2° + 2% + 2% + 1. If w € Fyem is a root
of this polynomial, then, using finite field arithmetic, w® = w + 1. Furthermore,
define s; = w? + w?, s5 = w*+ 1 and sp € Fy12 as a solution of s¢? + 59 = w® + w®.
Elements of [F512m are then represented with respect to the basis:
{1; w, ’LU2, ’LUS, w47 U)S, 50, W0, (w2805 w3507 ’LU4S(], (w550}
The distortion map is then [2]:

Y(z,y) = (z+w,y+ 532° + 512 + o) ?)

4.2 The function f, p

A Miller function f, p is required such that (f, p) = p(P) — ([p|P) — (p — 1)(c0).
A divisor of the form D = (P) — oo is known as degenerate. In general, multiplica-
tion of D by an integer p will not return another degenerate divisor. However, on
supersingular curves, multiplication by p may have a special form which always
returns degenerate divisors. It was observed in [2] that an octupling formula exists
on the curve in the genus 2 case such that 8D = (P’) — oo, where P’ = ¢r%(P),
7 is the 2-power Frobenius map and ¢(z,y) = (v + 1,y + 2 + 1). It is seen that
octupling requires only squaring and addition on [F3=, both of which are trivial in
hardware (as will become evident later).

To take advantage of this Miller’s Algorithm is defined to the base 8, requiring
the computation of (fs,p) = 8(P) — ([8]P) — (7)(c0). Given P = (zp,yp) and
P(Q) = (z,y), this function is defined in [2] as:

Fs,p((Q)) = (y + ba(2))* (y + "s()) 8)
where
by(z) = 23 + (2% + 2b)2? + (zh)z + yp )
and
b's(x) = (@7 +1)a® + (@F +2p)r + (yP + 2 + 27 +1) (10)

In [2] it is shown how the distortion map may be quite easily incorporated
into fs p. Following the notation in [2], define @ = (y + ba(z))? 0 ¢y and 3 =
(y+b§(z)) oyp. Then let fs p = af where («, 3) € Faom and the distortion map has
been incorporated into the function fg p.



4.3 Optimising the 7 pairing
To incorporate the fast octupling operation, we now need to compute:

m—1

n(P,Q) = [ fsp(Q))]

i=0

Sm—l—i

11

In [2], the authors suggest the following optimisations for this calculation:

Precomputation: On each iteration of the loop, the point P is updated with the
function fg p. This function requires squarings of the current coordinates of P on a
particular loop iteration. In [2], the authors suggest a methodology for re-defining
these operations in terms of the co-ordinates (xp,yp) of the original pairing input
P. To perform this optimisation, all values (2], z2[i]) = (zp*,yp?),Vi 0 <i <
m are precomputed before loop iteration. The o and 3 terms are then re-defined in
terms of powers of squares of the original input coordinates.

Absorbing powers of 8: The calculation of (11) requires that the Fi12m compo-
nent fg 53: p(1(Q)) be raised to 23(m~1=9 on each iteration. In [2], the authors de-
vise a method of absorbing this exponent into the calculation of f. To achieve this,
a and 3 must be mapped to o2 """ and 52" 77" respectively. This replaces
the exponentiation on Fy12m with squarings of the input coordinates on [Fam. Note
that, to do this, all powers of squares of coordinates of the point @ up to m-1 must
now also be found.

Unroll o and Perform Karatsuba Multiplication The Fasn elements o and 3
must be multiplied together to find f. The c and [ terms can be unrolled using the
basis defined in Section 4.1. Karatsuba multiplication [13] can then be employed
on the Fym elements of a and 3, replacing some Fym multiplications with Fom ad-
ditions. These additions are trivial in hardware and so the trade-off is worthwhile.

Following the treatment in this section, we compute the 7 pairing according to
Algorithm 1. Note that the squarings of the input elements are stored in arrays so
that, for example, x4 [k4] references the x; array of squares using the array index
ky = 3i.

