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Abstract 
Finding suitable non-supersingular elliptic curves becomes an important issue for the 
growing area of pairing-based cryptosystems. For this purpose, many methods have 
been proposed when embedding degree k and cofactor h are taken different values. In 
this paper we propose a new method to find pairing-friendly elliptic curves without 
restrictions on embedding degree k and cofactor h. We propose the idea of effective 
polynomial families for finding the curves through different kinds of Pell equations or 
special forms of D(x)V2(x). In addition, we discover some efficient families which can 
be used to build pairing-friendly elliptic curves over extension fields, e.g. Fp

2 and Fp
4. 
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1. Introduction 
 
Apart from identity-based encryption scheme [12] and short signature scheme [13], 
paring-based cryptography has attracted more attention in modern public-key 
cryptography. In pairing-based cryptosystems, Elliptic Curve Discrete Logarithm 
Problem (ECDLP) on supersingular elliptic curves can be reduced to Discrete 
Logarithm Problem (DLP) over an extension field by Weil Pairing [10] or Tate Paring 
[15]. However, because of the weakness of supersingular elliptic curves [11], 
researchers have explored other form of curves, such as the non-supersingular elliptic 
curves. In 2001, Miyaji, Nakabayashi and Takano [8] first proposed a method to find 
suitable non-supersingular elliptic curves for pairing-based cryptosystems. They 
discussed the problem from the point of view of tract t. Scott and Barreto [1] extended 
the method of Miyaji et al. and found more suitable non-supersingular elliptic curves. 
Gallbraith, Mckee and Valenca [3] summarized the method proposed by early 
researchers and presented some appropriate families of group orders of such elliptic 
curves. Brezing and Weng also proposed an alternative method to find these curves 
[7]. They used t − 1 as a kth root of unity modulo prime r. Dupont, Enge and Morain 
[16] also proposed another method for finding the suitable non-supersingular elliptic 
curves. In their method, tract t was chosen large enough to make 4q – t2 small as to 
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produce effective values of D. In the most recent work, Barreto and Naehrig [17] 
generated non-supersingular elliptic curves with lg(q)/lg(r) = 1 and embedding degree 
k = 12. They presented the best curves known so far and these curves were actually 
generated by a special polynomial family of q(x), t(x) and r(x), where 4q(x) – t2(x) can 
be factorized as one square polynomial multiplying with one constant number. 

 
In this paper we propose a new method for finding suitable non-supersingular 

elliptic curves for pairing-based cryptosystems. Compared to the previous work, the 
new method ignores the restrictions imposed on the embedding degree k and cofactor 
h. By using the new method, different kinds of Pell equations are built and solved to 
produce the elliptic curves by Complex Multiplication (CM) method [5]. Also when 
Pell equation can not be found, the idea of effective polynomial families of elliptic 
curves is proposed as another possible approach for finding the suitable elliptic 
curves.  

 
This paper is organized as follows. In sections 2 we give a description of the 

mathematics background. In Section 3 we present the theoretical analysis and many 
useful polynomial families of pairing-friendly elliptic curves. In addition, the idea of 
effective polynomial families of elliptic curves is proposed in this section. In Section 
4 we propose some special polynomial families which can be used to generate 
pairing-friendly elliptic curves over extension field and we draw the conclusion in 
Section 5. The parameters of some pairing-friendly elliptic curves based on the 
proposed polynomial families are presented in Appendix A and Appendix B. 
 

2. Mathematics Background 
 
To find suitable elliptic curves for pairing-based cryptosystems, certain equations are 
required to be solved. Actually all the previous work used different approaches to 
solve the relative equations and set up the elliptic curves. 

 
Assume the cofactor h is an integer, r is the order of a point as a big prime number 

and t is the trace of an elliptic curve, we want to find an elliptic curve over Fq, where 
q = p is a prime number (we only consider the prime field in this paper). ECDLP on 
such elliptic curves can be reduced to DLP over Fq

k, where k is the smallest integer 
satisfying certain conditions, defined as the embedding degree [1]. The following 
equations determine whether such an elliptic curve exists or not. 
 

In a strict sense to find the suitable elliptic curves for pairing-based cryptosystems 
[10], we need  

r | qk – 1  (1) 
However, under a mild condition [6], we can just consider q as a kth root of unity 
modulo r, like what had been done in [7]. Meanwhile since k should be the smallest 
integer satisfying r | qk – 1, equation (1) should be presented as r | qk – 1 and qi – 1 is 
not divisible by r when 0 < i < k. Thus from [14] we can get 

dr =Φk(q) (2) 
where d is an integer and Φk(q) is the cyclotomic polynomial of q with embedding 
degree k and  

d’r ≠ Φi(q), 0 < i < k  (3) 
Besides these conditions we still need 
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hr = q + 1 – t  (4) 
where h is an integer. By combining equation (2) and (4) together, we can get 

sr = Φk(t – 1)  (5) 
where s is also an integer[1]. Since k the smallest integer, with the same reason we have 

s’r ≠ Φi(t – 1), 0 < i < k (6) 
By Hasse’s bound we also need 

|t| ≤ 2q1/2  (7) 
Then we can compute the elliptic curve by solving 

DV2 = 4q – t2  (8) 
where D is chosen by certain conditions [2]. For solving equation (8), it is desired to 
find the relations between q and t, as the family of group order [3]. When q and t belong 
to quadratic families, equation (8) may be transformed into a well known Pell equation 
[4] as 

y2 – uDV2 = m  (9) 
where D should be a square free number. After finding effective values of D, q and t, 
the elliptic curve can be obtained by implementing the Complex Multiplication (CM) 
method [5]. 
 

All the above contents are about how to find suitable elliptic curves for 
pairing-based cryptosystems in integer field. But it is impossible to search the whole 
integer field to obtain the suitable solutions. Thus we should transfer the problem into 
polynomial field. When analyzing in polynomial field, we assume q, t, r as q(x), t(x) 
and r(x); meanwhile h, d, s, D and V should be considered as h(x), d(x), s(x), D(x) and 
V(x). In the following paragraph we will propose a Lemma which proves that in 
polynomial field, equation (2) and (5) are already both efficient and necessary 
conditions. In polynomial field equation (3) and (6) are not needed to ensure that k is 
the smallest integer.  
 
Lemma 1 
Finding the smallest integer k with that ECDLP over E(Fq) can be reduced to DLP 
over Fq

k, in polynomial field, we only need the conditions as r(x)| Φk(q(x)) and r(x)| 
Φk(t(x) – 1). In the proof of Lemma 1, q(x), t(x), r(x) and Φk are defined as different 
polynomials. 
 
