
Efficient Pairing Computation on
Supersingular Abelian Varieties

Paulo S. L. M. Barreto1, Steven Galbraith2, ColmÓ hÉigeartaigh3, and Michael Scott3

1 Department of Computing and Digital Systems Engineering,
Escola Polit́ecnica, Universidade de São Paulo.

Av. Prof. Luciano Gualberto, tr. 3, n. 158.
05508-900 S̃ao Paulo (SP), Brazil.
pbarreto@larc.usp.br

2 Mathematics Department, Royal Holloway University of London.
Egham, Surrey TW20 0EX, UK.
steven.galbraith@rhul.ac.uk

3 School of Computing, Dublin City University.
Ballymun, Dublin 9, Ireland.

{coheigeartaigh,mike}@computing.dcu.ie

Abstract. We present a general technique for the efficient computation of pair-
ings on supersingular Abelian varieties. This formulation, which we call the eta
pairing, generalises results of Duursma and Lee for computing the Tate pairing
on supersingular elliptic curves in characteristic three.
We then show how our general technique leads to a new algorithm which is about
twice as fast as the Duursma-Lee method.
These ideas are then used for elliptic and hyperelliptic curves in characteristic 2
with very efficient results. In particular, the hyperelliptic case is faster than all
previously known pairing algorithms.

Keywords: Tate pairing, supersingular curves, pairing-based cryptosystems, efficient
algorithms.

1 Introduction

Efficient computation of pairings is essential to the large and ever growing area of
pairing-based cryptosystems (see e.g. Chapter 10 of [6] or [9] for a comprehensive
overview).

There has been a lot of work on efficient implementation of pairings on elliptic
curves. Supersingular curves lead to more efficient implementations in terms of pro-
cessing speed [3, 15, 10] and bandwidth requirements [28, 17] than the best available
algorithms for ordinary curves [4]. Pairings on hyperelliptic curves have received con-
siderably less attention than their elliptic counterparts. The best results are by Duursma
and Lee [10] for a very special family of supersingular hyperelliptic curves. These re-
sults suggest that supersingular hyperelliptic curves may provide similar efficiency to
elliptic curves, but these issues have not been at all clear until now.

We tackle this problem by providing criteria under which pairings on supersingu-
lar hyperelliptic curves are efficiently computable. Our method is fairly general and
includes that of Duursma-Lee [10] as a particular case. We also obtain a significant im-
provement over previous methods, even in the characteristic three case. We illustrate the
method by describing efficient pairing algorithms for supersingular genus 1 and genus 2
curves in characteristic 2.

This paper is organised as follows. Section 2 gives a brief summary on standard
techniques for the efficient computation of the Tate pairing. Section 3 discusses the
contributions of Duursma and Lee for certain supersingular curves, and section 4 gener-
alises those contributions using the simpler, unified approach ofeta pairings. Section 5
shows how the Duursma-Lee results fit into the eta pairing framework and then gives a
significant improvement. Sections 6 and 7 explore the consequences of the eta pairing
approach for certain elliptic curves and genus 2 curves in characteristic 2. We compare
our pairings on genus 2 curves with the work of Rubin and Silverberg in section 9, and
present some experimental results in section 10. Finally, we draw our conclusions in
section 11.

Parts of this work were presented by one of the authors [2] at the ECC’2004 con-
ference on September 20–22, 2004. Subsequently and independently, on November, 14
2004, a paper [21] containing some results related to those in this paper was posted on
the ePrint archive.

2 The Tate pairing on supersingular curves

Let C be a smooth, projective, absolutely irreducible curve over a finite fieldK = Fqk.
We denote the degree zero divisor class group ofC over K by PicK

0 (C). Let r be an
integer such thatr | #PicK

0 (C). We denote by PicK0 (C)[r] the divisor classes of order
dividing r.

Let D1 be a divisor representing a class in PicK
0 (C)[r] and letD2 be a divisor onC

defined overK such that the supports ofD1 andD2 are disjoint. SincerD1 is principal
there is a functionf on C defined overK such that (f) = rD1. The Tate pairing (also
called the Tate-Lichtenbaum pairing) is

〈D1,D2〉r = f (D2).

One can show (see Frey and Rück [14]) that the Tate pairing is a well-defined, non-
degenerate, bilinear pairing

PicK
0 (C)[r] × PicK

0 (C)/rPicK
0 (C)→ K∗/(K∗)r .

The fact that the Tate pairing is only defined up tor-th powers is often undesirable.
To obtain a unique value, one defines thereducedpairing

e(D1,D2) = 〈D1,D2〉
(qk−1)/r
r .

Throughout the paper we will refer to the extra powering required to compute the re-
duced pairing as thefinal exponentiation.

2

One very important property of the reduced pairing is the following [15]. LetN = hr
for someh.

e(D1,D2) = 〈D1,D2〉
(qk−1)/r
r = 〈D1,D2〉

(qk−1)/N
N . (1)

2.1 Miller’s algorithm in the elliptic case

We recall how the Tate pairing can be computed in polynomial time using Miller’s
algorithm [24]. For simplicity we restrict to the case of elliptic curves. The divisor
class group of an elliptic curve is isomorphic to the curve itself, so all divisors may be
assumed to have the formD = (P) − (∞).

Let E be an elliptic curve overFq and letr | #E(Fq) be a prime. Suppose the em-
bedding degree isk (i.e., k is the smallest positive integer such thatr | (qk − 1)). Let
P ∈ E[r] and Q ∈ E(Fqk), where typicallyQ is the image of some multiple ofP un-
der a non-rational endomorphism called a distortion map. We construct anFqk-rational
divisor D equivalent to (Q) − (∞) by taking a random pointR ∈ E(Fqk) and defining
D = (Q+ R) − (R). We aim to compute

e(P,Q) = e((P) − (∞),D).

For every integern and pointP there is a functionfn,P such that

(fn,P) = n(P) − ([n]P) − (n− 1)(∞).

Miller’s algorithm builds up these functionsfn,P according to the following formula: If
l andv are the lines which arise in the addition rule for adding [n]P and [m]P then we
have

fn+m,P = fn,P fm,Pl/v.

The pairing value〈(P) − (∞),D〉r is fr,P(D).
Miller’s algorithm is explicitly described in Algorithm 1. Note that the addition in

the final iteration is simplified in thatl is a vertical line andv disappears.
Miller’s algorithm can be generalised to general divisor class groups. The basic

algorithm is the same, but the functions are more complicated.

2.2 Improvements to Miller’s algorithm

Several improved implementation techniques to compute the reduced Tate pairing on
supersingular elliptic curves have been proposed [3, 15]. These include:

Exploiting properties of the field of definition: It is typical in pairing applications
to pair a point defined overFq with a point defined overFqk. Hence it makes sense to
representFqk as an extension ofFq and to try to simplify the operations inFqk as much
as possible.

The final exponentiation eliminates terms defined over subfields. Hence, terms de-
fined over subfields can be omitted from the calculations. For example, ifk > 1 then
the pointRcan be chosen to be defined over a subfield, in which case all termsl(R) and
v(R) may be ignored.

3

Algorithm 1 Miller’s algorithm (base 2)
I: r, P, Q+ R, R, where the binary representation ofr is {r i}.
O: 〈P,Q〉r
1: T ← P
2: f ← 1
3: for i ← blog2(r)c − 1 downto 0 do
4: . Calculate linesl andv in doublingT
5: T ← [2]T
6: f ← f 2 · l(Q+ R)v(R)/(v(Q+ R)l(R))
7: if r i = 1 then
8: . Calculate linesl andv in addingP to T
9: T ← T + P

10: f ← f · l(Q+ R)v(R)/((v(Q+ R)l(R))
11: end if
12: end for
13: return f

Changing the base in Miller’s algorithm: Miller’s algorithm is usually presented as a
loop through the binary expansion of the group order. It is sometimes more efficient to
use other bases, for example to write the group order in base three when implementing
pairings in characteristic three (in which case, in line 6 of Miller’s algorithm above, we
changef 2 to f 3 and there are now two cases in the addition step).

Replacing divisors by points: As explained above, the pointRcan be ignored. In fact,
one can chooseR= ∞ by [3, Theorem 1]. Hence, the reduced pairing can be computed
as

e(P,Q) = fr,P(Q)(qk−1)/r ,

where the functionfr is now evaluated on apoint rather than on a divisor.

Exploiting the form of the distortion maps and denominator elimination: If the
distortion map is chosen so that thex-coordinates always lies in a subfield, then all
termsv(Q) may be eliminated. As a result there are no longer any divisions in Miller’s
algorithm.

Note that a distortion map with this property can always be obtained by combining
with a map into the trace zero subgroup (see [27] for an example of this).

Hamming weight/group order issues: Miller’s algorithm to computefr involves a
number of arithmetic operations proportional to the Hamming weight ofr, and for this
reason it is advantageous to chooser with low Hamming weight (with respect to the
base being used) whenever possible. In many cases it is worth using a small multiple of
r which has low Hamming weight and exploiting formula (1).

Speeding up the final exponentiation:The naive way to compute the final powering
to (qk − 1)/N (for some multipleN of r) has cubic complexity. However, this exponent

4

has a rather simple structure for supersingular curves when one choosesN to be the full
curve order rather than a factorr thereof. By carefully exploiting that structure, one can
replace the powering by a few applications of the Frobenius, some multiplications, and
one inversion. Details can be found in [3, Appendix A.2].

Pairing value compression: It is possible to reduce the bandwidth requirements of
pairing values by storing and manipulating traces [28], or by working on a torus [17].
These methods compress pairing values to half their usual size, or to a third thereof in
the case of supersingular elliptic curves with embedding degree 6 in characteristic 3,
supersingular genus 2 curves with embedding degree 12 in characteristic 2, or ordinary
BN elliptic curves [5] with embedding degree 12 in large prime characteristic.

The techniques mentioned above give impressive results for pairing implementa-
tion. For the remainder of the paper we focus on further improvements. We consider
only supersingular curves overFq with embedding degreek > 1 and with suitable dis-
tortion mapsψ. We will always be computing a modified pairing

êr (P,Q) = 〈P, ψ(Q)〉r

whereP andQ are defined overFq, or its reduced version ˆe(P,Q) = êr (P,Q)(qk−1)/r .

3 The Duursma-Lee techniques

Duursma and Lee [10] gave a significant improvement to the computation of pairings
on curves of the formy2 = xp − x + d overFpm wherep ≥ 3 and (m,2p) = 1 (these
curves have embedding degree 2p). In particular, their results apply to the case of the
embedding degree 6 curve in characteristic three.

One crucial aspect of [10] is that they replace the group orderr by the valuepmp+1
which has Hamming weight 2 in basep. Also, the final exponentiation is to the power
(p2mp − 1)/(ppm + 1) = pmp − 1, which is simply computing a Frobenius conjugation
and a division. Hence, both the final exponentiation and the main body of Miller’s
algorithm are simplified, at the expense of extending the main loop fromm iterations to
mpiterations. Duursma and Lee show the surprising fact that this loop can be shortened
from mp iterations tom iterations.

A careful reading of [10] shows that it contains four independent contributions:

1. A nice choice of function for computingpD in the divisor class group;
2. The definition of a pairing onpoints(in g > 1). In other words, they propose the

use of degenerate divisors rather than general divisors;
3. A shorter loop than would be expected for the given group order;
4. Incorporating Frobenius operations directly into the formulae (this has a huge sav-

ing, since it removes the exponentiation off to the powerp in line 6 of Miller’s
algorithm).

