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Abstract. We present a general technique for ttigcgent computation of pair-

ings on supersingular Abelian varieties. This formulation, which we call the eta
pairing, generalises results of Duursma and Lee for computing the Tate pairing
on supersingular elliptic curves in characteristic three.

We then show how our general technique leads to a new algorithm which is about
twice as fast as the Duursma-Lee method.

These ideas are then used for elliptic and hyperelliptic curves in characteristic 2
with very dficient results. In particular, the hyperelliptic case is faster than all
previously known pairing algorithms.
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1 Introduction

Efficient computation of pairings is essential to the large and ever growing area of
pairing-based cryptosystems (see e.g. Chapter 10 of [6] or [9] for a comprehensive
overview).

There has been a lot of work orffieient implementation of pairings on elliptic
curves. Supersingular curves lead to moffeceent implementations in terms of pro-
cessing speed [3, 15,10] and bandwidth requirements [28, 17] than the best available
algorithms for ordinary curves [4]. Pairings on hyperelliptic curves have received con-
siderably less attention than their elliptic counterparts. The best results are by Duursma
and Lee [10] for a very special family of supersingular hyperelliptic curves. These re-
sults suggest that supersingular hyperelliptic curves may provide sinflileiency to
elliptic curves, but these issues have not been at all clear until now.



We tackle this problem by providing criteria under which pairings on supersingu-
lar hyperelliptic curves arefgciently computable. Our method is fairly general and
includes that of Duursma-Lee [10] as a particular case. We also obtain a significant im-
provement over previous methods, even in the characteristic three case. We illustrate the
method by describingfBcient pairing algorithms for supersingular genus 1 and genus 2
curves in characteristic 2.

This paper is organised as follows. Section 2 gives a brief summary on standard
techniques for the fecient computation of the Tate pairing. Section 3 discusses the
contributions of Duursma and Lee for certain supersingular curves, and section 4 gener-
alises those contributions using the simpler, unified approaetagdairings Section 5
shows how the Duursma-Lee results fit into the eta pairing framework and then gives a
significant improvement. Sections 6 and 7 explore the consequences of the eta pairing
approach for certain elliptic curves and genus 2 curves in characteristic 2. We compare
our pairings on genus 2 curves with the work of Rubin and Silverberg in section 9, and
present some experimental results in section 10. Finally, we draw our conclusions in
section 11.

Parts of this work were presented by one of the authors [2] at the ECC'2004 con-
ference on September 20-22, 2004. Subsequently and independently, on November, 14
2004, a paper [21] containing some results related to those in this paper was posted on
the ePrint archive.

2 The Tate pairing on supersingular curves

Let C be a smooth, projective, absolutely irreducible curve over a finite Keld F.
We denote the degree zero divisor class groug afver K by Pic*.f(C). Letr be an
integer such that | #Picg(C). We denote by PEJ(C)[r] the divisor classes of order
dividing r.

Let D; be a divisor representing a class in gi('ﬁ:)[r] and letD, be a divisor orC
defined oveK such that the supports & andD, are disjoint. SinceD is principal
there is a functiorf on C defined oveK such that {) = rD;. The Tate pairing (also
called the Tate-Lichtenbaum pairing) is

(D1, D2)r = f(D2).

One can show (see Frey andiék [14]) that the Tate pairing is a well-defined, non-
degenerate, bilinear pairing

Pics (C)[r] x Pid; (C)/rPics (C) — K*/(K")".

The fact that the Tate pairing is only defined up tth powers is often undesirable.
To obtain a unique value, one defines teducedpairing

k_
(D1, Dy) = (Dy, D V",

Throughout the paper we will refer to the extra powering required to compute the re-
duced pairing as thinal exponentiation



One very important property of the reduced pairing is the following [15]N.et hr
for someh. ) ;
&(D1, D;) = (D1, Do) V" = (Dy, Do) M. (1)

2.1 Miller’s algorithm in the elliptic case

We recall how the Tate pairing can be computed in polynomial time using Miller’s
algorithm [24]. For simplicity we restrict to the case of elliptic curves. The divisor
class group of an elliptic curve is isomorphic to the curve itself, so all divisors may be
assumed to have the forbh = (P) — (o).