Proof: In polynomial field, by common knowledge we know that from r(x) | q(x)k – 1, 
we can get r(x) | Φ1(q(x))Φi(q(x))Φj(q(x))…Φk(q(x)), where i, j…k are all the factors 
of k. Then since in polynomial field Φi(q(x)) is relative irreducible to Φj(q(x)) where i 
≠ j, if we get r(x)| Φk(q(x)), Φi(q(x)) will not be divisible by r(x), when i < k. Thus to 
get the smallest integer with r(x) | q(x)k – 1, we only need to have r(x)| Φk(q(x)). For 
the same reason when finding the smallest integer with r(x) | (t(x) – 1)k – 1, we only 
require r(x)| Φk(t(x) – 1). � 
 

Thus for finding suitable elliptic curves for pairing-based cryptosystems in 
polynomial field, the equations (2, 4, 5, 7, 8) are required and they can be rewritten 
as: 

d(x)r(x) =Φk(q(x)) (10) 
h(x)r(x) = q(x) + 1 – t(x) (11) 
s(x)r(x) =Φk(t(x) – 1) (12) 
|t(x)| < 2q(x)1/2  (13) 
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D(x)V(x)2 = 4q(x) – t2(x)  (14) 

3. Effective Polynomial Families for Producing More Pairing - 
Friendly Elliptic Curves 
 
In the following section the math evidence for our new method is provided. As 
proposed in [8], from equation (4) and (8) we can get the difference between 4q and t2 
after knowing t and r: 

DV2 = 4q – t2 = 4(hr + t – 1) – t2 ≡ – (t – 2)2 mod r (15) 
Represented in polynomial field, we have 

D(x)V2(x) = 4q(x) – t2(x) = – (t(x) – 2)2 mod r(x) (16) 
Then after getting r(x) and t(x), the form of D(x)V2(x) can be obtained. But whether  

q(x) = [D(x)V2(x) + t2(x)]/4 (17) 
satisfies equation (11) should be tested. After finding the effective q(x), we can 
directly solve 

DV2 = 4q(x) – t2(x) 
as a Pell equation if D(x)V2(x) = 4q(x) – t2(x) is quadratic. Otherwise all possible 
values of x should be tested to satisfy that q(x) and r(x) are prime numbers and at the 
same time small values of D exist. In the next paragraph we will give a rough 
description of our new method. 
 

When finding the suitable elliptic curves for pairing-based cryptosystems in 
polynomial field, we assume q, t, r as q(x), t(x) and r(x) respectively; meanwhile h, d, 
s, D and V should be considered as h(x), d(x), s(x), D(x) and V(x). At first we use an 
arbitrary irreducible polynomial r(x) to represent prime r. Then by Φk(t(x) – 1) ≡ 0 
mod r(x) we can find effective trace polynomials t(x). As proposed in [8], D(x)V2(x) = 
4q(x) – t2(x) ≡ – (t(x) – 2)2 mod r(x). Thus we can compute D(x)V2(x) by the above 
equation after knowing t(x) and r(x). Then the irreducible polynomial q(x) can be 
obtained by 4q(x) = D(x)V2(x) + t2(x). q(x) should satisfy that Φk(q(x)) ≡ 0 mod r(x). 
If the obtained q(x) is according to all the conditions, the D(x)V2(x) found above is 
effective. 
 

Based on the above analysis we propose a new algorithm for finding the suitable 
polynomial families of pairing-friendly elliptic curves.  
 
Algorithm 1 
Input: embedding degree k 
Output: q(x), t(x), r(x), D(x)V2(x) 

1. Choose an irreducible polynomial r(x). 
2. Compute trace polynomial t(x) by Φk(t(x) – 1) ≡ 0 mod r(x). 
3. Compute polynomial D(x)V2(x) by D(x)V2(x) = 4q(x) – t2(x) ≡ – (t(x) – 2)2 

mod r(x). 
4. After obtaining D(x)V2(x), compute q(x) by 4q(x) = D(x)V2(x) + t2(x). Test 

whether the irreducible polynomial q(x) satisfy Φk(q(x)) ≡ 0 mod r(x). 
5. If the obtained q(x) is effective, output all results as q(x), t(x), r(x), D(x)V2(x); 

otherwise repeat from step 1. 
 

By our new method more polynomial families for building the pairing-friendly 
elliptic curves can be easily found. But for finding the parameters of such curves often 
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needs special forms of q(x), t(x) and r(x). In integer field, it means that when D is a 
“small” integer (D ≤ 1010) [1] and q, r are large prime numbers (qk > 21024 and r > 2160) 
[1, 9], DV2 = 4q – t2 must have a solution. This is actually to require special forms of 
q(x), r(x) and D(x)V2(x) in polynomial field. When D(x)V2(x) is an arbitrary 
polynomial, to find valid values of D is very difficult as q and r must be large secure 
parameters. In the following parts we will discuss different forms of D(x)V2(x) that 
can be used to produce the pairing-friendly elliptic curves efficiently. 
 

Before the discussion we need to mention an observation. When q(x), t(x) and r(x) 
are suitable polynomials that can be used to generate pairing-friendly elliptic curves, 
q(-x), t(-x) and r(-x) are also such polynomials. This observation comes from the fact 
that in the operation x can be taken as either positive or negative integers. 

3.1 Polynomial Families with Square Polynomial and Constant Number Factors 
Considering polynomial family D(x)V2(x) = 4q(x) – t2(x), when we require q, r as 
large prime numbers and D as an “small” integer, the simplest situation happens when 
4q(x) – t2(x) can be expressed as one square polynomial multiplying with one constant 
positive number. This means that D(x)V2(x) = DV2(x), where the degree of V(x) is not 
zero. Then we only need to seek the suitable x when q(x) and r(x) are prime numbers 
since D will always equal the constant integer. It is rather easy to find such x. With 
these polynomial families we have better possibilities to find certain x satisfying other 
conditions, which makes the computation of paring-based cryptosystems more 
efficient. 
 

The work of Barreto and Naehrig [17] provided us a perfect example of such a 
polynomial family when k = 12. The polynomial family they found had a special 
property as Φk(t(x) – 1) = r(x)r(–x). When k = 12, they got from [3] that t(x) – 1 only 
could be 2x2 or 6x2 when Φk(t(x) – 1) was the multiple of two quartic polynomials as 
n1(x) and n2(x). They used t(x) – 1 as 6x2 and found a perfect polynomial family, in 
which 4q2(x) – t2(x) was a multiple of a square polynomial and a constant integer. 
Thus the value of D would be always valid as the constant integer and ρ = lg(q)/lg(r) 
≈ 1. But as the lemma proposed in [19], –2x2 and –6x2 also can be used as the possible 
polynomials with the feature of splitting. This generates the results tabulated in Table 
1. 

  
t(x) r(x) q(x) 4q(x) – t2(x) 

2x2 + 1 4x4 + 4x3 + 2x2 + 2x + 1 4x4 + 4x3 + 4x2 + 2x + 1 (2x2 + 1)(6x2 + 8x + 
3) 

–2x2 + 1 4x4 + 4x3 + 2x2 + 2x + 1 4x4 + 4x3 + 2x + 1 12x4 + 16x3 + 4x2 + 
8x + 3 

6x2 + 1 36x4 + 36x3 + 18x2 + 6x + 1 36x4 + 36x3 + 24x2 + 6x + 1 3(6x2 + 4x + 1)2 
–6x2 + 1 36x4 + 36x3 + 18x2 + 6x + 1 36x4 + 36x3 + 12x2 + 6x + 1 3(36x4 + 48x3 + 20x2 

+ 8x + 1) 
Table 1: more splitting polynomial families when k = 12 

 
In Table 1 when t(x) – 1 = ±2x2 and –6x2, 4q(x) – t2(x) can not be factorized as one 

square polynomial multiplying with one constant number. When t(x) – 1 = 2x2, q(x) = 
4x4 + 4x3 + 4x2 + 2x + 1 = (2x2 + 1)(2x2 + 2x + 1) is not even an irreducible 
polynomial, which can not be used to produce a prime number q. Thus t(x) – 1 = 6x2 
may be the only family with the desired property. When k = 6, in Table 2 we list some 
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polynomials of r(x), q(x) and t(x), where 4q(x) – t2(x) = DV2(x) also is the multiple of 
a square polynomial and a constant integer. These polynomial can be used to generate 
pairing-friendly elliptic curves efficiently when k = 6 and ρ = lg(q)/lg(r) ≈ 2. The first 
family is used to generate the parameters of an elliptic curve in Appendix A. 