Generalising points 1, 2 and 4 is relatively straightforward. In this paper we show
how to generalise the loop shortening idea to many other cases.

5

4 The eta pairing approach

Let C be a curve overFq (whereq = pm) with a single point at infinity. In all the
examples in this paper,C will be an elliptic or hyperelliptic curve. We will always
assume thatC is supersingular, with even embedding degreek > 1, and that there
is a distortion mapψ which allows denominator elimination (i.e., ifP ∈ C(Fq) then
ψ(P) ∈ C(Fqk) hasx-coordinate defined overFqk/2).

Let D,D′ be reduced divisors onC defined overFq which represent divisor classes
of order dividingN. In all examples in this paper, these divisors will be represented
using the Mumford notation (see Cantor [8]) which, in the elliptic curve case, corre-
sponds to just a single point. LetM = (qk − 1)/N. We want to efficiently compute the
Tate pairing (including the final exponentiation)〈D, ψ(D′)〉MN .

Let n ∈ N. We use the notationDn for a reduced divisor equivalent tonD and
fn,D for a function whose divisor isnD − Dn − m(∞) for somem ∈ N. In the elliptic
case we haveD = (P) − (∞) and soDn = (nP) − (∞) and fn,D is the Miller function
introduced in subsection 2.1 . Ifn ∈ Z with n < 0 thennD = (−n)(−D). We therefore
write Dn for a divisor equivalent to (−n)(−D) and write fn,D for a function with divisor
(−n)(−D) − (Dn) − m(∞) for somem. The Tate pairing is defined to be〈D,D′〉N =
fN,D(D′).

An important observation is that, for many supersingular curves, multiplication by
p has an extremely special form. This has already been exploited by many authors. In
this paper we will be concerned with cases where multiplication by some power ofp
can be represented by an automorphism on the curve (which we will callγ).

Definition 1. For T ∈ Z we define theeta pairingto be

ηT(D,D′) = fT,D(ψ(D′)). (2)

In general, this definition will not give a non-degenerate, bilinear pairing. The aim
of this paper is to explain some cases where the resulting pairing is non-degenerate and
bilinear. The key property of the eta pairing is that we do not necessarily demand that
T D is equivalent to zero. The aim is to choose values ofT which are smaller thanN.
This is a generalisation of the loop reduction idea of Duursma and Lee.

As we will see, the Duursma-Lee method arises from the choiceT = q in the above
definition while our improved version uses the choiceT = q − N. In the later part of
the paper, when discussing running times, we will drop the subscript in the caseT = q
and refer to the pairing asη. Hence, the notationηT will generally be reserved for the
improved version.

The following theorem is the main result of this paper. It relates the eta pairing to
the Tate pairing for certain values ofT. From this relation one immediately deduces
(as long asL,a andT are coprime toN) that the eta pairing (for these values ofT) is
non-degenerate and bilinear.

Theorem 1. Let C be a supersingular curve overFq with distortion mapψ and embed-
ding degree k as above. Let D be a divisor on C defined overFq with order dividing
N ∈ N and let M= (qk − 1)/N. Suppose T∈ Z is such that

6

1. T D ≡ γ(D) in the divisor class group whereγ is an automorphism of C which is
defined overFq.

2. γ andψ satisfy the condition4

γψq(Q) = ψ(Q) (3)

for all points Q∈ C(Fq).
3. Ta + 1 = LN for some a∈ N and L∈ Z.
4. T = q+ cN for some c∈ Z.

Then (
〈D, ψ(D′)〉MN

)L
= (ηT(D,D′)M)aTa−1

.

4.1 Proof of Theorem 1

We split the proof into a number of lemmas.
First note that, sinceT D is equivalent toγ(D) we haveDT i = γi(D). Write d for the

degree of the finite part ofD. ThenD =
∑d

j=1(P j) − d(∞) and soDT i =
∑d

j=1(γi(P j)) −
d(∞).

The key result is the following.

Lemma 1. With notation as above and D any divisor such that T D is equivalent to
γ(D). Then

fT,D(ψ(D′))T M = fT,T D(ψ(D′))M .

Proof. We have (fT,D) = T D − DT − (T − 1)d(∞) and (f T
T,D) = T(fT,D) and (fT,T D) =

T DT − DT2 − (T − 1)d(∞).
We now use the assumption thatT D ≡ DT = γ(D). The pullback (see Silverman

[30] Chapter II page 33) satisfies

γ∗
∑

P

nP(P)

 =∑
P

∑
S∈γ−1(P)

nPeγ(S)(S) =
∑

P

nP(γ−1(P)).

Hence

γ∗(fT,T D) = γ∗(T DT − DT2 − (T − 1)d(∞))

= T D− DT − (T − 1)d(∞)

= (fT,D).

Also, (Silverman [30] pages 33-34)

γ∗(fT,T D) = (γ∗ fT,T D) = (fT,T D ◦ γ).

Hence, we have (up to a scalar multiple inF∗q)

fT,T D ◦ γ = fT,D.

4 An alternative formulation of this condition isγψπ = ψ whereπ is theq-power Frobenius and
ψπ means the map obtained by applyingπ to the coefficients of the mapψ.

7

Evaluating atψ(D′) and raising to the powerM (which kills F∗q) we get

fT,T D(γ(ψ(D′)))M = fT,D(ψ(D′)M .

Consider the left hand side of the statement of the Lemma

fT,D(ψ(D′))T M = (fT,T D(γ(ψ(D′)))T M.

Now use the fact thatT = q + cN and thatNM = (qk − 1) so anything raised to the
powerNM is 1. We therefore have that the above is equal to

(fT,T D(γ(ψ(D′)))qM.

Interpreting a power ofq as action by Frobenius and using the fact thatfT,T D, γ andD′

are defined overFq gives
(fT,T D(γ(ψq(D′)))M .

By condition (3),γψq = ψ so we get

fT,T D(ψ(D′))M

which proves the result.

Lemma 2. With notation as above

(fTa,D) = (f Ta−1

T,D f Ta−2

T,T D · · · fT,Ta−1D).

Proof. We have (fTa,D) = TaD − DTa − (Ta − 1)d(∞). Hence

(f Ta−1

T,D f Ta−2

T,T D · · · fT,Ta−1D) = Ta−1(fT,D) + Ta−2(fT,T D) + · · · + (fT,Ta−1D)

= Ta−1(T D− DT − (T − 1)d(∞)) + Ta−2(T DT − DT2

−(T − 1)d(∞)) + · · · + T DTa−1 − DTa − (T − 1)d(∞)

= TaD − DTa − (Ta − 1)d(∞)

which proves the result.

We can now obtain the statement of the theorem:

Lemma 3. With notation as above

(fN,D(ψ(D′)))ML = (fT,D(ψ(D′)))MaTa−1
.

Proof. Note thatf L
N,D = fLN,D = fTa+1,D. SinceTa+1 = LN we know that (Ta+1)D ≡ 0,

which impliesTaD ≡ −D and so (up to scalar inF∗q)

fTa+1,D = fTa,D · v

wherev is the vertical line throughD and−D.

8

Evaluating atψ(D′) and raising to the powerM we have (sinceψ admits denomina-
tor elimination)

fN,D(ψ(D′))ML = fTa,D(ψ(D′))M · v(ψ(D′))M = fTa,D(ψ(D′))M .

By Lemma 2 this is
a−1∏
j=0

fT,T j D(ψ(D′))MTa−1− j
.

Now, substitutingT jD for D in Lemma 1 implies that

fT,T j D(ψ(D′))MTa−1− j
= f MTa−1

T,D .

Hence the result follows.

5 Elliptic curves in characteristic three

We first show how the eta pairing idea explains the loop shortening used by Duursma
and Lee.

The elliptic curve of interest5 is E : y2 = x3 − x + b overF3m whereb = ±1 and
gcd(m,6) = 1. The number of points on this curve is given in Table 1. The tripling
formula (see [11, 3]) is [3](x, y) = φπ2(x, y) whereπ is the 3-power Frobenius and
φ(x, y) = (x− b,−y). Note thatφ2(x, y) = (x− 2b, y), φ3 = −1 etc. The distortion map is
ψ(x, y) = (ρ − x, σy) whereσ2 = −1 andρ3 = ρ + b (and thusρ32

= ρ + 2b, ρ33
= ρ).

Table 1.Order of the curveE : y2 = x3 − x+ b overF3m, b = ±1.

#E(F3m) condition
3m + 1+ b3(m+1)/2 m≡ 1,11 (mod 12)
3m + 1− b3(m+1)/2 m≡ 5,7 (mod 12)

Let q = 3m. It follows that multiplication by [q] is [q](x, y) = [3m](x, y) =
φmπ2m(x, y) = φm(x, y). Hence we takeγ = φm.

Lemma 4. With notation as above, condition (3) is satisfied.

Proof. Let q = 3m with m ≡ 1 (mod 6). Suppose (x, y) ∈ E(Fq). Then [q](x, y) =
φ(x, y) and soγ = φ. Now,ψq = ψ3 and so

γψq(x, y) = φ(ρ + b− x,−σy) = (ρ + b− x− b, σy) = (ρ − x, σy) = ψ(x, y).

5 Note that all supersingular curves in characteristic three havej-invariant 0 (by Theorem V.4.1
of [30]) and hence are isomorphic overF3 ([30] Theorem A.1.2). It follows that all choices of
supersingular equations overF3m with fixed embedding degreek are equally secure for pairing
applications and so there is no loss of generality from considering just this case.

9

Similarly, whenm≡ 5 (mod 6) we haveγ = φ5 = −φ2 andψq = −ψ32
and so

γψq(x, y) = φ2(ρ + 2b− x, σy) = (ρ + 2b− x− 2b, σy) = ψ(x, y).

This completes the proof. ut

Since condition (3) is satisfied we may apply Theorem 1.
The method of Duursma and Lee computes the eta pairing with respect to the value

T = q = 3m. In the notation of Theorem 1 we haveN = q3 + 1, M = q3 − 1, a = 3,
L = 1 andc = 0. Hence, we have(

ηT(P,Q)M
)3q2

= 〈P, ψ(Q)〉MN

The formulae given in [10] computes the Tate pairing directly by bringing the powering
to 3q2 into the formulae. Further efficiency is obtained in [10] by using the other three
techniques mentioned in section 3.

5.1 An improvement on Duursma and Lee

The power of the eta pairing approach is that one can immediately improve on the
Duursma-Lee method giving a further halving of the length of the loop.

We know that the number of points onE(Fq) is N = 3m ± 3(m+1)/2 + 1 and we
have established that [3m]P = γ(P) for some automorphismγ. If P ∈ E(Fq) then, since
[N]P = ∞, we deduce that

[∓3(m+1)/2 − 1]P = [q− N]P = [q]P = γ(P).

We can therefore chooseT = q− N = ∓3(m+1)/2 − 1 (whenT is negative we use the
relationT D = (−T)(−D)). In the notation of Theorem 1 we havec = −1. Takinga = 3
givesT3 + 1 = LN whereL = ∓3(m+3)/2. We haveM = (36m− 1)/N. Theorem 1 implies
that the pairing satisfies (

ηT(P,Q)M
)3T2

=
(
〈P, ψ(Q)〉MN

)L

and so, since 3,T andL are all coprime toN, it is bilinear and non-degenerate.
With this method we can compute the Tate pairing using an algorithm with roughly

half as many iterations as the original Duursma-Lee method. However, the final ex-
ponentiation is now more complicated since the valueM required to obtain a unique
pairing value is (33m − 1)(3m + 1)(3m ∓ 3(m+1)/2 + 1). Unlike the original Duursma-Lee
method, this value has terms which are not powers of 3m, hence an extra (m + 1)/2
cubings in the large field are required. Luckily, cubing is faster than a step in the loop
of Miller’s algorithm, so this approach does give faster code. Notice that the result of
raising to 33m − 1 produces a unitary value, so that any further inversion reduces to a
simple conjugation.