4.4 Mapping to the reduced Tate pairing

The 7 pairing can be mapped to the reduced Tate pairing as described in Section 3.
From [2], in this case the Tate pairing is related to the ) pairing with:

<Pa w(Q)>26m+1 = T}(Pa Q)Qq (12)

From (4), we require the reduced pairing e(P, Q) = (P, Q>§qk_1)/l. Given [ = 26m+1,
g = 2™ and k = 12, it is easily shown that:

e(P,Q) = (P, Q)Y (13)

The exponentiations to ¢ are computed using the efficient methods described in
[1]. A modified version of the Extended Euclidean Algorithm (EEA) for inversions
on Fpm, proposed in [17], was chosen to implement the required inversion. This
method reduces the number of subfield inversions required to just 1 Fam inversion,
at the expense of extra multiplications, which will be optimised in the processor.

5 An Architecture for the 1) Pairing

The suitability of a dedicated core for computation of the n pairing was inves-
tigated since an embedded system implementation can offer a widescale paral-
lelization of operations that is generally unavailable in software. In particular, an



Algorithm 1 The 7 pairing

INPUT: P=(zp,yr)Q=(2Q,yq) € Jo(Fam)
OUTPUT: (P, Q) € Faizm

: Initialisation: set v = 1 if m = 1 mod 4, otherwise y = 0

: Precomputation Stage: Find powers of squares of P and Q and store in arrays

cxifi] = ad, yili] < yE  wali] 1, yeli] — 1, VO <i<m-—1 (* Faym 5q%)
f<1

fori=0tom-1do
All k.. in the next 2 lines to be considered modulo m
kl «— (37’”; —3— 3Z).k2 «— (]Cl + 1),]63 «— (k)g + 1)
ky — (3i),k5 — (k4 + 1), ke — (k5 + 1)
Calculate o — a + bw + cw? + dw* + so
10: d — x1[k4] + z1[ks]
11: a < Ya [kg] + (:vl [kd + 1+ :Ez[k3]).$2 [k‘g] +d.xzo [k3] “+ 1 [kd +v (* Fom mul >(')
12: b — w2[k‘3] + .rz[kig]
132 C — Ig[kg] +.T1[k4] + 1
14: Calculate 3 — e + fow + gw? + hw* + so
15: f2 — :I?l[kj{)] + .Tl[ka}
16: €< Y2 UC]] + 1 [k6]$2[k2] + fg.xg[kn] + [k5] —+ (.r] UC(;] + 1).I] [k5] +y (>e Fom mul *)
17: g — xalk1] + x1]ke] + 1
18: h — xa[ka] 4+ x2[k1]

WP NI N

19: Unroll af multiplication using karatsuba method, u1 = of3

20: dh «— d.h,dg «— d.g,ch «— c.h,cg «— c.g,ae — a.e,bfs «— b.f2 (* Fom mul *)
21: to < ae + ch + dg + dh (* Fom mul *)
22: t1 — (a+b)(f2+e)+ae+bfs+dh (* Fom mul *)
23: ts — (a+c)(g+e)+ae+cg+bfe+ch+dg (* Fom mul *)
24: ts — (b+c)(g+ fo) +bfo+cg+ch+dg+1 (* Fom mul *)
25: ts — (a+d)(h+e)+ae+dh+cg (* Fam mul *)
26: ts — (b+d)(h+ f2) +bfa +dh+ch+dg+1 (* Fam mul *)
27: u1 « (to, t1,t2,ts3,ta, ts,a+ e+ 1,b+ fo,c+¢,0,d + h,0)

28: f— faul (* Fyi12m mul *)
29: end for

30: return f = n(P, Q)

external accelerator can greatly reduce computation time through parallelization
of the most time consuming operations. This section details the creation of this
architecture. The architecture was created with the primary design goal being the
optimization of the number of multiplication cycles required within the loop as
these are the most time consuming operations.