 
q(x) t(x) r(x) 4q(x) – t2(x) 

9x4 – 9x3 + 9x2 – 3x + 1 3x2 + 1 3x2 – 3x + 1 3(3x2 – 2x + 1)2 
27x4 – 9x3 + 3x2 – 3x + 1 –9x2 + 1 9x2 – 3x + 1 3(3x2 – 2x + 1 )2 

36x4 + 9x2 – 3x + 1 –6x2 – 3x + 1 12x2 + 1 3(6x2 – x + 1 )2 
Table 2: effective polynomial families when k = 6, ρ ≈ 2  

 
Although the curves produced from the above table may not be the ones with best 

performance since ρ = lg(q)/lg(r) ≈ 2 [1], the special form of 4q(x) – t2(x) = DV2(x) 
will always lead to a small D. This gives us better possibilities to search suitable x 
with other efficient conditions, e.g. q and r are primes with low-hamming weight [20] 
or the technique for saving the bandwidth described in [18]. For finding such results, 
in the following paragraph we will propose a Lemma which can be used to find these 
polynomial families. 
 
Lemma 2 
When finding q(x) and t(x) with 4q(x) – t2(x) = DV2(x) and degree(q(x)) = 
degree(t(x))/2, if assuming q(x) = qnxn + qn-1xn-1 + … + q1x + q0, t2(x) = tnxn + tn-1xn-1 
+ … + t1x + t0, 4qn – tn

2 and 4q0 – t0
2 should be factorized as one constant number 

multiplying with one square number. 
 
Proof: Assuming q(x) = qnxn + qn-1xn-1 + … + q1x + q0, t2(x) = tnxn + tn-1xn-1 + … + 
t1x + t0, V(x) = vnxn + vn-1xn-1 + ... + v1x + v0, when 4q(x) – t2(x) = DV2(x), we must 
have 4qn – tn = Dvn

2 and 4q0 – t0 = Dv0
2. � 

 
In the above Lemma we just suggest the common form of q(x) and t(x) when 4q(x) 

– t2(x) can be factorized as one constant number multiplying with one square 
polynomial. Actually the simplest case appears when qn = a2, tn = a2 and q0 = b2, t0 = 
b2, where a, b are integers. In such case, 4qn – tn = 3a2 and 4q0 – t0 = 3b2. In such 
cases D will equal 3. All the results in Table 2 are according to this condition. By the 
same technique, we also find the perfect polynomial family proposed by [17] and 
some other polynomial families when k = 3 and 4. Table 3 and Table 4 tabulate the 
results. 

 
q(x) t(x) r(x) 4q(x) – t2(x) 

3x4 + 3x3 + 4x2 + 2x + 1 –3x2 – 2x – 2 x2 + x + 1 3x4  
x4 + x3 + 3x2 + x + 1 –x2 – 2x – 1 x2 + x + 1 3(x2 + 1 )2 

Table 3: effective polynomial families when k = 3, ρ ≈ 2 
 

q(x) t(x) r(x) 4q(x) – t2(x) 
4x4 – 4x3 + 2x2 – 2x + 1 –4x2 + 2x 2x2 – 2x + 1 4(x – 1)2 

8x4 + 6x2 + 2x + 1 4x2 + 2x + 2 4x2 + 1 4x2(2x2 – 1)2 
128x4 + 24x2 + 4x + 1 –16x2 + 4x 16x2 + 1 4(8x2 + 2x + 1)2 

Table 4: effective polynomial families when k = 4, ρ ≈ 2 
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Actually for finding the special forms of polynomial t(x) with Φk(t(x) – 1) = 
n1(x)n2(x) [3], the value of k can not be 3, 4 or 6 if we want ρ = lg(q)/lg(r) ≈ 1. 
Because when ρ = lg(q)/lg(r) ≈ 1, the degree of q(x) must equal that of r(x). Then 
since equation (7) must be satisfied as the Hasse’s bound, the degree of Φk(t(x) – 1) 
has to be at least four times of the degree of t(x) so that Φk(t(x) – 1) has the same 
degree as n1(x)n2(x). Thus the values of k can not be 3, 4 or 6. 
 

3.2 Polynomial Families for Building and Solving Pell Equations  
When finding the suitable non-supersingular elliptic curves by setting up and solving 
certain Pell equations, different methods had been proposed in [1, 3, 8]. In this section, 
we will implement different kinds of Pell equations for finding the pairing-friendly 
elliptic curves. The first kind of Pell equations can be viewed as the effective Pell 
equations, which have a better chance to generate such elliptic curves. The second 
kind are the extended versions of Pell equations, which shows the possibility to find 
such elliptic curves when k is larger than 6. Before the proposition of our new 
definitions, first we will give a Lemma which discovers an intrinsic relation between 
the polynomial families of elliptic curves when k = 3 and k = 6. 
 
Lemma 3 
Suppose in polynomial field t(x) and r(x) compose a polynomial family with 
embedding degree k = 6. Then using 2 – t(x) as another trace polynomial t’(x), with 
same r(x) we can find a different polynomial family with embedding degree k = 3. 
The converse situation is also true. 
 
Proof: when t(x) and r(x) satisfy the condition as a polynomial family with 
embedding degree k = 6, we have Φ6(t(x) – 1) = (t(x) – 1)2 – (t(x) – 1) + 1 = t2(x) – 
3t(x) + 3 ≡ 0 mod r(x). By using 2 – t(x) as t’(x), with the same r(x), we implement 
them into the relation of a family when k = 3 as Φ3(2 – t(x) – 1) = (1 – t(x))2 + (1 – 
t(x)) + 1 = t2(x) – 3t(x) + 3. It is same with the equation when k = 6. Thus we can 
have Φ3(2 – t(x) – 1) ≡ 0 mod r(x).  As a conclusion, if t(x) and r(x) compose a 
polynomial family when k = 3, 2 – t(x) and r(x) can also set up another valid 
polynomial family with embedding degree k = 6. The proof of the converse situation 
is similar. � 
 

By the above lemma we can easily find polynomial families with k = 3 from the 
polynomial families with k = 6 or do on the converse case. Actually in [3] all the 
listed families with k = 3 or k = 6 can be found by the above lemma. Now we discuss 
some important issues for our new method. 
 

As analyzed above, polynomial D(x)V2(x) can be obtained by D(x)V2(x) = 4q(x) – 
t2(x) ≡ – (t(x) – 2)2 mod r(x) after knowing t(x) and r(x). In most cases V2(x) will equal 
1 since it is hard to find square polynomial factors contained in 4q(x) – t2(x). Here if 
we want to set up a Pell equation, D(x)V2(x) must be chosen as a quadratic polynomial 
as ax2 + bx + c; otherwise we have to test all possible values for x to satisfy that q(x) 
and r(x) are prime numbers and meanwhile small values of D exist. Considering the 
quadratic form of D(x)V2(x) used to set up Pell equations, as analyzed in [3], the 
relation between q(x) and t(x) can be defined as the polynomial families of elliptic 
curves. 
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For suitable q and t, the value for D must be a small integer (e.g. D < 1010) [1]. 

This is actually a very strict condition since meanwhile we need q and t as secure 
parameters. When k = 6, we at least require that q6 > 21024 [1] and r > 2160 [9]. This 
gives that q >2171≈ 1051. Since |t| < 2q1/2, equation (8) will always generate a very 
large number. It is very hard to find a value of D smaller than 1010 for 
implementation. 
 

