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Abstract

In this paper we address the question of representing the discriminant
of an imaginary quadratic field with respect to the basis of a cyclotomic
field. This representation allows us to parameterize new families of ordi-
nary elliptic curves over finite prime fields suitable for pairing applications.
In particular these curves have small discriminants greater than four and
arbitrary embedding degree. Computational results are presented which
support the theoretical findings.
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1 Introduction

In Miyaji, Nakabayashi and Takano’s seminal article [10] on elliptic curves of
prime order, explicit conditions were given to obtain families of group orders
with embedding degree k ≤ 6. Scott and Barreto [13] provided an alternative
derivation of their results and extended them to allow for the generation of
curves with near prime order (for large discriminants with k ≤ 6). The idea of
incorporating cofactors in the analysis allowed Galbraith, McKee and Valença
[8] to obtain a large class of families corresponding to prime and non-prime
group orders.

A measure of the suitability of an elliptic curve for pairing based cryptog-
raphy is provided by the ratio ρ = log(q)/log(l); i.e. the ratio between the bit
length of the finite field Fq and the order l of the subgroup with embedding
degree k. Two methods, in particular have been proposed to construct curves
with arbitrary k. Barreto, Lynn and Scott [3] and Dupont, Enge and Morain
[7] independently proposed different parameterizations of (q, l) for constructing
curves over finite prime fields with arbitrary k. For both methods, the ratio ρ
was up to 2 and discriminants greater than 8 bits were used. Since the security
depends on l, the use of such curves in existing protocols will often result in an
increase in the size of the cipher-texts or signatures generated.
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Alternative methods adopting an algebraic strategy may generate curves
with ρ closer to one. Such techniques include the families of curves by Barreto,
Lynn and Scott [3] and by Brezing and Weng [6]. The latter authors achieve a
ratio of ρ = 5/4 with embedding degree k = 8 or k = 24. By extending the work
of Galbraith et al [8], Barreto and Naehrig [4] presented an efficient algorithm
to construct elliptic curves of prime order with embedding degree k = 12 over
a prime field and ρ ≈ 1.

In [4] it was shown that the ability to handle large complex multiplication
discriminants may have a positive influence on the minimization of ρ. In this
paper we adopt and extend the Brezing and Weng method by finding suitable
representations for discriminants greater than 4.

The paper is organized as follows: We first state and prove a number of
results on the proper containment of quadratic fields in cyclotomic fields. We
then describe how to represent elements of these quadratic fields with respect
to the canonical basis of a cyclotomic field, particularly when the imaginary
quadratic field is not isomorphic to a cyclotomic field. Following this we give
an overview of Brezing and Weng’s method [6] for generating elliptic curves
with small embedding degrees with our own adaptations. We then give some
numerical examples.

2 Constructing a Basis for Quadratic fields con-
tained in Cyclotomic Fields

We begin by showing the containment of quadratic fields within a given cyclo-
tomic field.

Lemma: 2.1 If ζn is a primitive nth root of unity and 8|n then Q(ζn) contains√
2,
√
−2 and has subfields Q(

√
2) and Q(

√
−2).

Proof: As 8 divides n; Q(ζn) contains primitive eight and fourth roots of unity
denoted by ζ8 and ζ4 = i =

√
−1 respectively. Then (1 + i)2 = 1 + 2i + i2 = 2i

and so 2 = −i(1 + i)2. Therefore;
√

2 =
√
−i(1 + i)

= ζ4ζ8(1 + ζ4)

√
−2 =

√
i(1 + i)

= ζ8(1 + ζ4)

As the field contains
√

2,
√
−2, it is trivial to form a basis for Q(

√
−2) and

Q(
√

2).

QED

Lemma: 2.2 Let p > 2 be a prime. Let ζp be a primitive pth root of unity
and Q(ζp) the pth cyclotomic field. If;
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p ≡ 1 (mod 4);then
√

p ∈ Q(ζp) and Q(
√

p) ⊂ Q(ζp)

p ≡ 3 (mod 4);then
√
−p ∈ Q(ζp) and Q(

√
−p) ⊂ Q(ζp)

Proof: This proof is taken from [9]. The Galois group of Q(ζp) over Q is
cyclic of order p− 1. This number is even so there is precisely one subgroup of
index two. Corresponding to that subgroup is a unique quadratic extension of
Q contained in Q(ζp).