Let E be an elliptic curve oveF, and letr | #E(F) be a prime. Suppose the em-
bedding degree ik (i.e., k is the smallest positive integer such that (g — 1)). Let
P € E[r] and Q € E(Fy), where typicallyQ is the image of some multiple ¢? un-
der a non-rational endomorphism called a distortion map. We constriiGt-@ational
divisor D equivalent to Q) — (o) by taking a random poirRR € E(Fy) and defining
D =(Q+R) - (R). We aim to compute

&P, Q) = &(P) — (), D).

For every integen and pointP there is a functiorf, p such that
(fop) = n(P) — ([N]P) — (n— 1)(c0).

Miller’s algorithm builds up these functionfs p according to the following formula: If
| andv are the lines which arise in the addition rule for addinfP[and |m]P then we
have

fn+n"LP = fn,P mel/V~

The pairing valug(P) — (c0), D), is f; p(D).

Miller’s algorithm is explicitly described in Algorithm 1. Note that the addition in
the final iteration is simplified in thdtis a vertical line and disappears.

Miller's algorithm can be generalised to general divisor class groups. The basic
algorithm is the same, but the functions are more complicated.

2.2 Improvements to Miller’s algorithm

Several improved implementation techniques to compute the reduced Tate pairing on
supersingular elliptic curves have been proposed [3, 15]. These include:

Exploiting properties of the field of definition: It is typical in pairing applications
to pair a point defined ovef, with a point defined oveFy . Hence it makes sense to
represenFy as an extension dfy and to try to simplify the operations ify as much
as possible.
The final exponentiation eliminates terms defined over subfields. Hence, terms de-
fined over subfields can be omitted from the calculations. For examXe; ifl then
the pointR can be chosen to be defined over a subfield, in which case all téRjrend
v(R) may be ignored.



Algorithm 1 Miller’s algorithm (base 2)

IneuT: T, P, Q + R, R, where the binary representationrab {r;}.
Ourrut: (P, Q)

1. TP

2. f«1

3: for i « [log,(r)] — 1 downto O do

4: > Calculate line$ andv in doublingT
5: T« [2]T
6: f « f2.1(Q+ RV(R/(V(Q + RI(R)
7: if r; = 1then
8: > Calculate line$ andvin addingPto T
9: T<T+P
10: f—f-1(Q+RV(R)/(V(Q+RI(R)
11: end if
12: end for
13: return f

Changing the base in Miller’s algorithm: Miller’s algorithm is usually presented as a
loop through the binary expansion of the group order. It is sometimes rftrieset to

use other bases, for example to write the group order in base three when implementing
pairings in characteristic three (in which case, in line 6 of Miller’s algorithm above, we
changef? to f2 and there are now two cases in the addition step).

Replacing divisors by points: As explained above, the poiRtcan be ignored. In fact,
one can choosR = o by [3, Theorem 1]. Hence, the reduced pairing can be computed
as

&P, Q) = frp(QU D,

where the functiorf, is now evaluated on pointrather than on a divisor.

Exploiting the form of the distortion maps and denominator elimination: If the
distortion map is chosen so that tlkecoordinates always lies in a subfield, then all
termsv(Q) may be eliminated. As a result there are no longer any divisions in Miller's
algorithm.

Note that a distortion map with this property can always be obtained by combining
with a map into the trace zero subgroup (see [27] for an example of this).

Hamming weight/group order issues: Miller's algorithm to computef, involves a
number of arithmetic operations proportional to the Hamming weight afd for this
reason it is advantageous to choossith low Hamming weight (with respect to the
base being used) whenever possible. In many cases it is worth using a small multiple of
r which has low Hamming weight and exploiting formula (1).