Further exponentiations are also required to transform the value of the eta pairing to
a correct Tate pairing value, but the extra cost of these is not very significant (see the end
of section 5.2). One possibility is to design cryptosystems using the eta pairing instead
of the Tate pairing. On the other hand, for some applications there may be compatibility
issues with using a ‘non-standard’ pairing and so the actual Tate pairing value may be
required.

10

5.2 Implementation details

We now give some of the implementation details for the eta pairing in this case. Recall
from [10] that, for any pointV ∈ E(Fq) the function

gV(x, y) = y3
Vy− (x3

V − x+ b)2

has divisor (gV) = 3(V) + (−3V) − 4(∞).
Consider the eta pairing ofP andQ whereT = q− N = ∓3(m+1)/2 − 1. If T < 0 we

first replaceP by−P andT by−T. From Table 1 it follows that we haveT = 3(m+1)/2+b
whenm≡ 1,11 (mod 12) andT = 3(m+1)/2 − b whenm≡ 5,7 (mod 12).

We are required to compute

fT,P(ψ(Q)) =

(m−1)/2∏
i=0

g3i P(ψ(Q))3(m−1)/2−i

 l(ψ(Q))

wherel is a function corresponding to addition of 3(m+1)/2P with ±P. Note that this final
addition cannot be ommited sinceT is not the order ofP.

We now explain that the extra addition can be easily handled.

Lemma 5. With notation as above, let l(x, y) be the line in the final addition of the
algorithm. Then l has slopeλ = yP if m ≡ 7,11 (mod 12)or λ = −yP if m ≡ 1,5
(mod 12).

If m ≡ 1,11 (mod 12)the equation for l is y= λ(x − xP) + byP and if m≡ 5,7
(mod 12)then the equation for l is y= λ(x− xP) − byP.

Proof. The proof is straightforward. For example, whenm ≡ 1 (mod 12) thenT =
3(m+1)/2 + b and [3(m+1)/2]P = φ(x3

P, y
3
P) = (x3

P − b,−y3
P). The slope is thereforeλ =

(−y3
P − yP)/(x3

P − b− xP). Usingx3
P − xP − b = y2

P + b givesλ = −yP. The addition is of
[3(m+1)/2]P with bP, from which the equation forl(x, y) follows.

The other cases are similar. ut

The exponent 3(m−1)/2 is inconvenient and a naive implementation would lead to
an unnecessary (m − 1)/2 cubings. There are two ways to avoid this problem. One
method is to bring the powering 3(m−1)/2 into the formulae as a Frobenius action. The
other method, which we adopt here, is to compute the product in reverse, by setting
j = (m − 1)/2 − i. We defineP′ = 3(m−1)/2P which can be efficiently computed as
φ(m−1)/2πm−1P = φ(m−1)/2(x1/3

P , y1/3
P). Then the desired product is

l(ψ(Q))
(m−1)/2∏

j=0

g3− j P′ (ψ(Q))3 j
.

It is then relatively straightforward to obtain an explicit description of the algorithm.
We use the notationa(i) for a3i

. For example, in the casem ≡ 1 (mod 12) one shows
that

g3− j P′ (ψ(Q))3 j
= (σy(− j)

P y(j)
Q − u2) − ρu− ρ2

whereu = x(− j)
P + x(j)

Q + b. The algorithm in this case is given in Algorithm 2.

11

Algorithm 2 Computation ofηT(P,Q) on E(F3m) : y2 = x3 − x+ b, m ≡ 1 (mod 12)
case
I: P,Q
O: ηT(P,Q)
1: P0 ← −P
2: if T < 0 then T ← −T, P← −P
3: let P = (xP, yP), Q = (xQ, yQ)
4: l ← the line between 3(m+1)/2P andP0

5: f ← l(ψ(Q))
6: for j ← 0 to (m− 1)/2 do
7: u← xP + xQ + b
8: g← σyPyQ − u2 − ρu− ρ2

9: f ← f · g
10: xP ← x1/3

P , yP ← y1/3
P

11: xQ ← x3
Q, yQ ← y3

Q
12: end for
13: return f (33m−1)(3m+1)(3m−b3(m+1)/2+1)

Depending on the choice of basis, we can unroll the loop if necessary to exploit the
innate sparseness ofg. Cube roots can be calculated quickly using the method described
by Barreto [1]. However this is still substantially slower than calculating cubes. There-
fore it makes sense to do a precalculation to build a list of all cubes ofxP andyP, and
to get the cube roots by accessing this list in reverse order. Note however that we only
need the ‘last’ half of the cubes.

The final exponentiation can be obtained for the relatively inexpensive cost of (m+
1)/2 extension field cubings, plus nine applications of the 3m-power Frobenius, nine
extension field multiplications, one extension field squaring, one more cubing, and one
extension field division.

If the Tate pairing is required then we should also power to 3T2/L. A sensible
strategy seems to be to raise theηT pairing value to 3T2q/L instead, and then to compute
the inverseq-power Frobeniusπ to get rid of the extraq-th power. Namely, ifu =
ηT(P,Q), then ê(P,Q) = π−1(u∓3(m−1)/2

)u∓3(m+1)/2−2, which amounts tom extra cubings,
one squaring, three products, one inverse Frobenius and at most three conjugations,
totalling a small amount of extra work compared to the cost of pairing computation.

6 Elliptic curves in characteristic 2

We now consider the case of the supersingular curve6 E : y2 + y = x3 + x+ b overF2m

whereb = 0,1 andm is odd. We will use the ideas presented in section 4. The order of
E is given in table 2. It follows that the embedding degree in this case isk = 4.

The fieldF24m has elementss, t such thats2 = s+ 1 andt2 = t + s; we will represent
F24m using the basis{1, s, t, st}. Following [3] we use the distortion mapψ(x, y) = (x +
s2, y+ sx+ t).

6 As before, there is no loss of generality from considering just one curve equation, as all super-
persingular curves in characteristic two are isomorphic overF2 to one other.

12

Table 2.Order of the curveE : y2 + y = x3 + x+ b overF2m, b ∈ F2.

#E(F2m) condition
2m + 1+ (−1)b2(m+1)/2 m≡ 1,7 (mod 8)
2m + 1− (−1)b2(m+1)/2 m≡ 3,5 (mod 8)

Let P = (xP, yP) ∈ E(F2m). We defineφ(x, y) = (x + 1, y + x). One can verify that
φ2(x, y) = (x, y+1) = −(x, y), φ3(x, y) = (x+1, y+ x+1), andφ4(x, y) = (x, y). One can
show by induction that

[2i]P = φi
(
x(2i)

P , y(2i)
P

)
(4)

If q = 2m it follows that [q]P = φm(P) and we are in the setting of our main result
(setγ = φm).

For any field elementa we use the notationa(i) for a2i
. Depending on the field of

definition ofa we will usually have eithera(m) = a or a(4m) = a. Hence we can consider
the values (i) as being modulom or 4m. This allows us to extend to negative values by
a(−i) = a(4m−i), which can also be interpreted as the 2i-th root ofa.

For future reference we compute hows and t andψ behave under powers of the
2-power Frobenius. Elements satisfiess(1) = s2 = s+ 1, s(2) = s, and thuss(i) = s+ i
ands(−i) = s(4m−i) = s+ i. Similarly for t, t(1) = t + s, t(2) = t + 1, t(3) = t + s+ 1, t(4) = t,
and thust(i) = t + is+ τ(i) whereτ(i) = 0 for i ≡ 0,1 (mod 4) andτ(i) = 1 for i ≡ 2,3
(mod 4). Hence,t(−i) = t(4m−i) = t + is+ τ(−i).

We now show that the eta pairing can be applied in this case.

Lemma 6. Let notation be as above, in particular, q= 2m andγ = φm. Then condition
(3) is satisfied.

Proof. We must show thatγψq = ψ. Consider first the casem≡ 1 (mod 4). We have

γψ2m
(x, y) = φψ2(x, y) = φ(x+ s, y+ s2x+ (t + s))

= (x+ s+ 1, y+ s2x+ t + s+ x+ s)

= (x+ s2, y+ sx+ t)

= ψ(x, y).

Similarly, whenm≡ 3 (mod 4) we find that

γψ2m
(x, y) = φ3ψ23

(x, y) = φ3(x+ s, y+ s2x+ (t + s+ 1))

= (x+ s+ 1, y+ s2x+ t + s+ 1+ x+ s+ 1)

= ψ(x, y).

This completes the proof.

To generalise the Duursma-Lee idea to characteristic 2 is now straightforward using
Theorem 1. LetN = 22m + 1 andM = 22m − 1. We takeT = q = 2m (so thatc = 0) and
takea = 2 so thatT2 + 1 = NL whereL = 1. Then the eta pairing satisfies(

ηT(P,Q)M
)2q
= 〈P, ψ(Q)〉MN .

13

Adapting the other methods of [10] gives a very fast pairing computation in charac-
teristic 2.

6.1 A further improvement

As in characteristic 3, we can obtain a further halving of the loop.
Let N = #E(F2m) = 2m ± 2(m+1)/2 + 1. ForP ∈ E(F2m) we have

[∓2(m+1)/2 − 1]P = [2m − N]P = γ(P).

Taking T = ∓2(m+1)/2 − 1 we haveT = 2m − N so c = −1. Takinga = 2 gives
T2 + 1 = 2N so L = 2. We haveM = ((2m)4 − 1)/N = (2m ∓ 2(m+1)/2 + 1)(22m − 1).
Theorem 1 therefore implies that(

ηT(P,Q)M
)2T
= 〈P, ψ(Q)〉2M

N

from which it follows that (
ηT(P,Q)M

)T
= 〈P, ψ(Q)〉MN .

We can therefore easily compute the exact Tate pairing using the eta approach in
this case. As before, the halving of the loop is slightly offset by the extra squarings
required for the final exponentiation, but we still see an overall gain in performance.

6.2 Implementation details

Let P,Q ∈ E(F2m) be the input points for the eta pairing withT = ∓2(m+1)/2 − 1. In
the caseT < 0 we replaceP by −P andT by −T. Thus we haveT = 2(m+1)/2 ± 1. To
compute the eta pairing we must compute the Miller functionfT,P, which will require
(m+ 1)/2 doublings and an addition. Note that the addition cannot be ommitted since
the pointP does not have orderT.

Given a pointV, it is easy to show that the straight line in doublingV is given by

gV(x, y) = (x2
V + 1)(xV + x) + yV + y.

The functiongV has divisor 2(V)+(−2V)−3(∞). Hence, by a standard argument similar
to the proof of Lemma 2 combined with the fact that we can disregard functions ofx
only, we have

fT,P(ψ(Q)) =

(m−1)/2∏
i=0

(
g[2i]P(ψ(Q))

)2(m−1)/2−i

 l(ψ(Q))

where the functionl comes from the elliptic curve addition of [2(m+1)/2]P with ±P.
The power 2(m−1)/2 is somewhat inconvenient. A naive implementation might in-

volve (m− 1)/2 unnecessary squarings because of it. There are two ways around this
problem, which both give equally efficient solutions. One solution would be to absorb

14

the powering by 2(m−1)/2 into the equations. Another solution is to re-write the expres-
sion by substitutingj = 2(m−1)/2 − i andP′ = [2(m−1)/2]P. This gives

fT,P(ψ(Q)) = l(ψ(Q))
(m−1)/2∏

j=0

g[2− j]P′ (ψ(Q))2 j
.