Suppose Q(
√

d) ⊂ Q(ζp). Any prime q that ramifies in Q(
√

d) must also ram-
ify in Q(ζp). Since p is the only prime that ramifies in Q(ζp), the discriminant of
the ring of integers in Q(

√
d) must be divisible only by p. This discriminant is

either 4d or d. Since p is odd, the discriminant must be d and so d ≡ 1 (mod 4).
Thus d = ±p with the sign determined by the congruence ±p ≡ 1 (mod 4). .

QED

Note: It is trivial to show that if 4 | n and p | n for p an odd prime. Then√
−p,

√
p are both contained in Q(ζn). As 4 | n implies that

√
−1 = ζ4 is an

element of Q(ζn).

Lemma: 2.3 Let ζn be a primitive nth root of unity. Then Q(ζn) is the nth

cyclotomic field. Let d be a square free postivie integer. Then;

• If 2 6 |d, 4 6 |n and d|n then
√

d ∈ Q(ζn) and Q(
√

d) ⊂ Q(ζn) if d ≡ 1 (mod 4)
or
√
−d ∈ Q(ζn) and Q(

√
−d) ⊂ Q(ζn) if d ≡ 3 (mod 4)

• If 4|n and d|n but 2 6 |d then
√

d,
√
−d ∈ Q(ζn) and Q(

√
d), Q(

√
−d) ⊂

Q(ζn).

• If 8|n and d|n then;
√

d,
√
−d ∈ Q(ζn) and Q(

√
d), Q(

√
−d) ⊂ Q(ζn).

Proof: Suppose d = p1p2...pr is the prime factorization of d. As d|n then
pi|n for 1 ≤ i ≤ r and so Q(ζpi) ⊂ Q(ζn). Hence,

√
pi or

√
−pi is contained in

Q(ζn) with the sign depending on which congruence class pi is equivalent to in
Z/ < 4Z >

∗. Suppose the r primes dividing d are reordered so that p1, p2, ..., ps

are all congruent to 3 (mod 4) and the primes ps+1, ps+2, ...., pr are congruent
to 1 (mod 4). Then it is easy to see that √ps+1ps+2...pr =

∏r
i=s+1

√
pi is

contained in Q(ζn).
It remains to show that

√
−p1p2...ps is contained in Q(ζn) if d ≡ 3 (mod 4)

and
√

p1p2...ps is contained in Q(ζn) if d ≡ 1 (mod 4). If d ≡ 3 (mod 4) then
s must be odd as 3s ≡ 3 (mod 4) if s is odd, similarly if d ≡ 1 (mod 4) then s
must be even.

Hence as
√
−pi ∈ Q(ζn) it follows that

√
(−1)sp1p2...ps is contained in

Q(ζn). If d ≡ 3 (mod 4), s must be odd and so
√
−p1p2...ps is contained in

Q(ζn). If d ≡ 1 (mod 4), s must be even and so
√

p1p2...ps is contained in
Q(ζn). Once it has been shown that

√
d or

√
−d are contained in Q(ζn), it is

a simple matter to construct an explicit basis for the required subfields with
elements in Q(ζn). This completes the proof of part 1 of the lemma.

Part two is trivial as 4|n implies that
√
−1 = i ∈ Q(ζn) and so if

√
d or

√
−d

∈ Q(ζn) then they are both elements of Q(ζn). Again it is simple to construct
an explicit basis for the required subfields.
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Part three can easily be proved using the first lemma. This lemma states
that

√
−2 and

√
2 are both contained in Q(ζn) if 8|n. The first part of the

current lemma shows that
√

d/2 or
√
−d/2 (recall that d is squarefree) are

elements of Q(ζn) and so
√

d and
√
−d are both elements of Q(ζn). Once again

we can construct an explicit basis for the required subfields.