In general terms, creation of the system required the design of:-

1. A Precomputation Block (PB) to compute powers of the squares of the input
points before loop iteration.

2. An Arithmetic Unit (AU), which is composed of a General Arithmetic Unit
(GAU) for general computations on Fam and a Multiplicative Arithmetic Unit
(MAU) that optimises multiplications required by the 7 pairing.

3. A Control Unit (CU) to sequence the operations required by the pairing.

4. A Memory Bank (MB) to store intermediate values and a multiplexor and en-
coder bank controlled by the CU to handle data transfer to and from the AU.

51 The Precomputation Block (PB)

As seen in Algorithm 1, precomputation of (z1[i], y1[i]) = (zp2",yp?") and (z,[i], y2[i]) =
(0%, yg?") is required for alli, 0 < i < m.



Calculation of the z;[i],j = 1,2 values is achieved using modules of the type
DUAL_PORT_SQUARE_BLOCK seen in Figure 1(b). Each module contains m x m
bit block RAM. Squaring on Fa- is performed in one clock cycle using the parallel
squaring architecture presented in [20]. SQUARE_.BLOCK_CONTROL iterates 4
from 0 to m — 1 and controls the writing of (x;[i], y;[i]) to RAM.

Once this precomputation step is complete the loop can begin. On every iter-
ation, values of (z;[i], y;[i]),7 = 1,2 must be read according to the array indices
defined in Algorithm 1. These indices must be calculated modulo m. Modular re-
duction, however, can be quite an expensive operation in hardware. Fortunately,
the array indices depend only on i and m, and are constant over the loop for a cer-
tain field size. This facilitates the generation of all indices by a software program,
written in C, which outputs all required indices according to field size. These in-
dices are stored as arrays of constants on the embedded system and can be read
throughout the loop according to the current value of i.

As seen in Algorithm 1, each iteration requires the reading of 2 z;[i] values,
2 z5]i] values and one each of y;[i] and ys[i]. For this reason, the z;[i] values are
stored in dual port block RAM while the y;[i] values are allocated only single port
RAM. The DUAL_PORT_SQUARE_BLOCK modules each have a read_mode con-
trol input. This is supplied by the general control unit and decides whether the «
or [ array values are read at any particular time. The full precomputation block,
PRECOMP_BLOCK, is illustrated as Figure 1(a). Note that the elements d,b,c and,
on the second read, f2,g,h (see Algorithm 1) are calculated directly at the outputs of
the square block modules. This saves valuable clock cycles on every loop iteration
at the expense of very little hardware.

precomp_done

dout b

dout a

PRECOMP_BLOCK DUAL_PORT_SQUARE_BLOCK
Clk Xl[kE] dou( 0 Clk 'SQUARE_BLOCK_CONTROL|
st | rst count
clk read _mode DUAL PORT dorf dout 1 clk read mod counter
rst cont_ind="00" SQUARE T — i
i rst
o PO xuka] Or Xy [Ke] | dout 2 i
R 1 T\Ccorg dout 3 i rite en
rcslri Xplka] or Xo[k;] | dout 4 L{L
d de| =———— addr a
168C_MOC8 1oad mode | DUAL PORT borh douts Tead mode) kslar L s ;zmwx
cont_ind="01"] ~ SQUARE GPO'—— 4] ar ’:‘g' addr b
X] xq BLock Xolk] dout 6 K6 ar CONISTANT u‘ To1Mux
_%; ARRAY
q m Ik
C SQUARE_BLOCK
- st | clk
read mode | SINGLE PORT Vilkgloryi[ks] | ¢ write en
= out 7
¥ ‘contind="10"| SQUARE addr a DUAL PORT
q i 1 Block addr b BLOCK RAM
L rst
Xp
clk m
rst
read mode | SINGLE PORT Yalkal or o [Kil | gout 8

cont_ind="11"| SQUARE

yq

i BLOCK FIELD SQUARER

auop” dwodoaid

Fig. 1. (a) The Precomputation Block, and (b) the Dual Port Square Block module for zp.