Note that, due to our doubling formula, the ‘point halving’ in [2− j]P′ has the same
efficiency as point doubling. Also note thatP′ = φ(m−1)/2(

√
xP,
√

yP).
We now give some formulae which allow us to present an efficient and general

algorithm. The first result gives the equation of the linel for the final addition (note that
no inversions are required to compute this). The proof of this result is straightforward.

Lemma 7. Let m and b be as above. Defineε = −1 when m≡ 1,7 (mod 8)and b= 1
or when m≡ 3,5 (mod 8)and b= 0. Defineε = 1 in all other cases. Then T is taken
to be2(m+1)/2 + ε.

Let P = (xP, yP). Defineλ = xP when m≡ 1,5 (mod 8)and λ = xP + 1 when
m ≡ 3,7 (mod 8). Then the formula for the line l(x, y) through2(m+1)/2P andεP is
given by l(x, y) = y+ λ(x+ xP) + yP + (1− ε)/2.

Lemma 8. Let notation be as above. Define v1 = 1 if m ≡ 1,5 (mod 8)and v1 = 0
otherwise. Define v2 = 1 if m ≡ 5,7 (mod 8)and v2 = 0 otherwise. Define u=
x(− j)

P + v1. Then the function g[2− j]P′ (ψ(Q))2 j
is given by

u(x(−1− j)
P + x(j)

Q + v1) + y(−1− j)
P + y(j)

Q + (1− v1)x(−1− j)
P + s(u+ x(j)

Q) + t + v2.

Proof. Note that [2− j]P′ = φ(m−1)/2− j(x(−1−2 j)
P , y(−1−2 j)

P). The result is proved by a tedious
case-by-case analysis.

For example, whenm ≡ 3 (mod 8) andj ≡ 2 (mod 4) then (m− 1)/2 − j ≡ 3
(mod 4) and so [2− j]P′ = (x(−1−2 j)

P + 1, y(−1−2 j)
P + x(−1−2 j)

P + 1). The function is therefore(
(x(−2 j)

P)(x(−1−2 j)
P + xQ + s) + y(−1−2 j)

P + x(−1−2 j)
P + 1+ yQ + sxQ + t

)2 j

= x(− j)
P (x(−1− j)

P + x(j)
Q + s) + y(−1− j)

P + x(−1− j)
P + 1+ y(j)

Q + sx(j)
Q + t + 1.

Lettingu = x(− j)
P this simplifies to

u(x(−1− j)
P + x(j)

Q) + y(−1− j)
P + x(−1− j)

P + y(j)
Q + s(u+ x(j)

Q) + t

as required. The other 15 cases are similar.�

Here we give the algorithm in the case of a curve withm≡ 3 (mod 8).
In this optimized algorithm the point addition is dealt with first, using the formula

of Lemma 7.
Each step in the subsequent loop costs 7Fq multiplications (1 to computeg, 6 to

accumulate it intof by making use of the sparse structure ofg). In practise to obtain
this speed-up we might have to unroll the loop times 2 (depending on the basis chosen).
The total cost of the loop plus the initial point addition is therefore 7(m + 1)/2 + 1

15

Algorithm 3 Computation ofηT(P,Q) onE(F2m) : y2+y = x3+ x+b, m≡ 3 (mod 8)
case
I: P,Q
O: ηT(P,Q)
1: let P = (xP, yP), Q = (xQ, yQ)
2: u← xP + 1
3: f ← u · (xP + xQ + 1)+ yP + yQ + b+ 1+ (u+ xQ)s+ t
4: for i ← 1 to (m+ 1)/2 do
5: u← xP, xP ←

√
xP, yP ←

√
yP

6: g← u · (xP + xQ) + yP + yQ + xP + (u+ xQ)s+ t
7: f ← f · g
8: xQ ← x2

Q, yQ ← y2
Q

9: end for
10: return f (22m−1)(2m−2(m+1)/2+1)

multiplications. The final exponentiation can be obtained for the relatively inexpensive
cost of (m + 1)/2 extension field squarings, plus three applications of the 2m-power
Frobenius, four extension field multiplications, and one extension field division. To
obtain the Tate pairing, the result must be further exponentiated to the power ofT.

Unlike the case of characteristic three, there seems to be no reason to precompute
and store the square roots. This is because a careful implementation of the technique
described in [12] for calculating square roots in the fieldF2m is in fact just as fast as
squaring. In fact it may be a little faster, as large precomputed tables can lead to memory
cache misses which are detrimental to performance.

6.3 Compression of pairing elements

Pairing values lie in the subgroup of orderq2 + 1 in F∗
q4, which is the torusT2(Fq2).

Hence it is trivial to compress pairing values by a factor of 2 using standard torus or
trace methods.

In the case of the eta pairing withT = q, the method of Granger, Page and Stam [17]
avoids performing the final exponentiation (though note that their compression method
requires an inversion so is of similar complexity to the final exponentiation anyway).
Their idea is to note that the pairing valueecan be written ase= gh= e0 + e1t whereg
has order dividing (q2+1) and whereh,e0,e1 ∈ Fq2. Hence, the valuee0/e1 is a uniquely
defined element inFq2 corresponding to the class ofe.

When using the eta pairing withT = q − N the method of Granger, Page and
Stam to avoid the final exponentiation cannot be applied. Nevertheless, once the final
exponentiation has been performed one can compress by a factor of 2 using traces or
tori in the standard way.

16

7 Genus 2 curves in characteristic 2

We now consider the curve7 Cd : y2 + y = x5 + x3 + d with d = 0 or 1 overF2m, where
m is coprime to 6. This curve is supersingular and has embedding degree 12 (see [16]).
The group order is given in Table 3; some examples are listed in Table 4.

In this section we show that the eta pairing approach can be easily applied in this
setting. We give an octupling formula which enables fast point exponentiation and give
a corresponding function for Miller’s algorithm.

A general reduced divisorD on a genus 2 curve has support consisting of two affine
points (i.e.,D = (P1) + (P2) − 2(∞)). Following Duursma and Lee [10] (also see [18,
19]) we exploit the benefits of usingdegenerate divisors8 of the formD = (P) − (∞)
where possible.

Table 3.Order of Jac(Cd) for the curveCd : y2 + y = x5 + x3 + d overF2m, d ∈ F2.

#Jac(Cd)(F2m) condition
22m + (−1)d2(3m+1)/2 + 2m + (−1)d2(m+1)/2 + 1 m≡ 1, 7,17,23 (mod 24)
22m − (−1)d2(3m+1)/2 + 2m − (−1)d2(m+1)/2 + 1 m≡ 5,11,13,19 (mod 24)

Table 4.Examples where #Jac(C)(F2m) is equal to a small cofactor times a prime.

field curve cofactor
F279 y2 + y = x5 + x3 + 1 151681
F2103 y2 + y = x5 + x3 13 · 1237
F2127 y2 + y = x5 + x3 + 1 198168459411337
F2199 y2 + y = x5 + x3 + 1 2389· 121789
F2239 y2 + y = x5 + x3 + 1 1
F2313 y2 + y = x5 + x3 + 1 1

We note that our special curve has certain properties that lend to faster arithmetic
than the explicit formulae given in [22] for general genus 2 curves, namely that the
equation is sparse and that all the coefficients are defined overF2. See [23] for examples
of arithmetic on similar (albeit non-supersingular) curves.

7.1 Arithmetic on the curves

We first introduce the representation ofF212 and the distortion map we will be using.

7 In this case not all supersingular equations are isomorphic overF2. Nevertheless, the Jacobians
are isogenous, so there seems to be no good reason to consider other curve equations.

8 Note that the definition of degenerate divisors in [18, 19] is that they have less thang points in
their support, whereas our definition is tougher wheng > 2 in that we insist on having exactly
one point in the support.

17

Choosew ∈ F26 to be a root of the polynomial

x6 + x5 + x3 + x2 + 1.

Note thatw8 = w+ 1. Defines1 = w2 + w4, s2 = w4 + 1, and lets0 ∈ F212 be a solution
of s2

0 + s0 = w5 + w3.
We will represent elements of the fieldF212m as 12-tuples with respect to the basis

{1,w,w2,w3,w4,w5, s0,ws0,w
2s0,w

3s0,w
4s0,w

5s0}.

We choose the distortion map

ψ(x, y) = (x+ w, y+ s2x2 + s1x+ s0).

We now consider the octupling formula and hence determine when [23m]D can be
written asγ(D) for someγ.

Consider a divisor of formD = (P) − (∞). In general,jD is not equivalent to a
divisor of the form (Q) − (∞), but as shown in Appendix A, in this case we have the
octupling formula 8D = (P′) − (∞) whereP′ = φπ6(P), π is the 2-power Frobenius
map, and

φ(x, y) = (x+ 1, y+ x2 + 1).

Note thatφ2 = −1. As a suggestive (but non-standard) notation, we write [8]P = φπ6(P)
and so 8D = ([8]P) − (∞). Koblitz [20] gives a map for 64D, which is exactly the
octupling operation applied twice in succession. Similar results for other supersingular
curves were obtained by Duursma and Lee [10].

Since our basic operation is octupling, we are forced to consider theη pairing in
the case where we have a power of 23. Hence we will work withq = 23m rather than
q = 2m. Nevertheless, since our basic operation is octupling, our loops will still have at
mostm iterations. It follows that, ifD is a divisor class defined overF2m, then

[q]D = [23m]D = φm(D)

hence we defineγ = φm.
We also note that it is possible to use the octupling operation for straightforward

scalar multiplication, which yields a simple and speedy implementation.

7.2 Eta pairings in genus 2

We now show that condition (3) is satisfied for our distortion map.

Lemma 9. Let the notation be as above with q= 23m. Then condition (3) is satisfied.

Proof. We haveq = 23m wherem≡ 1,5,7 or 11 (mod 12) andγ = φm.
As before, we writea(i) for a2i

. We will repeatedly use the easily checked formulae
thatw(3) = w+ 1, s(3)

0 = s0 + w2, s(3)
1 = s1 ands(3)

2 = s2 + 1.

18

First supposem≡ 1 (mod 4) (and so 3m≡ 3 (mod 12)). Then

γψq(x, y) = φψ(3)(x, y)

= φ(x+ w+ 1, y+ (s2 + 1)x2 + s1x+ s0 + w2)

= (x+ w, y+ s2x2 + s1x+ s0)

= ψ(x, y).

Similarly, whenm≡ 3 (mod 4) we haveγ = −φ and 3m≡ 9 (mod 12). Hence

γψq(x, y) = −φ3ψ(9)(x, y)

= −φ(x+ w+ 1, y+ (s2 + 1)x2 + s1x+ s0 + w2 + 1)

= (x+ w, y+ s2x2 + s1x+ s0)

= ψ(x, y).

This proves the lemma. ut

Having established this, we can now apply Theorem 1. For the basic generalisation
of Duursma and Lee we takeT = q = 23m so thatc = 0. We haveN = 26m + 1 so that
M = 26m− 1. We then takea = 2 so thatq2 + 1 = N andL = 1. It therefore follows that(

ηT(D,D′)M
)2q
= 〈D, ψ(D′)〉MN .