QED

2.1 Constructing an Explicit Basis

The simplest case to work with is where you wish to construct a basis for
Q(
√

p) or Q(
√
−p) in Q(ζp). In order to do this is it useful to view Q(ζp) as

the polynomial ring Q[x] mod the ideal generated by Φp(x) (Note: Φp(x) is the
pth cyclotomic polynomial) i.e Q[x]/(Φ(x)). Consider the following [11] for p an
odd prime and ζp a primitive pth root of unity:

p = (−1)(p−1)/2

(p−1)/2∏
j=1

(ζj
p − ζ−j

p )2 (1)

Taking square roots of both sides we find

√
p =

(p−1)/2∏
j=1

(ζj
p − ζ−j

p ) (2)

or
√
−p =

(p−1)/2∏
j=1

(ζj
p − ζ−j

p ) (3)

depending on whether p ≡ 1 or 3 (mod 4). In Q[x]/(Φp(x)) we have φ(p)
possible pth primitive roots of unity to choose from. Taking any one of these we
can construct a polynomial representation for

√
p or

√
−p in Q[x]/(Φp(x)).

This method can then be generalized to represent any square root which
satisfies the conditions in the previous lemmas.

2.2 Examples

2.2.1 Representing
√
−7 in Q(ζ28)

From the relation (1) we have

√
−7 =

3∏
j=1

(ζj
7 − ζ−j

7 )

As x is a primitive 28th root of unity in Q[x]/(Φ28(x)) then x4 is a primitive
7th root of unity. Hence

√
−7 =

3∏
j=1

((x4)j − (x4)−j)

Compute this polynomial mod Φ28(x) to give
√
−7 = −2x8 − 2x4 + 2x2 − 1

in Q[x]/(Φ28(x)).
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2.2.2 Representing
√
−2 in Q(ζ24)

As x is a primitive 24th root of unity in M = Q[x]/(Φ24(x)) then x6 and x3 are
primitive 4th and 8th roots of unity respectively. Hence in M we can represent√
−2 as

√
−2 = ζ8(1 + ζ4)

= x3(1 + x6) mod Φ24(x)
≡ −x5 − x3 + x mod Φ24(x)

2.2.3 Representing
√
−5 in Q(ζ40).

From the relation (1) we have

√
5 =

2∏
j=1

(ζj
5 − ζ−j

5 )

As x is a primitive 40th root of unity in Q[x]/(Φ40(x)) then x8 is a primitive
5th root of unity. Hence

√
5 =

2∏
j=1

((x8)j − (x8)−j)

Compute the product of this polynomial with x10 (as x10 is a primitive 4th root
of unity) mod Φ40(x) we have

√
−5 = −2x14 + x10 − 2x6

in Q[x]/(Φ40(x)).

2.2.4 Representing
√
−15 in Q(ζ30)

As x is a primitive 30th root of unity then x10 and x6 give primitive 3rd and 5th

roots of unity respectively in Q[x]/(Φ30(x)). Using (1) we then have:

√
5 =

2∏
j=1

((x6)j − (x6)−j) (4)

√
−3 = 2x10 − 1 (5)

(6)

Taking the product of these and reducing mod Φ30(x) gives a representation of√
−15 in Q[x]/(Φ30(x)) as follows:

√
−15 = −2x7 + 2x5 − 4x4 + 2x3 − 2x2 − 4x + 3

2.3 Algorithm For Constructing Basis

INPUT: A positive integer n > 3 and a square free integer d.
OUTPUT: A polynomial representation R of

√
d in Q[x]/(Φn(x)) or failure if

Q(ζn) does not contain
√

d.
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1. Set R = 1.

2. TEST INPUT

• Test if d | n. If not, stop and report failure. Else continue.

• Test if 2 | d. If so and 8 6 |n stop and return failure. Else continue.

• Test if d < 0. If so check that d ≡ 3 (mod 4) or 4 | n. If not, stop
and return failure. Else continue.

• Test if d > 0. If so check that d ≡ 1 (mod 4) or 4 | n. If not, stop
and return failure. Else continue.

3. Factorize d = p1p2....pr

4. For i = 1 to r :

(a) if (pi 6= 2)

• Construct a pth
i root of unity. Let θ = xn/pi .

• Construct a polynomial representation of
√
±pi, Pi(y), where y

is assumed to be a pth
i root of unity using relation (1).

• Multiply R by Pi(θ).

(b) else

• Construct an eight and fourth root of unity ζ4 = xn/4, ζ8 = xn/8.
• Multiply R by ζnζ8(1 + ζ4).

5. (Correct Sign).

• If d < 0 and d ≡ 1 (mod 4). Multiply R by ζ4 = xn/4.

• If d > 0 and d ≡ 3 (mod 4). Multiply R by ζ4 = xn/4.