Speeding up the final exponentiation: The naive way to compute the final powering
to (g¢ — 1)/N (for some multipleN of r) has cubic complexity. However, this exponent



has a rather simple structure for supersingular curves when one chivtség the full

curve order rather than a factothereof. By carefully exploiting that structure, one can
replace the powering by a few applications of the Frobenius, some multiplications, and
one inversion. Details can be found in [3, Appendix A.2].

Pairing value compression: It is possible to reduce the bandwidth requirements of
pairing values by storing and manipulating traces [28], or by working on a torus [17].
These methods compress pairing values to half their usual size, or to a third thereof in
the case of supersingular elliptic curves with embedding degree 6 in characteristic 3,
supersingular genus 2 curves with embedding degree 12 in characteristic 2, or ordinary
BN elliptic curves [5] with embedding degree 12 in large prime characteristic.

The techniques mentioned above give impressive results for pairing implementa-
tion. For the remainder of the paper we focus on further improvements. We consider
only supersingular curves ovEy with embedding degrele> 1 and with suitable dis-
tortion mapsy. We will always be computing a modified pairing

&(P.Q) = (Py(Q)
whereP andQ are defined oveF,, or its reduced versiog(P, Q) = & (P, Q)@-1r,

3 The Duursma-Lee techniques

Duursma and Lee [10] gave a significant improvement to the computation of pairings
on curves of the forny? = xP — x + d overFy wherep > 3 and (n, 2p) = 1 (these
curves have embedding degreg).2n particular, their results apply to the case of the
embedding degree 6 curve in characteristic three.

One crucial aspect of [10] is that they replace the group artgrthe valuep™?+ 1
which has Hamming weight 2 in bage Also, the final exponentiation is to the power
(P?™P - 1)/(p°™ + 1) = p™P — 1, which is simply computing a Frobenius conjugation
and a division. Hence, both the final exponentiation and the main body of Miller's
algorithm are simplified, at the expense of extending the main loop rindt@rations to
mpiterations. Duursma and Lee show the surprising fact that this loop can be shortened
from mpiterations tomiterations.

A careful reading of [10] shows that it contains four independent contributions:

1. A nice choice of function for computingD in the divisor class group;

2. The definition of a pairing opoints(in g > 1). In other words, they propose the
use of degenerate divisors rather than general divisors;

3. A shorter loop than would be expected for the given group order;

4. Incorporating Frobenius operations directly into the formulae (this has a huge sav-
ing, since it removes the exponentiation fofo the powerp in line 6 of Miller’s
algorithm).

Generalising points 1, 2 and 4 is relatively straightforward. In this paper we show
how to generalise the loop shortening idea to many other cases.



4 The eta pairing approach

Let C be a curve ovef, (whereq = p™) with a single point at infinity. In all the
examples in this pape€ will be an elliptic or hyperelliptic curve. We will always
assume tha€ is supersingular, with even embedding degkee 1, and that there
is a distortion mapy which allows denominator elimination (i.e., # € C(Fg) then
(P) € C(Fy) hasx-coordinate defined ovéfty.-).

Let D, D’ be reduced divisors o@ defined oveify which represent divisor classes
of order dividingN. In all examples in this paper, these divisors will be represented
using the Mumford notation (see Cantor [8]) which, in the elliptic curve case, corre-
sponds to just a single point. L&t = (g — 1)/N. We want to iciently compute the
Tate pairing (including the final exponentiatiof), (D))

Let n € N. We use the notatiol, for a reduced divisor equivalent t@D and
fop for a function whose divisor iaD — D, — m(e0) for somem € N. In the elliptic
case we hav® = (P) — (c0) and soD,, = (nP) — (c0) and f,p is the Miller function
introduced in subsection 2.1 .#hfe Z with n < 0 thennD = (-n)(-D). We therefore
write D, for a divisor equivalent to{n)(—D) and writef,p for a function with divisor
(=n)(-D) - (Dy) — m(c0) for somem. The Tate pairing is defined to k®, D)y =
fuo(D').