This idea can be proved by the examples proposed in [1] and [3]. The authors [3] 
noticed that compared to other families, q(x) = 208x2 + 30x + 1 and t(x) = –26x – 2 is 
particularly “lucky” in generating suitable (q, t) pairs. But it seemed they did not give 
the reason why this family could generate most of the examples in [1]. Now we 
provide some mathematics analysis to illustrate this question. Assuming 4q(x) – t2(x) 
is a quadratic polynomial as ax2 + bx + c, then finding suitable values of D is actually 
to solve a quadratic equation as DV2 = ax2 + bx + c for integer solutions with enough 
length, where D is taken as a square free number between 0 to 1010 [1] and V2 is a 
square number. Meanwhile for the suitable x, q(x) and r(x) need to be prime numbers. 
Thus more suitable integer solutions found for DV2 = ax2 + bx + c, more possibilities 
we can test for prime q and r. Now we transform the equation into ax2 + bx + c – DV2 
= 0 and try to factorize it since we only need the integer solutions. This means that 
ax2 + bx + c – DV2 = 0 must be factorized as (a1x + d1)(a2x + d2) = 0, where a1a2 = a, 
d1d2 = c – DV2, a1d2 + a2d1 = b, a1 | d1 and a2 | d2. Now considering the situation that 
a1 = 1, obviously this kind of equations will have a better chance to generate the 
suitable integer solutions since the condition a1 | c1 can be ignored. Actually this is the 
most “lucky” family mentioned in [3]. The proposed family is that q(x) = 208x2 + 30x 
+ 1, t(x) = –26x – 2, DV2 equals 4q(x) – t2(x) as 4x(39x + 4). Here 4x can be viewed 
as x since 4 is a square contained in V2, which can be ignored in the computation. 
When 4q(x) – t2(x) can be factorized, which means ax2 + bx + c – DV2 = (a1x + 
c1)(a2x + c2), the final quadratic equation also has a better chance to generate suitable 
values of D because the condition a1a2 = a can be ignored. 

 
For the suitable families as the quadratic polynomial relations between q(x) and 

t(x), as analyzed above, we need that 4q(x) – t2(x) can be factorized. This ensures a 
larger possibility of the existence of small values of D. In other words, when 
transformed into Pell equations, these quadratic equations with the feature of 
factorization between 4q(x) and t2(x) are more likely to have suitable solutions. 
However, in most cases 4q(x) – t2(x) is an irreducible quadratic polynomial [3]. It is 
very difficult to find suitable x to satisfy that q(x) and r(x) are prime numbers and at 
the same time 4q(x) – t2(x) has a factor as a large square. In the following paragraphs, 
we will present some effective polynomial families with larger values of cofactor h, 
when k = 3, 4, and 6. In [3] the authors only presented the complete polynomial 
families of h ∈ [2, 5] when k = 3, 4, 6.   
 
(a) New quadratic families of elliptic curves when k = 3, h > 5 and ρ ≈ 1 
By our new algorithm, we can easily find all polynomial families with arbitrary values 
of h. In Table 5 we tabulate some polynomial families when k = 3, h = 6 and ρ ≈ 1. 
These families have not been proposed by any previous work and in Append A we 
generate the parameters of several elliptic curves for each of the family.  
 

h q(x) t(x) r(x) 4q(x) – t2(x) 
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6 6x2 + 5x + 5 –x x2 + x + 1 23x2 + 20x + 20 
6 18x2 + 15x + 4 –3x – 1 3x2 + 3x + 1 3(21x2 + 18x + 5) 
6 78x2 + 29x + 2 –13x – 3 13x2 + 7x + 1 143x2 + 38x – 1 
6 114x2 + 71 + 10 –19x – 7 19x2 + 15x + 3 95x2 + 18x – 9 
6 126x2 + 33x + 1 –21x – 4 21x2 + 9x + 1 3(21x2 – 12x – 4) 

Table 5: new quadratic polynomial families when k = 3, h = 6 
 
Based on the idea of effective polynomial families of elliptic curves, for large values 
of cofactor h, in Table 6 we tabulate some quadratic polynomial families when k = 3 
and h = 7 to 12. Among them we present two families with the feature of factorization. 
Both of them should have a better chance for generating pairing-friendly elliptic 
curves.  
 

h q(x) t(x) r(x) 4q(x) – t2(x) 
7 364x2 + 72x + 3 –26x – 3 52x2 + 14x + 1 3(260x2 + 44x + 1) 
8 504x2 + 141x + 10 21x + 3 63x2 + 15x + 1 1575x2 + 438x + 31 
9 432x2 + 96 + 7 –12x – 1 48x2 + 12x + 1 9(176x2 + 40x + 3) 
10 310x2 + 79x + 4 –31x – 5 31x2 + 11x + 1 3(93x2 + 2x – 3) 
11 473x2 + 100x + 4 –43x – 6 43x2 + 13x + 1 43x2 – 116x - 20 
12 252x2 + 87x + 7 –21x – 4 21x2 + 9x + 1 3(9x + 2)( 21x + 2 ) 
16 688x2 + 251x + 22 43x + 7 43x2 + 13x + 1 3(7x + 1)(43x + 13) 

Table 6: new quadratic polynomial families when k = 3, ρ ≈ 1 
 
(b)New quadratic families of elliptic curves when k = 4, h > 5 and ρ ≈ 1 
In Table 7 we list some quadratic polynomial families when k = 4 and h = 6 to 12. 
The third and fourth families in the table are effective families with the feature of 
factorization. The second polynomial family of h = 8 is used to generate the 
parameters of some pairing-friendly elliptic curves in Appendix A. 
 

h q(x) t(x) r(x) 4q(x) – t2(x) 
6 12x2 + 10x + 5 –2x 2x2 + 2x + 1  4(11x2 + 10x + 5) 
7 35x2 + 23x + 5 –5x – 1 5x2 + 4x + 1 115x2 + 82x + 19 
8 136x2 + 47x + 4 –17x – 3 17x2 + 8x + 1 (5x + 1)(51x + 7) 
8 136x2 + 81x + 12 17x + 5 17x2 + 8x + 1 (3x + 1)(85x + 23) 
9 45x2 + 41x + 11 5x + 3 5x2 + 4x + 1 155x2 + 134x + 35 
10 80x2 + 36x + 9 –4x 8x2 + 4x + 1 4(76x2 + 36x + 9) 
11 220x2 + 98x + 13 10x + 3 20x2 + 8x + 1 780x2 + 332x + 43 
12 384x2 + 88x + 11 –8x 32x2 + 8x + 1 4(368x2 + 88x + 11) 

Table 7: new quadratic polynomial families when k = 4, ρ ≈ 1 
 
(c) New quadratic families of elliptic curves when k = 6, h > 5 and ρ ≈ 1 
Same as the results listed in Table 6, by our method we find more quadratic 
polynomial families of non-supersingular elliptic curves when k = 6, h >5 and ρ ≈ 1. 
When h = 9, one of the families we present in Table 8 is an effective polynomial 
family. Two of the families in Table 8 are used to generate the parameters of two 
non-supersingular elliptic curves in Appendix A.  
 