• If 2 | d. Then:

– If d < 0 and (d/2) ≡ 1 (mod 4). Multiply R by ζ4 = xn/4.
– If d > 0 and (d/2) ≡ 3 (mod 4). Multiply R by ζ4 = xn/4.

6. Return R.

3 Overview

Let E be an elliptic curve over the finite field Fq (note: q = p1 where p is a
prime) and let #E(Fq) = hl where l is the largest prime dividing #E(Fq) such
that l 6 |(q−1). Then #E(Fq) = hl = q +1− t; where t is the trace of Frobenius.
This implies that q ≡ t− 1 (mod l). The embedding degree of E(Fq) is defined
to be the least positive integer k such that l divides qk − 1. This is equivalent
to the following condition observed by Cocks and Pinch [5]: t− 1 ≡ ζk (mod l);
where ζk is a primitive kth root of unity. For a given k our goal is to construct
an elliptic curve E over Fq such that E(Fq) has embedding degree k with respect
to a prime l and the ratio ρ = log(q)/log(l) is as close to 1 as possible.

We now describe how to construct the Frobenius element (denoted by π)
of an elliptic curve with the desired properties. The general methodology used
here is the same as that of [6]. Our contribution is the algorithm in section 2.3.
This algorithm allows us to use arbitrary imaginary quadratic fields contained in
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some cyclotomic field. Brezing and Weng used imaginary quadratic fields which
were isomorphic to cyclotomic fields i.e. Q(ζ3) and Q(ζ4). In both of these
cases it is trivial to find a basis for the imaginary quadratic field. Although
their theory acknowledges that the imaginary quadratic field does not have to
be a cyclotomic field, they do not explain how to work examples in the case
where the quadratic field is not isomorphic to a cyclotomic field.

Let g(x) be some primitive kth root of unity in M = Q[x]/(Φn(x)) or more
generally M = Q(ζn,

√
−D) where −D, for D > 0 is the discriminant of an

imaginary quadratic field, ζn a primitive nth root of unity and k | n. Let
h(x) be a polynomial which represents

√
−D or

√
−D/4 in M depending on

whether −D ≡ 1 (mod 4) or −D ≡ 0 (mod 4) respectively. We refer the reader
to section 2.2 for detailed examples on how to construct h(x). Suppose also that
g(x) and h(x) lie in Z[x]. Construct the polynomials a(x), b(x) and p(x) with
conditions satisfied as in [6]:

a(x) := g(x) + 1
b(x) := (a(x)− 2)h(x)

p(x) :=
1
4
(a(x)2 +

b(x)2

D
)

Note that a(x) represents the trace of Frobenius. We then try to find primes
l and p such that l = Φn(x1) and p = p(x1) where x1 ≡ x0 (mod D). If we
can find such primes, then we can find an elliptic curve E with order #E(Fq)
divisible by l with embedding degree k. As we know such a curve will have
complex multiplication by the order

O = Z[π(x1)] = Z[
a(x1)± b(x1)

D

√
−D

2
]

To see why this is the case consider the values of

#E(Fp(x1)) = NQ(
√
−D)/Q(π(x1)− 1)

and
p(x1) = π(x1)π̄(x1)

where π(x) = a(x)− b(x)
D

√
−D

2 . Reduced modulo l the first equation yields

NQ(
√
−D)/Q(π(x1)− 1) =

(a(x1)− 2)2 + b(x)2

D

4

≡ (ζk − 1)2 − (ζk − 1)2

4
(mod l)

≡ 0 (mod l)

while the second equation becomes

π(x1)π̄(x1) =
1
4
(a(x1)2 +

b(x1)2

D
) ≡ (ζk + 1)2 − (ζk − 1)2

4
≡ ζk (mod l)
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4 Numerical Results

This section contains examples of the possible numerical results which can be
achieved using our method. The listed examples are in no way exhaustive.
Most parameters have extremely dense solutions sets, meaning that for a given
−D, k and n the possible values for x1 which give suitable output are quite nu-
merous and easily found. Examples of this include the parameters (−D, k, n) =
(−7, 14, 14, ), (−15, 15, 15). Other parameters give very sparse solution sets. For
(−D, k, n) = (−7, 28, 56) the first solution gives a 377 bit prime l. This may be
due to the higher degree of Φn(x) leading to fewer representable primes of suit-
able size. More work is needed to improve this situation, perhaps consideration
of a more general polynomial family for the representation of l.