An important observation is that, for many supersingular curves, multiplication by
p has an extremely special form. This has already been exploited by many authors. In
this paper we will be concerned with cases where multiplication by some power of
can be represented by an automorphism on the curve (which we wijh)call

Definition 1. For T € Z we define theta pairingto be

n1(D, D) = frp((D)). )

In general, this definition will not give a non-degenerate, bilinear pairing. The aim
of this paper is to explain some cases where the resulting pairing is non-degenerate and
bilinear. The key property of the eta pairing is that we do not necessarily demand that
TD is equivalent to zero. The aim is to choose value¥ afhich are smaller thail.

This is a generalisation of the loop reduction idea of Duursma and Lee.

As we will see, the Duursma-Lee method arises from the chbieqq in the above
definition while our improved version uses the choice- q — N. In the later part of
the paper, when discussing running times, we will drop the subscript in th& casg
and refer to the pairing ag Hence, the notationr will generally be reserved for the
improved version.

The following theorem is the main result of this paper. It relates the eta pairing to
the Tate pairing for certain values @f From this relation one immediately deduces
(as long ad_,a andT are coprime td\) that the eta pairing (for these valuesTofis
non-degenerate and bilinear.

Theorem 1. Let C be a supersingular curve ovigg with distortion mapy and embed-
ding degree k as above. Let D be a divisor on C defined Byavith order dividing
N € N and let M= (g — 1)/N. Suppose E Z is such that



1. TD = y(D) in the divisor class group whergis an automorphism of C which is
defined ovefy.
2. y andy satisfy the conditioh

wWAQ) = ¢(Q ®3)

for all points Qe C(Fy).
3. T*+1=LN forsome & Nand Le Z.
4. T =q+cN for some & Z.

Then L .
(<D, w(@M) " = (rr (D, DY)

4.1 Proof of Theorem 1

We split the proof into a number of lemmas. _
First note that, sinc& D is equivalent toy(D) we haveD+: = y'(D). Write d for the
gzag;ee of the finite part db. ThenD = 3¢, (P;) — d(c0) and soDri = £9,(¥'(P))) -
).
The key result is the following.

Lemma 1. With notation as above and D any divisor such that TD is equivalent to
v(D). Then

fro@ (D)™ = frrpo(D)HM.

Proof. We have frp) = TD - Dt — (T — 1)d(e0) and (f{D) = T(frp) and (fr1p) =
TDr — Dy2 — (T — 1)d(e0).

We now use the assumption tHBD = Dt = y(D). The pullback (see Silverman
[30] Chapter Il page 33) satisfies

% [Z np(P>] =D >0 e (S)(S) = ) ey H(P).
P P sey(P) P
Hence
¥ (frrp) = ¥"(TDr — Dz — (T = 1)d(e0))

=TD- Dt — (T - 1)d(c0)

= (frp).
Also, (Silverman [30] pages 33-34)

Y (frrp) = (¥ frp) = (frrp 0 y).

Hence, we have (up to a scalar multiplef)

frrpoy = frp.

4 An alternative formulation of this condition i8/™ = y wheren is theg-power Frobenius and
Y™ means the map obtained by applyintp the codficients of the mag.



Evaluating at/(D’) and raising to the powev (which kills F;) we get

frro(y WD) = frpW (D).