h q(x) t(x) r(x) 4q(x) – t2(x) 
6 24x2 + 14x + 7 2x + 2 4x2 + 2x + 1 4(23x2 + 12x + 6) 
6 72x2 + 30x + 5 –6x 12x2 + 6x + 1 4(63x2 + 30x + 5) 
7 91x2 + 36x + 4 –13x – 2 13x2 + 7x + 1 195x2 + 92x + 12 
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7 49x2 + 28x + 5 –7x – 1 7x2 + 5x + 1 147x2 + 98x + 19 
8 32x2 + 18x + 9 2x + 2 4x2 + 2x + 1 4(31x2 + 16x + 8) 
8 608x2 + 202x + 17 –38x – 6 76x2 + 30x + 3 4(247x2 + 88x + 8) 
9 279x2 + 130x + 15 31x + 7 31x2 + 11x + 1 (5x + 1)(31x + 11) 
9 81x2 + 30x + 10 3x + 2 9x2 + 3x + 1 9(35x2 + 12x + 4) 
10 40x2 + 22x + 11 2x + 2 4x2 + 2x + 1 4(39x2 + 20x + 10) 
10 1750x2 + 415x + 26 –35x – 3 175x2 + 45x + 3 5(1155x2 + 290x + 19) 

Table 8: new quadratic polynomial families when k = 6, ρ ≈ 1 
  

In the above contents, actually we present some effective polynomial families 
which can be used to set up the standard Pell equations. These Pell equations have 
better chances to obtain pairing-friendly elliptic curves in implementations. Then we 
should point out that when q(x) has degree larger than 2, we can not get Pell equation 
from 4q(x) – t2(x) since it will not be a quadratic polynomial. But if we factorize 4q(x) 
– t2(x) as D(x)V2(x) and D(x) is quadratic, we still can obtain Pell equations just by 
D(x). The reason is that square polynomial V2(x) can be ignored in the computation. 
This can be viewed as to set up the extended versions of Pell equations. By this idea 
more Pell equation can be established and more elliptic curves can be found when k > 
6. In addition, besides the situations when q(x) and t2(x) are quadratic polynomials, 
sometimes extended versions of Pell equations can be produced when 4q(x) – t2(x) are 
like the forms as: 

4q(x) – t2(x) = ax2i + bxi + c (18) 
where a, b, c and i are integers. For example, when 4q(x) – t2(x) = ax4 + bx2 + c, 
replacing x2 by y, we still may get a Pell equation as  

DV2 = ay2 + by + c  (19) 
Thus in the implementations we will enlarge the searching for all kinds of Pell 
equations. 

 
In the following paragraphs, we will present some polynomial families which can 

be used to set up the extended versions of Pell equations when k = 8 and k = 12. 
 
(d) Effective polynomial families of elliptic curves when k = 8, ρ ≈ 1.5 
When k = 8, it is unlikely to obtain quadratic relations between 4q(x) and t2(x). But it 
is still possible to find certain forms of 4q(x) – t(x)2 with square polynomials factors 
and set up extended versions of Pell equations. Then small values of D can be solved. 
Table 9 lists some of the results when k = 8 and ρ ≈ 1.5. For convenience, we just 
take r(x) as the standard cyclotomic polynomial as x4+ 1. 
 

t(x) q(x) 4q(x) – t2(x) 
x + 1 x6 – 2x5 + x4 + x2 – x + 1 (x – 1)2(4x4 + 3) 
x + 1 2x6 – 4x5 + 2x4 + 2x2 – 3x + 2 (x – 1)2(8x4 + 7) 
x + 1 3x6 – 6x5 + 3x4 + 3x2 – 5x + 3 (x – 1)2(12x4 + 11) 
x + 1 4x6 – 8x5 + 4x4 + 4x2 – 7x + 4 (x – 1)2(16x4 + 15) 

Table 9: effective polynomial families when k = 8, ρ ≈ 1.5 
 
(e) Effective polynomial families of elliptic curves when k = 12, ρ ≈ 1.5 
When k = 12, we also find some polynomial families, which can be used to set up the 
extended versions of Pell equations. Table 10 lists some of the results when k = 12 
and ρ ≈ 1.5. For convenience, we just take r(x) as the standard cyclotomic polynomial 
as x4 – x2 + 1. 
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q(x) t(x) 4q(x) – t2(x) 

x6 + 2x5 – 2x3 + x + 1 –x + 1 (x + 1)2(4x4 – 4x2 + 3) 
3x6 + 6x5 – 6x3 + 5x + 3 –x + 1 (x + 1)2(12x4 – 12x2 + 11) 

5x6 + 10x5 – 10x3 + 9x + 5 –x + 1 (x + 1)2(20x4 – 20x2 + 19) 
Table 10: effective polynomial families when k = 12, ρ ≈ 1.5 

 
(f) More effective families of elliptic curves when k = 12, ρ ≈ 2 
When k = 12 and ρ ≈ 2, we find some special forms of D(x)V2(x), which can also be 
used to set up extended versions of Pell equations. Table 11 presents the results. 
During the implementation we still use the simplest form of r(x) as the cyclotomic 
polynomial as x4 – x2 + 1. 
 

q(x) t(x) 4q(x) – t2(x) 
x8 + 2x7 + x6 + x2 + x + 1 –x + 1 (x + 1)2(4x6 + 3) 

2x8 + 4x7 + 2x6 + 2x2 + 3x + 2 –x + 1 (x + 1)2(8x6 + 7) 
Table 11: effective polynomial families when k = 12, ρ ≈ 2 

 
When we can not directly obtain one Pell equation or its extended version from 

4q(x) – t2(x), some other forms of D(x)V2(x) may also be possible to generate valid 
values of D, e.g. 4q(x) – t2(x) is a multiple of two quadratic equations [20]. In the 
following paragraph we will present some of such polynomial families when k = 12 
and ρ = lg(q)/lg(r) ≈ 1. 
 
(g) Some other polynomial families of elliptic curves when k = 12, ρ ≈ 1 
When k = 12 and ρ ≈ 1, besides the perfect polynomial family proposed in [17], we 
find some other useful forms of D(x)V2(x). They can be factorized as the multiple of 
two quadratic equations. Thus we can set up two separate Pell equations for obtaining 
small values of D. In [17] the authors also presented a polynomial family with the 
same property when k = 5. These polynomial families may generate best 
pairing-friendly elliptic curves with ρ ≈ 1 if we can find certain techniques to solve 
the Pell-like equations. Table 12 tabulates the results.  
 

h q(x) t(x) r(x) 4q(x) – t2(x) 
25 900x4 + 900x3 + 456x2 

+ 150x + 25 
6x2 + 1 36x4 + 36x3 + 

18x2 + 6x + 1 
3(18x2 + 4x + 3)( 66x2 
+ 52x + 11) 

4705 169380x4 + 169380x3 + 
84696x2 + 28230x + 
4705 

6x2 + 1 36x4 + 36x3 + 
18x2 + 6x + 1 

3(246x2 + 52x + 
41)( 918x2 + 724x + 
153) 

113 452x4 + 452x3 + 228x2 
+ 226x + 113 

2x2 + 1 4x4 + 4x3 + 2x2 + 
2x + 1 

(22x2 – 8x + 11)( 82x2 
+ 112x + 41) 

21841 87364x4 + 87364x3 + 
43684x2 + 43682x + 
21841 

2x2 + 1 4x4 + 4x3 + 2x2 + 
2x + 1 

(306x2 – 112x + 
153)( 1142x2 + 1560x + 
571) 

Table 12: some other polynomial families when k = 12, ρ ≈ 1 
     

3.3 Polynomial Families with Small Degree 
Actually when the degree of D(x)V2(x) is much smaller than that of q(x), finding valid 
values of D may not be a hard problem. But unfortunately since equation (7) must be 
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satisfied, the degree of D(x)V2(x) is always same as that of q(x). Thus it is hard to find 
D(x)V2(x) with small degree. 