5.2 The Arithmetic Unit (AU)

The AU consists of an optimised Multiplication Arithmetic Unit (MAU) and a Gen-
eral Arithmetic Unit (GAU), which is used for all non-multiplicative operations on



[Fom. This separation allows for Fam operations to be performed in the GAU while
waiting for a multiplication to finish.

The General Arithmetic Unit (GAU) The GAU consists of modules for perform-
ing the following field operations:

FIELD ADDITION: This can be performed in 1 clock cycle using m-bit xor gates.
The GAU contains a number of m-bit XOR gates since addition is performed regu-
larly and a parallelization of this operation reduces intermediate reads and writes
from and to memory respectively.

FIELD SQUARING: This operation is performed less regularly than addition
and so only 1 squaring module is included in the GAU. Squaring on Fa= is per-
formed using only combinatorial logic and can be completed in 1 clock cycle [20].

FIELD INVERSION: Inversion on any finite field is a relatively costly operation.
Fortunately, Fom inversion only needs to be performed once (this is in the mapping
to the Tate pairing) and so only one module is included in the GAU. Inversion is
performed using a modified version of the Extended Euclidean Algorithm (EEA)
discussed in [5]. This algorithm was chosen since it provides a low calculation time
of 2m clock cycles and employs relatively simple underlying field operations that
can be implemented efficiently in hardware.

The Multiplication Arithmetic Unit (MAU) During loop iteration, 2 distinct sets
of multiplications are necessary: the unrolled Fo» multiplications required to com-
pute a8, and those to multiply the cumulative function f by a8 on Fy12m at the end
of every iteration. The Fy12.. multiplication is performed using the tower of exten-
sions idea in conjunction with Karatsuba multiplication in a similar fashion to that
used for the elliptic case in [9]. The Fa12m multiplication is first reduced to 3 Fosm
multiplications. Each of the Fysm multiplications is further reduced to 3 degree
2 polynomial Karatsuba multiplications. Thus, in total, we decompose an Fai2m
multiplication into 9 degree 2 Karatsuba multiplications. A degree 2 Karatsuba
multiplication is computed as illustrated in Algorithm 2. The parallel implemen-
tation of the Foi2m multiplications form a cornerstone of the 7 pairing processor
architecture.

Algorithm 2 Degree 2 Karatsuba multiplication on Fam

INPUT: Two elements A = (ao, a1,a2) and B = (bo, b1, b2), all a;, b; € Fam
OUTPUT: The element C' = (co, ¢1, ¢2, 3, c4) such that C=A.B using Kar. Mul.

1: co < ao.bo (* Fm mul *)
2: o — a1.by (* Fmmul )
3: ¢4 — az.ba (* Fommul %)
4: ¢y — (ap 4+ a1).(bo +b1) + c2 + co (* Fammul *)
5: ¢35 — (a1 4+ a2).(b1 +b2) + c2 + ¢4 (* Fgmmul )
6: co — ca+ (ap + a2).(bo + b2) + co + ca (* Fommul %)
7: Return C' = (co, c1, C2,C3,C4)

A dual mode Multiplication Arithmetic Unit (MAU) was created to accomodate
an optimized general multiplication for a3 and an optimization of the degree 2
Karatsuba multiplications. This MAU is illustrated as Figure 2.

The FIELD_DIGIT_BLOCK in Figure 2 contains digit multipliers of the type
introduced in [26]. These multipliers allow D coefficients of the inputs to be oper-
ated on in parallel, where D is known as the Digit Size. Multiplication is performed
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Fig. 2. The Dual Mode Multiplication Unit

in m/D clock cycles. As D increases, so too does the area of the multiplier. Thus,
there is a trade-off between speed and area.

In total, 12 of these multipliers operate in parallel. This quantity offers a signif-
icant parallelization of operations while minimizing the time that any particular
multiplier may lie idle. It was found that the optimum number of multipliers for
parallelization of the «. operations approached 12. It also makes sense for the
number of multipliers to be a multiple of 6. Each degree 2 Karatsuba multiplica-
tion requires 6 Fom multiplications. Thus 2 of these operations can be performed
in parallel while utilizing all available multipliers.