Computing the eta pairing with respect toT = 23m requiresm iterations of the octu-
pling formula. Interestingly, this is not much better than the basic BKLS-GHS method
generalised to genus 2 (see Section 7.7).

As before, we can obtain a further halving of the loop. Letq = 23m andN = 22m ±

2(3m+1)/2 + 2m ± 2(m+1)/2 + 1. Consider the equation

(2m ∓ 2(m+1)/2 + 1)N = 23m ± 2(3m+1)/2 + 1.

This suggests takingT = ∓2(3m+1)/2 − 1 so that, ifD is a divisor defined overFq (and
hence of order dividingN),

[T]D = [q− (2m ∓ 2(m+1)/2 + 1)N]D = [q]D = γ(D).

Then c = −(2m ∓ 2(m+1)/2 + 1) in the notation of Theorem 1. Takinga = 2 gives
T2 + 1 = LN whereL = 2m+1 ∓ 2(m+3)/2 + 2. Theorem 1 therefore implies that(

ηT(D,D′)M
)2T
=

(
〈D, ψ(D′)〉MN

)L
.

Computing the eta pairing usingT = ∓2(3m+1)/2 − 1 will require roughlym/2 itera-
tions of the octupling formula, which is clearly superior to the BKLS-GHS method.

7.3 Implementation Details

We compute theηT pairing of divisorsD andD′ using the orderT = ∓2(3m+1)/2 − 1. As
usual, ifT < 0 then setT = −T andD = −D. Hence we haveT = 2(3m+1)/2 ± 1.

19

We will exploit the octupling formula. Letf8,P be a function such that (f8,P) =
8(P) − ([8]P) − 7(∞). We show in appendix A that,

f8,P(x, y) =
(y+ b4(x))2(y+ b′′8 (x))

a′4(x)2a′8(x)

where
b4(x) = x3 + (x8

P + x4
P)x2 + (x4

P)x+ y4
P

and
b′′8 (x) = (x32

P + 1)x2 + (x32
P + x16

P)x+ (y16
P + x16

P + x48
P + 1).

The denominatora′4(x)2a′8(x) can be ignored for the usual reasons. We will be com-
posing our function withψ, and so we will use the notationαβ for the function, where
α = (y+ b4(x))2 ◦ ψ andβ = (y+ b′′8) ◦ ψ.

To compute a functionfT,P with divisor T(P) − (DT,P) − n(∞) where DT,P is a
reduced divisor equivalent toT D we want to use the above functions. Since (3m+1)/2 =
3(m− 1)/2+ 2 we must use (m− 1)/2 octuplings and two doublings.

In other words, we have

fT,P(ψ(Q)) =

(m−3)/2∏
i=0

f8,[8i]P(ψ(Q))2(3m−5)/2−3i

 l1(ψ(Q))2l2(ψ(Q))l3(ψ(Q))

wherel1 and l2 are functions coming from the extra doublings andl3 is from the final
addition of 2(3m+1)/2((P) − (∞)) and±((P) − (∞)).

Appendix B gives more detail on implementing the pairing. In Appendix B.1 the
distortion map is built into the functions, and formulae are derived forf8,[8i]P(ψ(Q))
which do not require the explicit computation of [8i]P. These formulae are computed
efficiently by accessing a table of precomputed values forx2i

P andy2i

P . In Appendix B.4
powers of 8 are absorbed into the formulae, which involves precomputing powers of
the second point. Appendix B.7 describes how the final doublings and addition can be
simplified for degenerate divisors. Algorithm 4 details the genus 2ηT pairing for de-
generate divisors in the case whenm= 103 (although only trivial changes are required
to modify the algorithm for arbitrarym).

All of these optimisations lead to a very fast pairing implementation on genus 2
curves in characteristic two. Details of timings are given in Section 10.

7.4 Degenerate divisors versus general divisors

We have focussed on the case of degenerate divisors since this gives a convincing ex-
ample where hyperelliptic curves can be superior to elliptic curves. Nevertheless, most
applications will also require pairings to be computed on general divisors.

A general reduced divisor defined overFq on a genus 2 curveC is represented by
(P1)+ (P2)−2(∞) where eitherP1,P2 ∈ C(Fq) or P1,P2 ∈ C(Fq2) are Galois conjugates
of each other. The Mumford representation for divisors on hyperelliptic curves essen-
tially gives the symmetric functions of the coordinates of the pointsPi in the support of
the divisor.

20

Algorithm 4 The genus 2ηT pairing whenm= 103
I: P = (xP, yP),Q = (xQ, yQ) ∈ JC(F2m)
O: f ∈ F212m

1: . Initialisation: setγ = 1 if m≡ 1 mod 4, otherwiseγ = 0
2: . Precompute powers of P and Q
3: x1[i] ← x2i

P , y1[i] ← y2i

P , x2[i] ← x2i

Q, y2[i] ← y2i

Q, 0 <= i <= m− 1
4: f ← 1
5:
6: for i = 0 to (m− 3)/2 do
7: . All k∗ in the next 2 lines to be considered modulom
8: k1 ← (3m− 9− 6i)/2, k2 ← (k1 + 1), k3 ← (k2 + 1)
9: k4 ← (3m− 3+ 6i)/2, k5 ← (k4 + 1), k6 ← (k5 + 1)

10:
11: . Calculateα← a+ bw+ cw2 + dw4 + s0

12: d← x1[k4] + x1[k5]
13: a← y2[k2] + (x1[k4] + 1+ x2[k3]) · x2[k2] + d · x2[k3] + y1[k4] + γ
14: b← x2[k3] + x2[k2]
15: c← x2[k3] + x1[k4] + 1
16:
17: . Calculateβ← e+ f2w+ gw2 + hw4 + s0

18: f2 ← x1[k5] + x1[k6]
19: e← y2[k1] + f2 · x2[k1] + y1[k5] + x1[k6] · (x1[k5] + x2[k2]) + x1[k5] + γ
20: g← x2[k1] + x1[k6] + 1
21: h← x2[k2] + x2[k1]
22:
23: f ← f · (α · β)
24: end for
25:
26: . “Extract” current point (xP, yP)
27: xP ← x1[100]+ 1
28: yP ← y1[100]+ x1[101]
29:
30: . Perform the final doublings/addition
31: t ← (y2[0] + x2[1] · (1+ x2[0] + x8

P + x4
P) + x4

P · x2[0] + y4
P)

32: f ← f 4 · (t, x2[1] + x4
P, x

8
P + x4

P,1, x2[1] + x2[0],0,1,0,0,0,0,0)
33:
34: . Perform the final exponentiation
35: f ← f (26m−1)(23m−24m2(m+1)/2−1)

36:

21

General divisors may appear as either the first or second components of the pairing
(or both). Handling the second case (i.e., generalising evaluation of a function at a point
to evaluation at a divisor in Mumford representation) is relatively straightforward.

For the first case, bilinearity implies thatηT((P1) + (P2) − 2(∞),D′) =

ηT(P1,D′)ηT(P2,D′) and so one can compute a pairing on divisors by taking a product
of pairings on points. However, in the case where the pointsPi are actually defined over
Fq2 this will not be the most efficient way to proceed. It is relatively straightforward to
obtain the general formulae: just multiply the functions obtained from the single point
case and then express the resulting polynomials in terms of the symmetric polynomials
in the point coordinates. We leave this as an exercise for the reader; a full discussion
will be given in the thesis of the third author.

From a performance point of view, the cost of computing a pairing between gen-
eral divisors in genus 2 is at worst 4 times the cost of a pairing between single points.
Obviously, various optimisations are applicable, including only performing the final
exponentiation once, sharing some of the function calculations and only having to pre-
compute squarings of points once.

We now briefly discuss how degenerate divisors can be used to speed up pairing-
based cryptosystems. First, note that Katagiet al. [19] showed (using the random self-
reducibility of the discrete logarithm problem) that there is no loss of security from
using degenerate divisors.

In most of the cases we consider, the divisor class group has (nearly) prime order
N and we work with pairings of orderN. Hence, a randomly chosen degenerate divisor
(P) − (∞) will have order divisible by our large prime and the pairing value will be
non-degenerate. In the general case of pairings on higher genus curves this assumption
may not hold; we refer to Frey and Lange [13] for a discussion of these issues.

In the case of pairing-based cryptography it is easy to benefit from the use of de-
generate divisors. As a case study we consider the Boneh-Franklin identity-based en-
cryption scheme [7] (similar ideas can speed up aspects of other pairing-based cryp-
tosystems, we refer to Frey and Lange [13] for further discussion). The natural gener-
alisation of this system to genusg curves (see [16]) is to have a master public key pair
D,Dpub = [s]D of divisors; identities are hashed to obtain divisorsD(ID); user private
keys are [s]D(ID); encryption involves computing [r]P and the pairing ofDpub with
D(ID) (and then raising to the powerr); decryption involves the pairing of [s]D(ID)
with [r]P.

Without loss of security, one can choose several of these divisors to be degenerate.
For example, one can chooseDpub to be degenerate (i.e., chooseDpub first and then set
D = [s−1]Dpub). One can also chooseH(ID) to be degenerate, so that we are hashing
to points on the curve, rather than general divisors. This simplified hashing process is
also easier to implement than the general case. Of course, the user private keys are now
general divisors. Encryption therefore involves a pairing of two degenerate divisors and
so can be performed very efficiently, while decryption involves a pairing of general
divisors. This is similar to RSA with small public exponents, where the public opera-
tions are fast compared to the private ones. For some applications this may be a useful
feature.

22

7.5 The Final Exponentiation

Theorem 1 relates theηT pairing to the Tate pairing in the genus 2 case as follows(
ηT(D,D′)M

)2T
=

(
〈D, ψ(D′)〉MN

)L
.

whereT = ∓2(3m+1)/2 − 1, M = (212m − 1)/N, N = 22m ± 2(3m+1)/2 + 2m ± 2(m+1)/2 + 1
andL = 2m+1 ∓ 2(m+3)/2 + 2.

One can compute a bilinear pairing by computing theηT pairing and raising to the
power ofM. However, it is actually more efficient to compute the full Tate pairing with

η
M2T

L
T . By factoringM we get the product

M = (26m − 1)(2m ∓ 2(m+1)/2 + 1)(23m ∓ 2(3m+1)/2 + 1)

Note thatL can be written asL = 2(2m ∓ 2(m+1)/2 + 1), which cancels out with the
middle factor ofM and the squaring of theηT function. The exponent to compute the
Tate pairing is now;

(26m − 1)(23m ∓ 2(3m+1)/2 + 1)(∓2(3m+1)/2 − 1)

Some cancellations occur whilst unrolling the multiplication of the second and third
factor, and we get

(26m − 1)(23m ∓ 24m2(m+1)/2 − 1)

Note that raising an element to the power of 26m over F212m can be computed with a
simple conjugation. Also note that, once the powering to (26m− 1) has been performed,
we havez26m+1 = 1 and soz−1 = z26m

, i.e., computing an inverse is done by simple
conjugation. Using these facts, we can compute the final exponentiation in (m+ 1)/2
squarings, 4 Frobenius actions, 2 multiplications and a division.

7.6 Compression of pairing values

After the final exponentiation our pairing values lie in the subgroup of order (q4−q2+1)
in F∗

q12. This subgroup is the torusT6(Fq2) so we can represent the field elements using
2 elements ofFq2 rather than 6. This gives compression by a factor of 3. The details are
similar to those given by [17].