From the above analysis, we now define the effective polynomial families of 
suitable non-supersingular elliptic curves for pairing-based cryptosystems. 
 
Definition: When finding the polynomial families of suitable non-supersingular 
elliptic curves for pairing-based cryptosystems in polynomial field, r(x), q(x) and t(x) 
should satisfy that 4q(x) – t2(x) can be factorized with one square polynomial; or 4q(x) 
– t2(x) at least can be factorized; or 4q(x) – t2(x) only contains terms with smaller 
degree compared to q(x). These families as the relations between q(x) and t(x) are 
defined as the effective polynomial families. They have a better chance to generate 
pairing-friendly elliptic curves in implementations. 
 

Now we propose the complete algorithm for finding suitable elliptic curves for 
pairing-based cryptosystems. 
 
Algorithm 2 
Input: embedding degree k, qk ≥ 21024 and r ≥ 2160 
Output: x0, q(x), t(x), r(x), D(x)V2(x) 

1. Choose an irreducible polynomial r(x). 
2. Compute trace polynomial t(x) by Φk(t(x) – 1) ≡ 0 mod r(x). 
3. Compute polynomial D(x)V2(x) by D(x)V2(x) = 4q(x) – t2(x) ≡ – (t(x) – 2)2 

mod r(x). According to the definition of effective polynomial families, if 
D(x)V2(x) can be used to set up Pell equations, it should be represented as the 
axi(bxi + c) or (axi + b)(cxi + d) where a, b, c, d and i are all integers; 
otherwise degree(V(x)) > 0 or degree(D(x)V2(x)) < 2degree(r(x)) should be 
satisfied. 

4. After obtaining D(x)V2(x), compute q(x) by 4q(x) = D(x)V2(x) + t2(x). Test 
whether the irreducible polynomial q(x) satisfy Φk(q(x)) ≡ 0 mod r(x). 

5. If D(x)V2(x) = 4q(x) – t2(x) is as the form as ax2i + bxi + c, transfer DV2 = 4q(x) 
– t2(x) into a Pell equation and solve it for effective values of D, q, r, t based 
on certain integer x0 as D(x0), q(x0), r(x0) and t(x0); otherwise test all possible 
values of x to obtain an integer x0 with D(x0), q(x0), r(x0) and t(x0) as the 
suitable parameters. 

6. Establish the elliptic curve by CM method with the above parameters. 
7. Find other effective values of x0 and parameters, set up different elliptic curves 
8. If no elliptic curves are found, repeat from step 1. 

 
After finding all the suitable polynomials of D(x)V2(x), q(x), t(x) and r(x), we can 

get effective values of D, q and r by solving certain Pell equations or testing all 
possible values of x in D(x)V2(x), where V2(x) is a square polynomial. Then CM 
method can be used to produce the desired non-supersingular elliptic curves for 
pairing-based cryptosystems. Here we should mention that prime r can also be 
regarded as m × n, where m is a small composite number and n is a large prime. In 
such case the cofactor will be increased to h × m.  

 
Another issue we should point out is that by testing different values of x, we could 

obtain different pairing-friendly elliptic curves with a same polynomial family. This is 
an important advantage for using the idea of family in polynomial field. Since 
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compared to the work of [7, 18], we give the possibility to obtain different suitable 
elliptic curves based on a same polynomial family. 

 
In the following section we will discuss the possibilities for building the 

pairing-friendly elliptic curves over extension fields. 

4. Pairing-Friendly Elliptic Curves over Extension Fields 
 
Since the work of [10], supersingular elliptic curves are viewed as the nature choice 
for pairing-based cryptography. Many efficient computations of pairing-based 
cryptosystems [21, 22] have been implemented over such curves. In [17] the authors 
have proposed an open problem to find pairing-friendly elliptic curves over extension 
fields. In their work they found some square q(x) as p(x)2 when k = 5. But since in 
their examples 4q(x) – t2(x) was not an effective form, finding valid values of D 
became a hard problem. Actually Menezes et al. [10] had proposed the possible 
solution to set up supersingular elliptic curves over extension field when k = 3. By 
their work, when k = 3 we have t2 = q. Thus it is possible to view q as p2i, where i is 
an integer. Then we can set up the supersingular elliptic curves over extension fields 
as Fp

2i, where p is a large prime. In Table 13 we tabulate the simplest forms of 
polynomial families for pairing-friendly elliptic curves over Fp

2 when k = 3. In the 
results, D(x)V2(x) will be factorized as one constant number multiplying with a square 
polynomial since 4q(x) – t2(x) = 3t2(x). This means the values for D are always valid. 
 

q(x) r(x) h t(x) DV2(x) 
x2 x2 + x + 1 1 –x 3x2 
x2 x2 – x + 1 1 x 3x2 

Table 13: effective families of supersingular elliptic curves over square field 
 
In fact with the simplest forms, we can easily generate suitable supersingualr 

elliptic curves for pairing-based cryptosystems over quartic field as Fp
4. In Table 14 

we tabulate the families. 
 

q(x) r(x) h t(x) DV2(x) 
x4 x4 + x2 + 1 1 –x2 3x4 
x4 x4 – x2 + 1 1 x2 3x4 

Table 14: effective families of supersingular elliptic curves over quartic field 
 

The deduction for such polynomial families is trivial. But the most important 
advantage is that we can set up such supersingular elliptic curves over certain special 
extension fields, e.g. Optimal Extension Field (OEF) [24]. Bailey and Paar [24] 
proposed to build elliptic curves over such extension field with many efficient 
arithmetic operations. The form of OEF can be described as F(2

n
 ± c)

m, where 2n ± c is a 
pseudo-Mersenne prime. Since when k = 3, we take Fq as the form of Fp

2i (p = 2n ± c, 
m = 2i); then we have the possibilities to set up the curves over certain OEFs. The 
tract t will equal pi as the property of supersingular curves with k = 3. But we still 
need to ensure that hr(x) = p2i + 1 – pi is a large prime (h = 1) or contains a large 
prime factor (h > 1). For example, from Table 14 we take x as a pseudo-Mersenne 
prime (257 – 195) and m as 4, then we can set up the supersingular pairing-friendly 
elliptic curves over F(2

57
 – 195)4, where the embedding degree k = 3 and t = (257 – 

195)2. Here r is a large prime factor of the curve order (257 – 195)4 + 1 – (257 – 195)2 
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with ρ = lg(q)/lg(r) ≈ 1.1. In this example the values of x and m are chosen from the 
database presented in [24]. The other problem is that for this OEF, q = (257 – 195)4 is 
only a 228 bits number, which is not secure as we need q3 > 21024. But since in [24] 
the authors only list part of the OEFs and the upper bound of the curve order is set on 
2256, we can easily build secure supersingular pairing-friendly elliptic curves when 
increasing the level of OEFs. Then all the favorable efficient arithmetic algorithms 
can be transformed into the computation of pairing-based cryptosystems. In Appendix 
B we list two possible OEFs for supersingular elliptic curves with m = 4, 8.  