The multiplier mode is determined by the Control Unit. In General Purpose
Mode, 12 field multiplications can be performed in parallel. Conversely, in Karat-
suba Mode two parallel Karatsuba multiplications are performed. The modes oper-
ate as follows:

GENERAL PURPOSE MODE: This mode is optimized for the «.5 multiplica-
tion. In this case, the mul_in_non_kar bus is selected as input to the digit multiplier
block. Some of the DIn0 inputs can be dynamically added to the DInl inputs us-
ing the cont_add_mux control bit. Note also that the results of multiplications can
be immediately added to both the results of other multiplications and another
set of input bits. The ability to perform these immediate additions was found to
greatly reduce the computation time throughout the loop by eliminating many in-
termediate additions and read/writes between multiplication cycles. The correct
outputs are selected from the output of the OUT_MUX_BANK module using the
cont_outp_mux control bits.

KARATSUBA MODE: Here, all additions required for degree 2 Karatsuba mul-
tiplication according to Algorithm 2 are performed within the multiplication mod-
ule. The inputs to the degree 2 multiplication are sent to the KAR.IN_BLOCK
modules for addition and re-organisation. The outputs of these blocks are sent
to the digit multiplier block using the cont_kar_mode control bit. Once the multi-
plications have completed, the results enter the KAR_OUT_BLOCK modules for



further additions. These blocks mean that the results of 2 degree 2 Karatsuba mul-
tiplications can be collected at the output of the multiplication block /D +2 clock
cycles after Karatsuba multiplication is initialised by the Control Unit, thereby
eliminating any intermediate additions,reads and writes that would have been re-
quired. The structures of the KAR_IN_BLOCK and KAR_.OUT_BLOCK modules
are shown in Figure 3.

KAR_IN_BLOCK KAR_OUT_BLOCK
DIn0(m-1 to 0) a(0) tomul0a a(0)*b(0) c(0)
n tomul3a a)*b(1)
DIn0(2m-1 to m) a(1) tomulla a(2)*b(2) J c(4)
tomul4 a ’
c(1)
DIn0(3m-1 to 2m) a(2) tomul2a (a(0)+a(1))*(b(0)+b(1))
] @ e (a(@)+a(2))*(b(1)+b(2)) <@
a(1)+a(2))* +
DIn0(4m-1 to 3m) b(0) tomulOb
tomul 3 b c(2
0)+a(2))*(b(0)+b(2
DIn0(5m-1 to 4m) b(1) tomullb @02y eObE) T+
q_)l tomul4b
DIn0(6m-1 to 5m) b(2) tomul 2 b
] fl\ tomul5b
@
Fig. 3. (a) The KAR_IN_BLOCK and (b) the KAR_.OUT_BLOCK
5.3 The 1 Processor
The complete n processor ETA_PROC is shown in Figure 4.
clk ETA_PROC
CONTROL_UNIT done
Ist (cv) control_signals
DOut
out_precomp MAU_IN_
\ MUX 0 12/m
X $
- ‘ MAU
Xq H:@i |
[ AU
GAU iX
y PRE Din_| o MUX
. comp_ | —D— MEM = o
ock | b - %
Vg BLOCK | 1——P— BANK -
N
U~ [
N
FZm SQUARE }»—
GAU_
= Fm INV MUX
GAU_IN
REG_IN_ MUX
MUX
data_line
4*m

Fig.4. The eta processor ETA_PROC



All operations required to compute the 7 pairing and its subsequent conversion
to the reduced Tate pairing are performed in the AU. The MAU and the GAU
receive their inputs from different multiplexor banks so that both can operate in
parallel. The AU_MUX determines which set of results to put on the data_line bus.

Note that further additions are performed at the output of the PRECOMP_BLOCK.
These additions are performed to ensure that the first multiplication of a new loop
can start as soon as possible. The REG_IN_MUX module determines whether val-
ues from the PRECOMP_BLOCK or the AU are sent to the register bank REG_BANK.