7.7 Computing BKLS-GHS using octupling

In this section we will briefly look at computing the Tate pairing using the BKLS-GHS
algorithm, degenerate divisors and the fast octupling operation defined previously. At
first glance, the group orderN ≈ 22m requires about 2m/3 iterations of the octupling
formula, so the BKLS-GHS method looks competitive. However, care is needed as the
additions will destroy the special form of the divisor. The best approach is to postpone
the additions until the end. In other words, compute the appropriate functions for 22mP,
2(3m+1)/2P, 2mP and 2(m+1)/2P separately in different loops and then add them up at the
end.

23

Let h1,h2,h3 be the functions that arise from Cantor composition and reduction of
the divisors that occur at 22mP, 2(3m+1)/2P, 2mP and 2(m+1)/2P. The function we desire is
then:

f = f22m f2(3m+1)/2 f2m f2(m+1)/2h1h2h3

This can be computed using 2m/3 octuplings, as well as a few additions and doublings.
The powers of 8 can also be absorbed as is done in Appendix B, however as each
function is raised to a different power, we require four different sets of formulae. We
can take some advantage of similarities between the four functions however, to speed
up the computation. The end result is an efficient if messy pairing computation. See
section 10 for timings.

8 The Duursma-Lee hyperelliptic curves

Duursma and Lee [10] also consider the curvesC : y2 = xp − x + d overFpm where
p ≥ 5 andd , 0. The genus ofC is (p − 1)/2. Whenp ≡ 3 (mod 4) the embedding
degree isk = 2p and #Jac(C)(Fpm) | (pmp+1). The distortion map isψ(x, y) = (ρ− x, iy)
wherei2 = −1 andρp − ρ + 2d = 0.

Duursma and Lee [10] show thatp((x, y) − (∞)) is equivalent to (xp2
+ 2d,−yp2

).
Let q = pm wherem is coprime to 2p. Let φ(x, y) = (x+ 2d,−y). If P ∈ C(Fpm) then it
follows thatq((P) − (∞)) is equivalent to (φm(P)) − (∞). Hence we setγ = φm.

We check condition (3) for this case. Note thatρp = ρ − 2d.
If p ≡ 3 (mod 4) then we have (sincem is odd)

γψq = φmψpm
(x, y)

= φm(ρpm
− x, ipm

y)

= φm(ρ − 2dm− x,−iy)

= (ρ − x, iy)

= ψ(x, y).

Having established this, we setN = ppm+ 1, T = pm, c = 0, a = p andL = 1 and apply
Theorem 1 to show that the eta pairing approach recovers the results of Duursma and
Lee.

If p ≡ 1 (mod 4) then the embedding degree isk = p and our methods do not
immediately apply. Theorem 1 can be generalised so that condition 3 readsTa−1 = LN,
in which case we may choosea = p. But whenpm ≡ 1 (mod 4) we haveipm

= i and
so condition (3) is not satisfied.

There are two natural open problems for these curves. The first is to develop an eta
pairing for the cases wherep ≡ 1 (mod 4). The second natural problem is to give the
further halving of the loop for these curves. We leave these problems for future research.

9 The Rubin-Silverberg approach

Rubin and Silverberg [25] (also see [26, 29]) have proposed an alternative way to view
pairings on Abelian varieties. Their method can be thought of as a method for comput-
ing pairings on trace zero subvarieties of Weil restrictions of elliptic curves. A simpler

24

way to think about their method is as a form of point compression for pairings on elliptic
curves.

The Jacobian of the supersingular genus 2 curve considered in Section 7 is a 2-
dimensional Abelian variety overF2m with embedding degreek = 12. Another way
to get this Abelian variety (up to isogeny) is with the Rubin-Silverberg approach, by
taking thek = 4 elliptic case and using the Rubin-Silverberg construction withr = 3,
to obtain a 2-dimensional Abelian variety with embedding degree 3×4 = 12. We recall
the details in this case.

Let Eb : y2+y = x3+ x+b with b = 0,1 overF2 be the supersingular elliptic curves
with embedding degreek = 4. The idea of Rubin and Silverberg is to compute pairings
with points defined overF23m wherem is coprime to 12. This means that pairing values
lie in F212m.

To transmit group elements, Rubin and Silverberg propose a compression method
so that the element is represented using only 2 elements inF2m. Hence, the bandwidth
is about 2m bits but the finite field security is 212m, which corresponds to ‘security
multiplier 6’.

The groupE(F23m) clearly hasE(F2m) as a subgroup. Indeed, we can write

E(F23m) � E(F2m) × A

whereA is a finite group and one can check that the order ofA is 22m± 2(3m+1)/2 + 2m±

2(m+1)/2 + 1. Note that this agrees with the group orders in Table 3.
The following result is an important classification ofA.

Lemma 10. Let m be coprime to 12. LetTr be the trace map with respect toF23m/F2m.
Then A= {P ∈ E(F23m) : Tr(P) = 0}.

The method is to perform pairing computations with the curveE overF23m so that
the pairing values lie inF212m. Suitable group orders are the same as in the genus 2 case
(e.g.m= 103 with a 192-bit subgroup).

Write F23m asF2m(θ) whereθ3 = θ + 1. So points inE(F23m) are represented as (x, y)
wherex is represented as a triple (x0, x1, x2) overF2m with respect to the basis{1, θ, θ2}.

To transmit a point we first apply point compression so that we need send only
the x-coordinate and a single bit determining the sign (sometimes even this bit can be
removed). Then to transmit thex-coordinate just sendx0 andx1 (and possibly another
bit).

To recover (decompress) we must do the following: Givenx0 andx1 compute an el-
ementx2 ∈ F2m such that there is a pointP with x-coordinate (x0, x1, x2) which satisfies
Tr(P) = 0.

In this case the trace is Tr(P) = P+π(P)+π2(P) whereπ is the 2m-power Frobenius
map. So the condition is thatP, π(P) andπ2(P) sum to zero, or in other words, lie on a
straight line. The decompression procedure is to deduce whichx2 ensures that there is
a line l(x, y) = 0 through the three points.

Let P = (xP, yP) and write l(x, y) = y + u0x + u1 whereu0,u1 ∈ F23m. Define
l(x, y) = l(x, y) + 1. Then

l(x, y)l(x, y) = y2 + y+ (u0x+ u1) + (u0x+ u1)2

= x3 + u2
0x2 + (u0 + 1)x+ (u2

1 + u1 + b).

25

Also,
l(x, y)l(x, y) = (x− xP)(x− xπ(P))(x− xπ2(P)) = x3 + T x2 + S x+ N

from which we deduce thatT = S2 + 1. One can check thatT = x0 andS = x2
0 + x2

1 +

x1x2 + x2
2. Hencex2 is a solution to the equation

y4 + x1y2 + (x4
0 + x0 + 1+ x2

1) = 0.

Solving this equation involves solving a quadratic and then taking square roots. A single
bit is needed to distinguish the two roots of the quadratic and to ensure a unique solution
to the decompression process.

The total cost is solving a quadratic and then taking a square root, plus solving
another quadratic to recover they-coordinate of the point.

From a performance point of view it is essential to compare the running time of
the pairing computation on the genus 2 curve with the Rubin-Silverberg method. In a
general implementation, where we may be required to compute the pairing of general
divisors on the genus 2 curve, then the Rubin-Silverberg approach may be superior.

10 Experimental results

We have proposed a number of algorithms for pairing computation which apply to dif-
ferent supersingular curves. The only natural way to compare these methods is to give
running times for equivalent security levels. A precise formulation of ‘equivalent secu-
rity’ is deeply problematic, but a reasonable approach is to consider parameters so that
the valueqk is roughly the same. This would mean that the cost of index calculus in
the finite field is roughly equal for all examples. Two different field sizes are chosen for
testing. Firstly, 950-bit finite fields with (g=1) q = 2239, (g=1) q = 397, (g=2) q = 279,
and 1230-bit finite fields with (g=1) q = 2307, (g=1) q = 3127, (g=2) q = 2103.

As noted, there are two different ways to view the dimension two case, the first
using the genus 2 curve directly, and the second using the Rubin-Silverberg approach.
The relative performance is seen by comparing the running time of the pairing on the
Jacobian of the curve overF2m with the pairing onE(F23m). The latter will be roughly
the same as the cost of a pairing onE(F2m′) wherem′ ≈ 3m. Note that this does not
take into account the cost of conversion between the Rubin-Silverberg Abelian variety
representation and the elliptic curve over the larger field.

Table 5 gives some running times for calculating the 950-bit case, and Table 6 the
running times for the 1230-bit case. As noted earlier, we use the notationη for the eta
pairing withT = q and writeηT for the faster variant withT = q − N. In both tables,
cases 1 to 3 illustrate the computation of theη pairing for the elliptic characteristic 2
and 3 cases, as well as the genus 2, characteristic 2 case. Cases 4 to 7 give timings for
the computation of theηT pairing, where the genus 2 “general” case is a general divisor,
rather than a divisor with one point on it as is the case for the third and sixth entries in
the tables. The final case in Table 6 gives a time for computing the Tate pairing using
BKLS-GHS.

The first observation to make from the tables is that the newηT method is clearly
superior to theη generalisation of the Duursma-Lee method for all cases. In Table 5, the

26

Table 5.Running times for pairing computation (950-bit finite field).

case curve optimisation pairing time (ms)
1 E(F2239) elliptic char 2η 3.16
2 E(F397) elliptic char 3 (see [17]) 4.05
3 C(F279) genus 2η 1.95
4 E(F2239) elliptic char 2ηT 1.70
5 E(F397) elliptic char 3ηT 2.72
6 C(F279) genus 2ηT 1.25
7 C(F279) genus 2 generalηT 4.20

Table 6.Running times for pairing computation (1230-bit finite field).

case curve optimisation pairing time (ms)
1 E(F2307) elliptic char 2η 5.83
2 E(F3127) elliptic char 3η 8.42
3 C(F2103) genus 2η 3.00
4 E(F2307) elliptic char 2ηT 3.50
5 E(F3127) elliptic char 3ηT 5.36
6 C(F2103) genus 2ηT 1.87
7 C(F2103) genus 2 generalηT 6.42
8 C(F2103) genus 2 BKLS-GHS 3.15

elliptic char 2 case is 46% faster, the elliptic char 3 case is 32% faster, and the genus 2
char 2 case is 36% faster.

The second observation is that the genus 2ηT pairing is considerably faster than
either of the elliptic cases for both levels of security. In Table 5, the genus 2ηT case
is 26% faster than the elliptic char 2 case, and 54% faster than the elliptic char 3 case.
The difference is even more pronounced in Table 6. The timings for the genus 2 BKLS-
GHS method confirm the surprising observation that the BKLS-GHS method is roughly
computationally equivalent to theη method in the genus 2 case.

One of the potential advantages of using hyperelliptic curves is that the base field
can be much smaller than that required for an elliptic curve, for the same level of se-
curity. Great potential savings can be realised if an element of the base field can be
represented in a single machine word, rather than using a multi-precision representa-
tion, and for comparison with elliptic curves we regard it as quite “fair” to try to exploit
this feature.

So in implementing arithmetic in the fieldF2103 andF279 we take advantage of the
128-bit registers available to those processors, like the Pentium IV, which support the
SSE2 instruction set, and have written a special function to carry out field multiplication
using SSE2 instructions. This is twice as fast as a standard multi-precision implemen-
tation, and improves the overall timings by about 50%.