Consider the left hand side of the statement of the Lemma

fro@(@N™ = (Frrol @)™

Now use the fact thaf = q+ cN and thatNM = (g — 1) so anything raised to the
powerNM is 1. We therefore have that the above is equal to

(frro(y (D)™

Interpreting a power o as action by Frobenius and using the fact thatp, y andD’
are defined oveF, gives

(frro(y (@D MM
By condition (3),yy% = ¢ so we get
frro(w (D)™
which proves the result.
Lemma 2. With notation as above
(frep) = (fp flyp -« frrasp).
Proof. We have frap) = T2D — Dta — (T2 — 1)d(0). Hence
(fTT,gl fTT,:E) o+ frraap) = T*(frp) + T2 (frrp) + -+ - + (fr7a1p)
=T*YTD- Dy — (T - 1)d(c0)) + T**T Dy - D2

~(T = 1)d(c0)) + -+ - + T Dras — Dya — (T = 1)d(c0)
= T%D - Dra — (T? - 1)d(c0)

which proves the result.
We can now obtain the statement of the theorem:
Lemma 3. With notation as above
(fuo@@MM = (Fro@@MM.

Proof. Note thatf,\ﬁ’D = funp = frayrp. SinceT@+1 = LN we know that T2+1)D = 0,
which impliesT?D = -D and so (up to scalar i)

frasip = frap-v

wherev is the vertical line througld and-D.



Evaluating aiy(D’) and raising to the powe¥l we have (sincg admits denomina-
tor elimination)

fuo @D NM" = frap@(ONY - V(DN = frap (D)™,

By Lemma 2 this is

Q
[y

frrp@(@)MT.

J

Il
o

Now, substitutingl /D for D in Lemma 1 implies that

fT,TJ'D(l//(D/))MTailij = fT’\,/gail-

Hence the result follows.

5 Elliptic curves in characteristic three

We first show how the eta pairing idea explains the loop shortening used by Duursma
and Lee.

The elliptic curve of interestis E : y* = x3 — x + b overFa» whereb = +1 and
gcd(m, 6) = 1. The number of points on this curve is given in Table 1. The tripling
formula (see [11,3]) is [BKY) = ¢7%(x,y) wherer is the 3-power Frobenius and
#(x,y) = (x—Db, -y). Note thaip?(x,y) = (x— 2b,y), ¢° = —1 etc. The distortion map is
w(x,y) = (o — X, oY) whereo? = —1 andp® = p + b (and thup® = p + 2b, o = p).

Table 1.Order of the curvee : y2 = x* — X + b overFam, b = +1.

H#E(Fam) condition
3"+ 1+b3™D2m=111 (mod 12
3"+ 1-b3m™D2Im=57 (mod 12)

Let g = 3™ It follows that multiplication by ] is [ql(x,y) = [3M(XY)
d"?M(x,y) = (X, y). Hence we takg = ¢™.

Lemma 4. With notation as above, condition (3) is satisfied.

Proof. Letq = 3" withm = 1 (mod 6). Supposex(y) € E(Fy). Then Q](x,y)
#(x,y) and soy = ¢. Now, y9 = ° and so

WAXY) = ¢l +b-X -0y) = (0 +b-X=b,y) = (0 - X,7y) = Y(X.Y).

5 Note that all supersingular curves in characteristic three féweariant O (by Theorem V.4.1
of [30]) and hence are isomorphic ovéy ([30] Theorem A.1.2). It follows that all choices of
supersingular equations ovgg with fixed embedding degrdeare equally secure for pairing
applications and so there is no loss of generality from considering just this case.



Similarly, whenm=5 (mod 6) we have = ¢° = —¢2 andy = -y and so

WA Y) = ¢*(0 + 2b = X, 0Y) = (0 + 2b = X = 2b, oY) = Y(X.Y).
This completes the proof. O

Since condition (3) is satisfied we may apply Theorem 1.

The method of Duursma and Lee computes the eta pairing with respect to the value
T = g = 3™ In the notation of Theorem 1 we hate=g®+1,M =¢®-1,a= 3,
L = 1 andc = 0. Hence, we have

(1P O")™ = Py

The formulae given in [10] computes the Tate pairing directly by bringing the powering
to 39 into the formulae. Furtherficiency is obtained in [10] by using the other three
techniques mentioned in section 3.