The CONTROL_UNIT (CU) module schedules all operations required to per-
form the 7 pairing by generating the required control lines in the circuit. The CU
is a finite state machine, designed through analysis of available intermediate vari-
ables throughout the computation. The state machine is designed with speed in
mind such that, if intermediate operations can be performed while a multiplica-
tion is taken place, they will be scheduled to do so. The CU also controls encoders
in the multiplexor banks of the Memory Bank (MB). These control signals are gen-
erated by C-code according to high-level user input. This means that the processor
is readily reconfigured should subsequent changes be required.

6 Results and Comparisons

The architectures described in the previous section were captured in the VHDL
hardware design language and prototyped on the Xilinx Virtex2Pro125 family of
FPGA'’s [28]. These devices contain 55616 slices (each slice containing a number of
4-input look-up tables, storage elements and dedicated carry logic for high-speed
arithmetic). FPGA prototyping was chosen due to the ease with which these de-
vices can be reconfigured. The architectures described, however, are also suitable
for ASIC implementation.

The processor was created for a pairing computation based on the hyperelliptic
curve Cy : y?> +y = 25 + 23 4 d. A base-field F410s was chosen as this allows a fair
comparison with the optimised software results listed for Foi0s in [2]. Note that
d = 0 in this case for a secure group order of 13 x (12 x 103 + 1) = 16081 [2].

To investigate different speed/area ratios of the system ETA_PROC was proto-
typed for this field size using 4 different multiplier digit sizes D,,. The results are
presented in Table 1. The frequency values listed are for a Post Place and Route
(PPR) clock frequency whilst the (P, Q) timing results are for a full pairing compu-
tation (including final exponentiations) at this frequency.

Table 1. Prototype ETA_PROC implementation results on the Xilinx Virtex2Pro125 device

D,, FPGA slices % device PPR (MHz) (P, Q) (us)

8 40128 72 33.8 874
16 43986 79 32.3 749
24 47239 85 28.9 776
32 50893 92 28.1 767

Note that increasing the value of D,,, beyond 16 actually serves to slow down
the pairing calculation. This is due to the decrease in PPR frequency. This frequency
reduction is due in part to routing delays through the processor as it becomes
larger. It must be noted that slightly higher frequencies for the cases D,,, = 24 and
D,, = 32 may be achieved by utilising a more rigorous place and route process.
However, for values of D,, greater than 16 (with a multiplication cycle requir-
ing m/D,, clock cycles), the time taken for the completion of intermediate non-
multiplicative operations is not insignificant when compared to the multiplication



cycle time and, in the authors’ view, the relatively small increase in speed that
would be returned by the D,,, = 24 and D,;, = 32 cases may not justify the addi-
tional area requirement.

To date the fastest software pairing computation time that has been reported in
the literature (for similar security) is 1.87 ms. This is for the genus 2 characteristic
2 hyperelliptic implementation of the 77 pairing on Faw0s presented in [2]. The 7
pairing is computed in 3 ms for the same field size. These results are for an op-
timized C-code software implementation on a Pentium IV processor running at 3
GHz.

It can be seen that the results of the hardware architecture compare favourably
to these implementations, offering an improvement over the software computation
times presented in [2], showing that a significant speedup can be achieved through
use of dedicated hardware for pairing-based applications.

7 Conclusions

This paper has described a dedicated processor for the n pairing and its subse-
geuent translation to the Tate pairing. In the genus 2 hyperelliptic case, the ) pair-
ing offers a very efficient implementation of the Tate pairing in characteristic 2.
To the authors” knowledge, the processor ETA_PROC is the first dedicated archi-
tecture created for a pairing in characteristic 2 and for a pairing performed on a
genus 2 hyperelliptic curve. Different speed/area ratios can be returned using dif-
ferent multiplier digit sizes. Results show that a significant speed-up in the pairing
computation can be achieved if a dedicated parallelized cryptographic processor
is utilized instead of a general purpose serial one. Although this paper presents
results for the field 5105, the device is fully reconfigurable for other suitable field
sizes.
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