     

5. Conclusion 
 
In this paper we present a new method for finding more pairing-friendly elliptic 
curves over prime field and extension field. We propose the idea of effective 
polynomial families to build such elliptic curves through different kinds of Pell 
equations and special forms of D(x)V2(x). By using these effective families, numerous 
pairing-friendly elliptic curves can be found without restrictions on embedding degree 
k and cofactor h. 
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Appendix A: Pairing-friendly elliptic curves over prime fields 

(i) K = 3 
(a) Examples of elliptic curve parameters when k = 3, ρ ≈ 1 
Compared to the previous work, when k = 3 by our method more non-supersingular 
elliptic curves are found with larger values of cofactor h. In the follows we just list the 
parameters of some pairing-friendly elliptic curves based on each of the polynomial 
family in Table 5. For finding the parameters, we use the same technique as [4]. We 
allow r to contain a small factor m as r = m × s where s should be larger than 2160. 
 
r(x) = x2 + x + 1, q(x) = 6x2 + 5x + 5, t(x) = –x, D(x)V2(x) = 23x2 + 20x + 20, h = 6, 21024 ≤ 
q3 and r ≥ 2160 
x = 107992341253871594470495195949208043208992587427135202613309174 
r = 489971295368587505513952540263630281178460340947492624072085746500784815 
 21453352606690925298502141956766603170180956831 (395 bits) 
q = 699740746169559399899618985516537258938269852875978851245571527727256402 
 47435496174287888433640626775156674491882646541919531 (415 bits) 
t = –107992341253871594470495195949208043208992587427135202613309174 
h = 6 × 238021 
DV2 = 4q – t2 =  
1603682 × 4089759288100256320226671910577333030102135009017528905691422 
 
r(x) = 3x2 + 3x + 1, q(x) = 18x2 + 15x + 4, t(x) = –3x – 1, D(x)V2(x) = 3(21x2 + 18x + 5), h = 
6, 21024 ≤ q3 and r ≥ 2160 
x = –780326922516185066362436307926979960306345221131853 
r = 182673031801074087690113503172100516465178233671103794446691490860201196 
 6279821894586370822563570245269 (340 bits) 
q = 109603819080644452614068101903260309879106940202662300077822570001672708 
 84987855148458105854417084867171 (343 bits) 
t = 2340980767548555199087308923780939880919035663395558 
h = 6 
DV2 = 4q – t2 = 745530 × 71732225274287771987157605144916662896864519785622 
 
r(x) = 13x2 + 7x + 1, q(x) = 78x2 + 29x + 2, t(x) = –13x – 3, D(x)V2(x) = 143x2 + 38x – 1, h 
= 6, 21024 ≤ q3 and r ≥ 2160 
x = 26123560138900986808433394039528745608745235385710787 
r = 121530481182193083390377656544009605858732914274130896231861404619587954 
 815025809027931941484407717891059 (346 bits) 
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q = 532303507578005705249854135662762073661250164520693322099490134176666956 
 99347181840360497456482520422043607 (355 bits) 
t = -339606281805712828509634122513873692913688060014240234 
h = 6 × 73 
DV2 = 4q – t2 = 519518 × 4334111518135076339455165196214806199113970377471982 
 
r(x) = 19x2 + 15x + 3, q(x) = 114x2 + 71x + 10, t(x) = –19x – 7, D(x)V2(x) = 95x2 + 18x – 9, 
h = 6, 21024 ≤ q3 and r ≥ 2160 
x = 3208011268618809817303308159360004976748212724053421335260982957 
r = 101313673415606241241596308947228535188074366040695735312539291029539770 
 0808397291439442738209442945896456768518925277782173873 (419 bits) 
q = 117321233815272027357768525760890643747790115875125661491920499006111832 
 3432366676958111835818694836789880896187900466301798668743 (429 bits) 
t = –60952214103757386528762855027840094558216041757015005369958676190 
h = 6 × 193 
DV2 = 4q – t2 =  
282662 × 588117326094371579915359858073132030725290723773999093015176342 
 
r(x) = 21x2 + 9x + 1, q(x) = 126x2 + 33x + 1, t(x) = –21x – 4, D(x)V2(x) = 3(21x2 – 12x – 4), 
h = 6, 21024 ≤ q3 and r ≥ 2160 
x = -113997343431526234288179224027552262202892207632485046758 
r = 272903280498352086943725678029261579493673666731859088319897861938294465 
 988333500738467919384568218005166007101023 (377 bits) 
q = 163741968299011252166235406817556947696204200039115452992178111584182884 
 6850052768135386113813670044391278228588051 (380 bits) 
t = 2393944212062050920051763704578597506260736360282185981914 
h = 6 
DV2 = 4q – t2 =  
909258 × 9489021705671429508444420587555213950003198654898469262 
 
(b) Examples of elliptic curve parameters when k = 3, ρ ≈ 2 
When embedding degree k = 3, besides the quadratic relations between q(x) and t(x), 
we can easily find the following parameters from the families in Table 3. Here the 
value of D will always be effective as a constant number. In the following results we 
require that q is a multiple of 32 bits. 
 
r(x) = x2 + x + 1, q(x) = x4 + x3 + 3x2 + x + 1, t(x) = –x2 – 2x – 1, D(x)V2(x) = 3(x2 + 1 )2, 
h(x) = x2 + 3, 21024 ≤ q3 and r ≥ 2160. 
x = 260244835333529706610404501 
r = 67727374317775992040088322743872009225336773451463503 (176 bits) 
q = 458699723198014302322175075445042923367697888751204409021889707530902678 
 2460449640647092701307254113663007 (352 bits) 
t = – 67727374317775992040088323004116844558866480061868004 
h = 67727374317775992040088322483627173891807066841059004 
DV2 = 4q – t2 = 3 × 677273743177759920400883224836271738918070668410590022 
 
x = 260244835333529706610427910 
r = 67727374317775992040100506886572654419140859917396011 (176 bits) 
q = 458699723198014302322340115443728482390883378426585298016395281587250254 
 0631060767770513165271906668613211 (352 bits) 
t = –67727374317775992040100507146817489752670566527823921 
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h = 67727374317775992040100506626327819085611153306968103 
DV2 = 4q – t2 = 3 × 677273743177759920401005066263278190856111533069681012 

(ii) K = 4 
Example of elliptic curve parameters when k = 4, ρ ≈ 1 
When k = 4, we present two polynomial families with the feature of factorization in 
Table 7, which are not mentioned in any previous work. Many suitable elliptic curves 
can be built by implementing the two effective polynomial families. Here we still 
allow r to contain a small factor m as r = m × s and s > 2160. In the last example q is a 
multiple of 32 bits and the curve built on such parameters should be has more 
efficiency.  
 
r(x) = 17x2 + 8x + 1, q(x) = 136x2 + 81x + 12, t(x) = 17x + 5, h = 8, D(x)V2(x) =(3x + 1)(85x 
+ 23), 21024 ≤ q4 and r ≥ 2160  
 
x = –67312880206476020926828959804706092102631 
r = 592518502375028090681570811272334123427918861549899984648012038516956477 
 569955813 (269 bits) 
q = 616219242470029214308833643723227488365034471692932473941576763965318056 
 669188300797 (279 bits) 
t = –1144318963510092355756092316680003565744722 
h = 8 × 130 
DV2 = 4q – t2 = 266731× 20812848230770108800353987731297279408282 
 
x = –94056349577742436988561927160156629186135 
r = 751960736150691641907974734231014189505530306819683167620892594630101285 
 29531280373 (276 bits) 
q = 120313717784110662705275957476962270320884689195355024657199934585540033 
 3809804321677 (280 bits) 
t = –1598957942821621428805552761722662696164290 
h = 8 × 2 
DV2 = 4q – t2 = 119787 × 43396366202032564048181299670622281681722 
 

For having higher security level, we present the parameters as: 
 
x = –119123169050153468407424364943789874639032724667796477458985 
r = 165229862929708561784869585618614016966555003896350984834126269819548604 
 4292493985861429399930971260312670534714063301 (390 bits) 
q = 192988479901899600164727676002541171816936244550937950286259280639845384 
 7124670049271945494691505568488879832005909132827 (400 bits) 
t = –2025093873852608962926214204044427868863556319352540116802740 
h = 8 × 292 
DV2 = 4q – t2 =  
270127 × 36600104974559782712701748877736296206606237052371443845982 
 