All timings were done on a Pentium IV running at 3 GHz.

27

11 Conclusions

We have presented the eta pairing approach to compute pairings on supersingular
curves. This approach generalises and clarifies the Duursma-Lee algorithm. We have
provided full examples of the method in characteristic 2 for genus 1 and 2, which turn
out to be very efficiently implementable.

12 Acknowledgements

We are grateful to Alice Silverberg for discussions regarding section 9, to Eunjeong
Lee for pointing out a missing validity condition for theorem 1, and to Tanja Lange for
some comments.

References

1. P. S. L. M. Barreto. A note on efficient computation of cube roots in characteristic 3. Cryptol-
ogy ePrint Archive, Report 2004/305, 2004. Available fromhttp://eprint.iacr.org/
2004/305.

2. P. S. L. M. Barreto. The well-tempered pairing. In8th Workshop on Elliptic Curve Cryptog-
raphy – ECC’2004, Bochum, Germany, 2004. Invited talk.

3. P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-based
cryptosystems. InAdvances in Cryptology – Crypto’2002, volume 2442 ofLecture Notes in
Computer Science, pages 354–368. Springer-Verlag, 2002.

4. P. S. L. M. Barreto, B. Lynn, and M. Scott. Efficient implementation of pairing-based cryp-
tosystems.Journal of Cryptology, 17(4):321–334, 2004.

5. P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In
Selected Areas in Cryptography – SAC’2005, Lecture Notes in Computer Science. Springer-
Verlag, 2005. to appear.

6. I. F. Blake, G. Seroussi, and N. P. Smart.Advances in elliptic curve cryptography. Cam-
bridge, 2005.

7. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing.SIAM Journal
of Computing, 32(3):586–615, 2003.

8. D. G. Cantor. Computing in the jacobian of a hyperelliptic curve.Math. Comp., 48(177):95–
101, 1987.

9. R. Dutta, R. Barua, and P. Sarkar. Pairing-based cryptography: A survey. Cryptology ePrint
Archive, Report 2004/064, 2004.http://eprint.iacr.org/2004/064.

10. I. Duursma and H.-S. Lee. Tate pairing implementation for hyperelliptic curvesy2 = xp− x+
d. In Advances in Cryptology – Asiacrypt’2003, volume 2894 ofLecture Notes in Computer
Science, pages 111–123. Springer-Verlag, 2003.

11. I. Duursma and K. Sakurai. Efficient algorithms for the jacobian variety of hyperelliptic
curvesy2 = xp−x+1 over a finite field of odd characteristicp. In Coding theory, cryptography
and related areas (Guanajuato, 1998), pages 73–89. Springer-Verlag, 2000.

12. K. Fong, D. Hankerson, J. López, and A. Menezes. Field inversion and point halving revis-
ited. Technical report CORR 2003-18, University of Waterloo, 2002.

13. G. Frey and T. Lange. Fast bilinear maps from the tate-lichtenbaum pairing on hyperelliptic
curves, 2005.

14. G. Frey and H.-G. R̈uck. A remark concerningm-divisibility and the discrete logarithm
problem in the divisor class group of curves.Math. Comp., 52:865–874, 1994.

28

15. S. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing. InAlgorithmic
Number Theory – ANTS V, volume 2369 ofLecture Notes in Computer Science, pages 324–
337. Springer-Verlag, 2002.

16. S. D. Galbraith. Supersingular curves in cryptography. InASIACRYPT 2001, volume 2248
of Lecture Notes in Computer Science, pages 495–513. Springer-Verlag, 2001.

17. R. Granger, D. Page, and M. Stam. On small characteristic algebraic tori in pairing-based
cryptography. Cryptology ePrint Archive, Report 2004/132, 2004.

18. M. Katagi, T. Akishita, I. Kitamura, and T. Takagi. Some improved algorithms for hyper-
elliptic curve cryptosystems using degenerate divisors. InICISC 2004, volume 3506, pages
296–312. Springer-Verlag, 2005.

19. M. Katagi, I. Kitamura, T. Akishita, and T. Takagi. Novel efficient implementations of hyper-
elliptic curve cryptosystems using degenerate divisors. InInformation Security Applications
– WISA’2004, volume 3325 ofLecture Notes in Computer Science, pages 345–359. Springer-
Verlag, 2005.

20. N. Koblitz. Hyperelliptic cryptosystems.Journal of Cryptology, 1(3):139–150, 1989.
21. S. Kwon. Efficient Tate pairing computation for supersingular elliptic curves over binary

fields. Cryptology ePrint Archive, Report 2004/303, 2004. http://eprint.iacr.org/
2004/303.

22. T. Lange. Formulae for arithmetic on genus 2 hyperelliptic curves. InApplicable Alge-
bra in Engineering, Communication and Computing, Online publication. Springer-Verlag,
2004. http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.
1007/s0%0200-004-0154-8.

23. T. Lange and M. Stevens. Efficient doubling on genus two curves over binary fields. In
Selected Areas in Cryptography – SAC’2004, volume 3357 ofLecture Notes in Computer
Science, pages 170–181. Springer-Verlag, 2004.

24. V. S. Miller. Short programs for functions on curves. Unpublished manuscript, 1986.http:

//crypto.stanford.edu/miller/miller.pdf.
25. K. Rubin and A. Silverberg. Supersingular abelian varieties in cryptology. InAdvances

in Cryptology – Crypto’2002, volume 2442 ofLecture Notes in Computer Science, pages
336–353. Springer-Verlag, 2002.

26. K. Rubin and A. Silverberg. Using primitive subgroups to do more with fewer bits. In
Algorithmic Number Theory – ANTS VI, volume 3076 ofLecture Notes in Computer Science,
pages 18–41. Springer-Verlag, 2004.

27. M. Scott. Faster identity based encryption.Electronics Letters, 40(14):861, 2004.
28. M. Scott and P. Barreto. Compressed pairings. InAdvances in Cryptology – Crypto’ 2004,

volume 3152 ofLecture Notes in Computer Science, pages 140–156. Springer-Verlag, 2004.
Also available fromhttp://eprint.iacr.org/2004/032/.

29. A. Silverberg. Compression for trace zero subgroups of elliptic curves. Preprint, 2004. Avail-
able fromhttp://www.math.uci.edu/˜asilverb/bibliography/compress.pdf.

30. J. H. Silverman.The Arithmetic of Elliptic Curves. Number 106 in Graduate Texts in Math-
ematics. Springer-Verlag, Berlin, Germany, 1986.

A The hyperelliptic function f8,P

We now derive an explicit expression for the functionf8,P needed for Miller’s algorithm
on the supersingular hyperelliptic curveCb : y2 + y = x5 + x3 + b.

Let P = (xP, yP). We will consider divisorsDn = n(P) − n(∞). To achieve this we
will consider thereduced divisor (via Cantor’s algorithm)D′n which is equivalent to
Dn. We will consider functions such thatDn = D′n + (fn).

29

The divisorD1 = (P) − (∞) has Mumford representation

(a1(x),b1(x)) = (x+ xP, yP).

We take the functionf1 = 1.
Now considerD2 = 2(P) − 2(∞). One can show that this divisor has Mumford

representation (a2(x),b2(x)) = (x2 + x2
P, (x

4
P + x2

P)x+ y2
P). This divisor is reduced (so no

reduction step in Cantor’s algorithm is performed). HenceD′2 = D2 and so the function
f2 may be chosen to be 1.

Now considerD4 = 4(P) − 4(∞). The Mumford representation (after performing
the composition step of Cantor’s algorithm) is

(a4(x),b4(x)) = (x4 + x4
P, x

3 + (x8
P + x4

P)x2 + (x4
P)x+ y4

P).

This divisor is not reduced. We have (b2
4 + b4 + x5 + x3 + b)/a4(x) = a′4(x) = x2 + x+

(x16
P + x8

P) andb′4(x) := b4(x) + 1 (moda′4(x)) = (x16
P + 1)x+ (y8

P + x8
P + x24

P + 1).
We must consider functions and divisors. The divisorD4 is equivalent to the divisor

D′4 = E − 2(∞) whereE is effective. The divisorD′4 has the Mumford representation
(a′4(x),b′4(x)) given above. Denote byE the ‘negative’ ofE. The functiona4(x) has
divisor 4(P) + 4(P) − 8(∞) while the functiona′4(x) has divisorE + E − 4(∞). The
function y + b4(x) has divisor 4(P) + E − 6(∞) while the functiony + b4(x) + 1 has
divisor 4(P) + E − 6(∞). It follows that

((y+ b4(x))/a′4(x)) = 4(P) − E − 2(∞).

Hence we definef4 = (y+ b4(x))/a′4(x) and we haveD4 = D′4 + (f4).
Now for the final step (thankfully!). We double the divisorD′4 using Cantor’s com-

position rule to obtainD′′8 = 2E−4(∞). Note thatD8 = 2D4 = 2(D′4+(f4)) = D′′8 +(f 2
4).

One computes the Mumford representation ofD′′8 to be

(a′′8 (x),b′′8 (x)) = (a′4(x)2, (x32
P + 1)x2 + (x32

P + x16
P)x+ (y16

P + x16
P + x48

P + 1))

and one can check that ((b′′8)2 + b′′8 + f (x))/a′′8 (x) = a′8(x) = (x + (x64
P + 1)). Thus,

b′8(x) := b′′8 (x)+1 (moda′8(x)) = y64
P + x128

P +1. Define [8]P = (x64
P +1, y64

P + x128
P +1).

We obtainD′8 = ([8]P) − (∞) which confirms the octupling formula for the point [8]P.
Algorithm 5 describes divisor octupling in detail.

We now consider principal divisors. As before,y+ b′′8 (x) has divisor 2E + ([8]P) −
5(∞) and (a′8(x)) = ([8]P) + ([8]P) − 2(∞). Hence we haveD′′8 = D′8 + (f ′8) where
f ′8 = (y+ b′′8 (x))/a′8(x).

Putting it all together, we get

(f8) = 8(P) − ([8]P) − 7(∞)

where

f8 =

(
y+ b4(x)

a′4(x)

)2 y+ b′′8 (x)

a′8(x)
.

30

Algorithm 5 Octupling of a divisor [u, v]
I: divisor [u, v].
O: [u′, v′] = 8[u, v].
1: if deg(u) = 2 then . [u, v] = [x2 + u1x+ u0, v1x+ v0]
2: [u′, v′] ← [x2 + u64

1 x+ (u1 + u0 + 1)64, (v1 + u1)64x+ (u1 + u0 + v1 + v0 + 1)64]
3: else ifdeg(u) = 1 then . [u, v] = [x+ u0, v0]
4: [u′, v′] ← [x+ (u0 + 1)64, (v0 + u2

0 + 1)64]
5: else. [u, v] = [1,0]
6: [u′, v′] ← [1,0]
7: end if

B Efficient implementation of pairings in genus 2

B.1 Precomputation

We will precompute a table of powers ofxP andyP (these are the initial input values for
the pointP) labelled as

x(i)
P = π

i(xP) = x2i

P , and y(i)
P = π

i(yP) = y2i

P

for i = 0,1, . . . ,m− 1.
We focus on computing the termf8,P(ψ(Q)) (i.e. we do not bring Frobenius actions

into this computation).
Note that, at loop iterationi, the current value of thex-coordinate of [23i]P can be

written in terms of the precomputed initial values as

x(6i)
P + γ1(i)

whereγ1(i) is 1 wheni is odd and 0 otherwise. Similarly, the current value of they-
coordinate of [23i]P is

y(6i)
P + γ1(i)x(6i+1)

P + γ3(i)

whereγ3(i) = 1 wheni ≡ 1,2 (mod 4) and 0 otherwise.
Obviously, in the above the exponents 6i in x(6i)

P are taken modulom. One sees that
they wrap around rapidly.