The numerical results were computed using a C++ program making use of
the LiDIA [2] and GMP [1] libraries. Michael Scott’s complex multiplication
implementation [12] was used to generate the final curves which are given in the
tables below by E : y2 = x3 + Ax + B where A,B ∈ Fq (q = p(x1)1).

4.1 Tabulated Summary Of Results

φ(k) k −D n Actual ρ Bound ρ log2(l) log2(q)
4 10 -20 40 1.732 1.750 187 324
4 10 -15 30 1.737 1.750 160 272
6 7 -7 7 1.650 1.666 160 264
6 14 -7 14 1.654 1.666 162 268
8 15 -15 15 1.725 1.750 160 276
8 24 -8 24 1.475 1.500 160 236
10 11 -11 22 1.775 1.800 169 300
10 22 -11 44 1.793 1.800 237 425
12 28 -7 56 1.493 1.500 377 563
12 28 -7 28 1.820 1.833 234 426
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4.2 φ(k) = 4

k 10
-D −20
n 40
Φn(x) x16 − x12 + x8 − x4 + 1
g(x) −x12 + x8 − x4 + 1
h(x) −2x14 + x10 − 2x6

x1 3196
l 118497265990650143638940886913063255688422174813106568961(187 bits)
q 2691656114049822988376675914574795422806785455749627181432

9796276308782360965160815950571330669569(324 bits)
ρ 1.73262
A 2
B 25575441317520594647996278509327595814781177583607486825447

55542022504589304559812663114754842137
#E(Fq) 269165611404982298837667591457479542280678545574962718154655

42359371237908912671854899838150479104
h 227149216612491653871749738083825253649664

k 10
-D −15
n 30
Φn(x) x8 + x7 − x5 − x4 − x3 + x + 1
g(x) x3

h(x) 2x7 − 2x5 − 4x4 − 2x3 − 2x2 + 4x + 3
x1 -1028669
l 1253732242268690674049383020671966019699064954321 (160 bits)
q 39612061054789106390969804068289066415604050183196

3430185626838652064692433391635091 (272 bits)
ρ 1.7375
A 2
B 384776587942284046569417998917012451962737988852464805

945105201423467817793288117568
#E(Fq) 39612061054789106390969804068289066415604050183

1963430185626838653153188731457177400
h 315953117574045294258870823811369400
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4.3 φ(k) = 6

k 7
-D −7
n 7
Φn(x) x6 + x5 + x4 + x3 + x2 + x + 1
g(x) x
h(x) −2x4 − 2x2 − 2x− 1
x1 -100667465
l 1040722131042824291503998495039735508885676564761(160 bits)
q 15268391681519532829942582276850914805033533358709

195412419252889296190850361031 (264 bits)
ρ 1.65
A 6904773185115407288774998350780739098916655907628

522574186610383491054693339853
B 132516585268346143015953300741428798283327795995

03131865585960266801828161187012
#E(Fq) 15268391681519532829942582276850914805033533358709195412419

252889296190951028496
h 14670958967904622570631039861136

k 14
-D −7
n 14
Φn(x) x6 − x5 + x4 − x3 + x2 − x + 1
g(x) x
h(x) −2x4 − 2x2 + 2x− 1
x1 133004537
l 5536033773959257978391961177327958068345407274793(162 bits)
q 2474950461452276166828940726714264665748185099201432127

68914007106237443263422969(268 bits)
ρ 1.65432
A 11
B 712858084594227799386884127303486852738040585817879196107117

10083152769312725972
#E(Fq) 24749504614522761668289407267142646657481850992014

3212768914007106237443130418432
h 44706202355449906932824497773824
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4.4 φ(k) = 8

k 15
-D −15
n 15
Φn(x) x8 − x7 + x5 − x4 + x3 − x + 1
g(x) x2

h(x) −2x7 + 2x5 − 4x4 + 2x3 − 2x2 +−4x + 3
x1 -1000471
l 1003775220704386773178297083604487423516523566881(160 bits)
q 24749504614522761668289407267142646657481850992014321276891400

7106237443263422969(276 bits)
ρ 1.725
A 6
B 40295145753514985501399919797672879148678349180992490177547884

022398443196715547313
#E(Fq) 6710774919301934550928757221664725317889977643526071