For finding q as a multiple of 32 bits, we present the parameter as: 
 
x = –4117985507219224624463967678092656335927903512156327 
r = 103157045316091308211801922580326793373122548954255109308819070505734956 
 85372961857387341289776059793 (333 bits) 
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q = 230626143072279015942961322274385005408422620246049055778965257275579666 
 7500011808957215406698294429143869 (352 bits) 
t = –70005753622726818615887450527575157710774359706657554 
h = 8 × 27946 
DV2 = 4q – t2 = 119715 × 1900555774530993472704021773230992625075594147385722 

(iii) K = 6 
(a) Examples of elliptic curve parameters when k = 6, ρ ≈ 1 
 
r(x) = 52x2 + 14x + 1, q(x) = ζq_k(x) = 208x2 + 30x + 1, t(x) = ζ(t-1)_k(x) + 1 = –26x – 2, 
D(x)V2(x) = 4x(39x + 4), 21024 ≤ q6 and r ≥ 2160 
x = –76678828867367445744045 
r = 305741425416493202361689487439975889605713608671 (158 bits) 
q = 1222965701665972809446759943409454109976443779851 (160 bits) 
t = 1993649550551553589345168 
h = 4 
DV2 = 4q – t2 = 717595 × 11305715911188715612622 
 

This example had been presented in [1]. The family had been proposed in [3]. By 
using our method, the same results are also found. After finding more quadratic 
relations between q(x) and t2(x) with the feature of factorization, more suitable 
parameters of non-supersingular elliptic curves are obtained as the follows. Here r is 
allowed to contain a small factor and thus the cofactor h has increased. 
 
r(x) = 4x2 + 2x + 1, q(x) = 24x2 + 14x + 7, t(x) = 2x + 2, D(x)V2(x) = 4(23x2 + 12x + 6), h = 
6, 21024 ≤ q6 and r ≥ 2160 
x = –16691737029853261335736531584463 
r = 371485446765032766010643980506496987418584908560604945382941517 (208 bits) 
q = 6686738041770589788191591649116912390060468647568217543829778381  
 (213 bits) 
t = –33383474059706522671473063168924 
h = 6 × 3 
DV2 = 4q – t2 = 889673 × 1697384540279973006240061233262 
 
r(x) = 4x2 + 2x + 1, q(x) = 32x2 + 18x + 9, t(x) = 2x + 2, D(x)V2(x) = 4(31x2 + 16x + 8), h = 
8, 21024 ≤ q6 and r ≥ 2160 
x = 667006492228484628797618935 
r = 1779590642699790102050596774018164008195602559477374771 (181 bits) 
q = 14236725141598320816404774193479325050021789733414236039 (184 bits) 
t = 1334012984456969257595237872 
h = 8 
DV2 = 4q – t2 = 457543 × 109805715446199105092823022 
 
(b) Examples of elliptic curve parameters when k = 6, ρ ≈ 2 
To find simpler examples, we start from more restrict condition. We require that 
D(x)V2(x) = 4q(x) – t(x)2 can be factorized as one square polynomial multiplying with 
one constant number. This is such a restrict condition and we loose the value of 
lg(q)/lg(r) to about 2. In the following example, we used the families in Table 2 and 
the value of x only needs to satisfy that q(x) and r(x) are prime numbers since 4q(x) – 
t2(x) is always effective for generating small values of D. In such situations we can 
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easily find the suitable x, which is satisfied with other efficient conditions, e.g. q is a multiple 
of 32 bits. 
 
r(x) = 3x2 – 3x + 1, q(x) = 9x4 – 9x3 + 9x2 – 3x + 1, t(x) = 3x2 + 1, h(x) = 3x2 +1, D(x)V2(x) = 
3(3x2 – 2x + 1)2, 21024 ≤ q6 and r ≥ 2160. 
x = 604462909807314587356303 
r = 1096126227998177188664421900678665941188259414519 (160 bits) 
q = 120149270770551192137275958192710646407010077402658082075856510602661207 
 9367476683682217162574559 (320 bits) 
t = 1096126227998177188664423714067395363132021483428 
h = 1096126227998177188664423714067395363132021483428 
DV2 = 4q – t2 = = 3 × 10961262279981771886644225051415757485028467708222 

 
With the above results, certain non-supersingular ellitptic curves suitable for 

pairing-based cryptosystems can be easily obtained by using CM method. More 
importantly, when changing the values of x, these polynomial families can produce 
different elliptic curves. 

(iv) K = 12 
(a) Examples of elliptic curve parameters when k = 12, ρ ≈ 1 
By our new method, we also find the perfect polynomial family [17] when k = 12 and 
ρ ≈ 1 as q(x) = 36x4 + 36x3 + 24x2 + 6x + 1, r(x) = 4x4 + 4x3 + 2x2 + 2x + 1, t(x) = 
6x2 + 1 and D(x)V2(x) = 3(6x2 + 4x + 1)2. But since in [17] the authors already have 
implemented the family nicely to obtain many efficient non-supersingular elliptic 
curves, we will not list any examples for this special family.  
 
(b) Examples of elliptic curve parameters when k = 12, ρ > 1 
When k = 12, it is unlikely to find quadratic relations between q(x) and t(x). Then as 
the families presented in Table 10 and Table 11, we must set up extended versions of 
Pell equation. When k = 12 and ρ ≈ 1.5, when 4q(x) – t2(x) only contains the terms 
with even degree, we still can get Pell equations. The follows is an example based on 
the first family in Table 10. 
 
r(x) = x4 – x2 + 1  
q(x) = x6 + 2x5 – 2x3 + x + 1 
t(x) = –x + 1 
4q(x) – t2(x) = (x + 1)2(4x4 – 4x2 + 3) 
 

Since the square polynomial (x + 1)2 does not need to be considered in the 
computation, we can easily get the Pell equation by replacing x2 with y as (2y – 1)2 – 
DV2 = –2. Then after solving the above Pell equation for small values of D and prime 
q and r, we can obtain the desired parameters. 

 
When k = 12 and ρ ≈ 2, for the families presented in Table 11, the same procedure 

can be taken. The follows is an example of setting up a Pell equation based on the first 
family in Table 11. Here we replace x3 with y. 

 
r(x) = x4 – x2 + 1  
q(x) = x8 + 2x7 + x6 + x2 + x + 1 
t(x) = –x + 1 
4q(x) – t2(x) = (x + 1)2(4x6 + 3) 
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(2y)2 – DV2 = –3 

Appendix B: Pairing-friendly elliptic curves over extension fields 
 
In the follows we list some parameters of pairing-friendly elliptic curves over certain 
Optimal Extension Fields (OEFs) when k = 3. The parameters are obtained based on 
the database presented in [24]. 

(i) q = p4 
p = 257 – 195 = 144115188075855677 
q = p4 = 4313591466744079020534967035194949255969940158809147507389767 

82332241 (228 bits) 
t = p2 = 20769187434139254309198635733128329 
r = 122874125597163357821467314214711541991863453844944657435437 

(ii) q = p8 
p = 231 – 19 = 2147483629 
q = p8 = 4523128165683307125216771938876655838494256430692062150244903 

29304011152161 (248 bits) 
t = p4 = 21267647179891120069861562821178948881 
r = 1547367089721291341824855570668692205470554378584026516665729 
 