B.2 Theα factor

Write α = (y+ b4(x))2 ◦ ψ as a function of (xQ, yQ). We have (y+ b4(x)) ◦ ψ =

y+ s2x2 + s1x+ s0 + (x+ w)3 + (x8
P + x4

P)(x+ w)2 + (x4
P)(x+ w) + y4

P

and squaring gives

y2+ s2
2x4+ s2

1x2+ s2
0+ x6+ x4w2+ x2w4+w6+ (x16

P + x8
P)(x4+w4)+ (x8

P)(x2+w2)+ y8
P.

Now, s2
2 = (w4 + 1)2 = w ands2

1 = (w2 + w4)2 = w4 + w+ 1. Also,s2
0 = s0 + w5 + w3.

31

Expressing as a 12-tuple we getα as follows: The first component is

y2 + x2 + x6 + 1+ (x16
P + x8

P)x4 + x8
Px2 + y8

P

and the remaining components are

(x4 + x2, x4 + 1+ x8
P,1+ 1, x2 + x2 + x16

P + x8
P,1+ 1,1,0,0,0,0,0)

which can be slightly simplified.
Finally, we want to evaluate this on (xQ, yQ) and to replace the current value forxP

with the precomputed values. We obtain the 12-tuple with first component

y2
Q + x6

Q + (x(6i+4)
P + x(6i+3)

P)x4
Q + (x(6i+3)

P + 1+ γ1(i))x2
Q + y(6i+3)

P + γ1(i)x(6i+4)
P + γ3(i) + 1

and remaining components

(x4
Q + x2

Q, x
4
Q + x(6i+3)

P + γ1(i) + 1,0, x(6i+4)
P + x(6i+3)

P ,0,1,0,0,0,0,0).

B.3 Theβ factor

We then do a similar thing forβ = (y+ b′′8) ◦ ψ. We have

β = y+ s2x2 + s1x+ s0 + (x32
P + 1)(x+ w)2 + (x32

P + x16
P)(x+ w) + (y16

P + x16
P + x48

P + 1).

We expands2 = 1+w4 etc and writex16
P + x48

P = x16
P (1+ x32

P). Hence,β can be expressed
as a 12-tuple with first component

y+ (x32
P)x2 + (x32

P + x16
P)x+ y16

P + x16
P (1+ x32

P) + 1

and remaining components

(x32
P + x16

P , x+ x32
P + 1,0, x2 + x,0,1,0,0,0,0,0).

Finally, we substitute (x, y) = (xQ, yQ) and insert the precomputed valuesxP =

x(6i)
P + γ1(i) andyP = y(6i)

P + γ1(i)x(6i+1)
P + γ3(i). Using the formulaγ1(i)(1 + γ1(i)) = 0

gives the 12-tuple with first component

yQ + (x(6i+5)
P + γ1(i))x2

Q + (x(6i+5)
P + x(6i+4)

P)xQ

+y(6i+4)
P + x(6i+4)

P

(
x(6i+5)

P + γ1(i) + 1
)
+ γ3(i) + 1.

and remaining components

(x(6i+5)
P + x(6i+4)

P , xQ + x(6i+5)
P + γ1(i) + 1,0, x2

Q + xQ,0,1,0,0,0,0,0).

It remains to multiply theα andβ together efficiently. But first we consider how to
absorb the powers of 8 into the equations.

32

B.4 Absorbing powers of 8

We break the computation of the eta pairingηT(P,Q) into two parts, the main part is the
loop corresponding to the (m− 1)/2 octuplings, and the secondary part is the final two
doublings and addition. The main part can be expressed as the product

(m−3)/2∏
i=0

f8,23i P(ψ(Q))23(m−3−2i)/2

where f8,23i P = αβ as described previously. The goal of this section is to write this as

(m−3)/2∏
i=0

fi

where eachfi is an equation which has the 2-power Frobenius action already brought
into the equation. Using the formulae forα andβ above we will computeα23(m−3−2i)/2

and
β23(m−3−2i)/2

.
To achieve this efficiently requires precomputation of the 2-power Frobenius orbit

of the pointQ, so define fori = 0,1, . . . ,m− 1

x(i)
Q = x2i

Q and y(i)
Q = y2i

Q.

The most delicate part of the argument is handling howw and s0 behave under
powering by 23(m−3−2i)/2. Recall thatw8 = w+ 1 from which we deduce

s8
0 = s0 + w2

s82

0 = s0 + 1
s83

0 = s0 + w2 + 1
(5)

Note thatm is coprime to 12 and so is odd. We havew8 = w+ 1 and so, since (m− 3−
2i)/2 ≡ i (mod 2) we havew23(m−3−2i)/2

= w+ γ1(i). The same formula holds whenw is
replaced byw2 or w4. For s0 note that ifm≡ 1 (mod 4) then

s23(m−3−2i)/2

0 = s0 + γ1(i)w2 + γ3(i)

while if m≡ 3 (mod 4) then

s23(m−3−2i)/2

0 = s0 + γ1(i)w2 + γ3(i) + 1.

We denote byγ4(m, i) the valueγ3(i) whenm≡ 1 (mod 4) andγ3(i) + 1 otherwise.

B.5 Theα factor

The basic shape of the termα will be similar to previously, except a few extra terms due
to equation (5). The process is simple, just bring the 2-power operation into the formula
and simplify the ‘exponents’.

33

The “constant” term will be

y((3m−7−6i)/2)
Q + (x((3m−7−6i)/2)

Q)3 + (x((3m−1+6i)/2)
P + x((3m−3+6i)/2)

P)x((3m−6i−5)/2)
Q +

(x((3m−3+6i)/2)
P + 1+ γ1(i))x((3m−7−6i)/2)

Q + y((3m−3+6i)/2)
P + γ1(i)x((3m−1+6i)/2)

P + γ3(i) + 1

plus when (m−3−2i)/2 is odd (i.e., wheni is odd) another term must be added (coming
from the fact that (w2 j)8 = w2 j + 1 and thes0 term). We write this other term as

γ1(i)
(
x(3m−7−6i)/2)

Q + 1+ γ1(i) + x((3m−1+6i)/2)
P

)
+ γ4(m, i).

We can applyγ1(i)(1 + γ1(i)) = 0, cancel various terms and simplify the cubing of
x((3m−7−6i)/2)

Q . The expression simplifies to

y((3m−7−6i)/2)
Q + (x((3m−1+6i)/2)

P + x((3m−3+6i)/2)
P)x((3m−5−6i)/2)

Q +

(x((3m−3+6i)/2)
P + 1+ x((3m−5−6i)/2)

Q)x((3m−7−6i)/2)
Q + y((3m−3+6i)/2)

P + γ5(i)

whereγ5(i) = 1 if i ≡ 1 (mod 4) and 0 otherwise.
The remaining terms are (note that there is an additionalγ1(i)w2 term due to thes0

term):

(x((3m−5−6i)/2)
Q + x((3m−7−6i)/2)

Q)w+ (x((3m−5−6i)/2)
Q + x((3m−3+6i)/2)

P + 1)w2

+(x((3m−1+6i)/2)
P + x((3m−3+6i)/2)

P)w4 + s0

As usual, the indices inside round brackets should be reduced modulom to the range
{0,1, . . . ,m− 1}.

B.6 Theβ factor

We now consider theβ factor. One sees that the “constant term” ofβ23((m−3−2i)/2)
is

y((3m−9−6i)/2)
Q + (x((3m+1+6i)/2)

P + γ1(i))x((3m−7−6i)/2)
Q + (x((3m+1+6i)/2)

P

+x((3m−1+6i)/2)
P)x((3m−9−6i)/2)

Q + y((3m−1+6i)/2)
P

+x((3m−1+6i)/2)
P (x((3m+1+6i)/2)

P + γ1(i) + 1)+ γ3(i) + 1

plus
γ1(i)

(
x((3m−1+6i)/2)

P + x((3m−7−6i)/2)
Q + γ1(i) + 1

)
+ γ4(m, i).

This simplifies to

y((3m−9−6i)/2)
Q + (x((3m+1+6i)/2)

P + x((3m−1+6i)/2)
P)x((3m−9−6i)/2)

Q + y((3m−1+6i)/2)
P

+x((3m+1+6i)/2)
P (x((3m−1+6i)/2)

P + x((3m−7−6i)/2)
Q) + x((3m−1+6i)/2)

P + γ5(i)

The remaining terms are (again, including aγ1(i)w2 term)

(x((3m+1+6i)/2)
P + x((3m−1+6i)/2)

P)w+ (x((3m+1+6i)/2)
P + x((3m−9−6i)/2)

Q + 1)w2

+(x((3m−7−6i)/2)
Q + x((3m−9−6i)/2)

Q)w4 + s0

34

B.7 Simplifying the final operations

After the loop of (m − 1)/2 iterations, it remains to perform two doublings and an
addition. For the case in which the input divisors are both of the formDi = (Pi) −
(∞) the final addition can be skipped as it has no impact on the function. Note that
(2(3m+1)/2 + 1)D1 = φ(D1), whereφ(D1) = (x+ 1, y+ x2 + 1)− (∞). Denote byD′1 the
reduced divisor 2(3m+1)/2D1. D′1 is equivalent toφ(D1) − D1 = (φ(P)) − (P).

Now, letv be the vertical line throughP and−P. So (v) = (P) + (−P) − 2(∞). Then

(φ(P)) − (P) + (v) = (φ(P)) + (−P) − 2(∞)

Hence, by the uniqueness of the reduced divisors in Mumford representation we have

D′ = (φ(P)) + (−P) − 2(∞).

As one of the points onD′ is −P, the composition stage of Cantor’s algorithm immedi-
ately cancelsP and−P using a vertical line function. As we don’t need to know what the
“current” divisor is before the addition, we can also skip the two doublings. We know
from Appendix A that the mumford representation of the divisorD = 4(P) − 4(∞) is
(a4(x),b4(x)) = (x4+ x4

P, x
3+ (x8

P+ x4
P)x2+ (x4

P)x+ y4
P). So, we need to extract the point

on the divisor after the (m− 1)/2 octupling phase, square the function twice, and then
multiply it by the function defined below;

y+ b4(x) = y+ x3 + (x8
P + x4

P)x2 + (x4
P)x+ y4

P

Building the distortion map into the formula gives us a constant term;

y+ x2(1+ x+ x8
P + x4

P) + x4
Px+ y4

P

and the remaining terms are;

(x2 + x4
P, x

8
P + x4

P,1, x
2 + x,0,1,0,0,0,0,0).

When we are working with the general divisor case, we cannot skip the final addition
as we can for the simple divisor case. For both the doublings and the addition, we need
to evaluate the points on the second divisor at the functiony + s1x3 + l2x2 + l1x + l0,
wheres1, l2, l1, l0 come from Cantor’s algorithm. After building the distortion map into
this formula, we get the “constant” term:

(y+ x2 + x(s1x2 + l1) + l2x2 + l0)

and the remaining terms are;

(s1x2 + l1, x+ s1x+ l2, s1, x
2 + x,0,1,0,0,0,0).

35