9274859259866119033550724678140
h 66855355470846667642871157463010940

k 24
-D −8
n 24
Φn(x) x8 − x4 + 1
g(x) x
h(x) −x5 − x3 + x
x1 -985463
l 889452139047835861417980800969216088560624633761 (160 bits)
q 1048563582552305367800197044893830726902849800202982672138417

79302725409(236 bits)
ρ 1.475
A 1
B 1023963806031047812676889009518936467970885870987298707653416

01082901825
#E(Fq) 10485635825523053678001970448938307269028498002029826

7213841779303710872
h 117888702103161988307352
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4.5 φ(k) = 10

k 11
-D −11
n 22
Φn(x) x10 − x9 + x8 − x7 + x6 − x5 + x4 − x3 + x2 − x + 1
g(x) x2

h(x) 2x9 + 2x5 − 2x4 + 2x3 + 2x− 1
x1 -18658
l 449044374966079776811018938862000399066079697680411 (169 bits)
q 13574419192223522033820740163944747702901942978629811

73430741491198729593166465924090047211 (300 bits)
ρ 1.77515
A -3
B 6193909622716198810205638875698432117154858289599536783988

32824586309700504136093237616017
#E(Fq) 135744191922235220338207401639447477029019429786298117

3430741491198729593166465910586212775
h 3022957183964038266269047184406033927525

k 22
-D −11
n 44
Φn(x) x20 − x18 + x16 − x14 + x12 − x10 + x8 − x6 + x4 − x2 + 1
g(x) −x16

h(x) 2x36 + 2x20 + 2x16 + 2x12 + 2x4 + 1
x1 -3616
l 1460724800428397354108391948558159023808342804009185143592303

00179430401 (237 bits)
q 45382715071996076852244307042606621548796179757008093618976734645

298549353613552077513158958602545660520238745221082532592382511(425
bits)

ρ 1.79325
A 1
B 3784046780042005650714494089027636708859573621861754

795865244564807866309591506988864882772111841325291701998
0177642352154718308

#E(Fq) 45382715071996076852244307042606621548796179757008093
618976734645298550208000782574271143051912222578493258834949276209
314951727

h 310686277515698774524080190155394166389785366317894970927
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4.6 φ(k) = 12

k 28
-D −7
n 56
Φn(x) x24 − x20 + x16 − x12 + x8 − x4 + 1
g(x) x2

h(x) −2x32 − 2x16 − 2x8 − 1
x1 -52863
l 22680015229432317794242007132115572778310151630536924705756778206

8436961779089828080279772242398751946572875092481(377 bits)
q 154300371767859141675459960546834345538636866874241707

9389034987822114289538843343106033999886746217247115609298
6606514377067579218650198211651136856926831811306441188097(563 bits)

ρ 1.49337
A 6
B 158275426407123834728836268767365342556028036103393826303940542

7702966555156720355676988148411036284682542896266755659785407008972
919571853734114075783871132111134470913

#E(Fq) 15430037176785914167545996054683434553863686687424170793
890349878221142895388433431060339998867462172471156092986606
514377067579218650198211651136856926831811303646691328

h 68033627934967347758982985074396385532149647643332313088

k 28
-D −7
n 28
Φn(x) x12 − x10 + x8 − x6 + x4 − 1x2 + 1
g(x) x3

h(x) −2x8 − 2x4 + 2x2 − 1
x1 -724247
l 208276590274254899637564628862472689660689004802935956

63855491908821297 (234 bits)
q 1181434009177633862291643211695317654788308498138

68372220241582503104530249717254933438182948872577386
372276967001960963118937209 (426 bits)

ρ 1.82051
A 17
B 727940437836061484409803854774452153918509903701901543308858

04742240644630649331833197704638020599074688184087825214497695038730
#E(Fq) 11814340091776338622916432116953176547883084981386

83722202415825031045302497172549334381829488725773863722769673818
52934061554432

h 5672428224515979586931610079091374501265707945018575219456

13



5 Conclusion

We have developed an algorithm to extend the Brezing-Weng method for dis-
criminants D > 4. This new approach has enabled us to generate suitable
elliptic curve parameters with embedding degree k, which for φ(k) > 4 exhibit
an improved ratio relative to published material [3],[7], where the ratio may be
up to 2.
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