5.1 Animprovement on Duursma and Lee

The power of the eta pairing approach is that one can immediately improve on the
Duursma-Lee method giving a further halving of the length of the loop.
We know that the number of points d&(Fg) is N = 3™ + 3™1/2 + 1 and we
have established thatTBP = y(P) for some automorphism. If P € E(F,) then, since
[N]P = o0, we deduce that

[¥3™ /2~ 1]P = [q - N]P = [q]P = ¥(P).

We can therefore choo3e= q - N = #3(™1)/2 _ 1 (whenT is negative we use the
relationT D = (-T)(-D)). In the notation of Theorem 1 we have- —1. Takinga = 3
givesT3 + 1 = LN whereL = 3™3/2 We haveM = (35" - 1)/N. Theorem 1 implies
that the pairing satisfies

2
(M) = (Pu@)"
and so, since 3[ andL are all coprime tad\, it is bilinear and non-degenerate.

With this method we can compute the Tate pairing using an algorithm with roughly
half as many iterations as the original Duursma-Lee method. However, the final ex-
ponentiation is now more complicated since the valieequired to obtain a unique
pairing value is (3" — 1)(3" + 1)(3" # 3™1/2 4 1). Unlike the original Duursma-Lee
method, this value has terms which are not powers™ft&nce an extranf + 1)/2
cubings in the large field are required. Luckily, cubing is faster than a step in the loop
of Miller’s algorithm, so this approach does give faster code. Notice that the result of
raising to 3™ — 1 produces a unitary value, so that any further inversion reduces to a
simple conjugation.

Further exponentiations are also required to transform the value of the eta pairing to
a correct Tate pairing value, but the extra cost of these is not very significant (see the end
of section 5.2). One possibility is to design cryptosystems using the eta pairing instead
of the Tate pairing. On the other hand, for some applications there may be compatibility
issues with using a ‘non-standard’ pairing and so the actual Tate pairing value may be
required.
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5.2 Implementation details

We now give some of the implementation details for the eta pairing in this case. Recall
from [10] that, for any poin¥ € E(F) the function

av(X.y) = Wy - (%) — X+ b)?

has divisor ¢v) = 3(V) + (-3V) — 4(c0).

Consider the eta pairing & andQ whereT = q—- N = #3™D2_ 1 If T < 0O we
first replaceP by —P andT by —T. From Table 1 it follows that we havie = 3(™1/2 1 p
whenm= 1,11 (mod 12) and = 3™Y2 _pwhenm=5,7 (mod 12).

We are required to compute

(m-1)/2

fre@(@Q) =| [] gop@(@)* ™" |I(Q)
i=0

wherel is a function corresponding to addition df"8/2P with +P. Note that this final
addition cannot be ommited sin@els not the order oP.
We now explain that the extra addition can be easily handled.

Lemma 5. With notation as above, le{®,y) be the line in the final addition of the
algorithm. Then | has slopg = ypif m = 7,11 (mod 12)or 1 = —=ypif m = 1,5
(mod 12)

Ifm= 111 (mod 12)the equation for | is y= A(Xx — Xp) + byp and if m= 5,7
(mod 12)then the equation for lis y A(X — Xp) — byp.

Proof. The proof is straightforward. For example, when= 1 (mod 12) thenT =
3m™D/2 4 b and [3™V2]P = ¢(x3,y3) = (X — b,—y2). The slope is thereforg =
(=Y2 - Yp)/ (X3 — b= Xp). Usingx3 — Xp — b = y2 + b givesA = —yp. The addition is of
[3M1/2]P with bP, from which the equation fdxx, y) follows.

The other cases are similar. O

The exponent 8172 is inconvenient and a naive implementation would lead to
an unnecessaryr(— 1)/2 cubings. There are two ways to avoid this problem. One
method is to bring the powerind™®/2 into the formulae as a Frobenius action. The
other method, which we adopt here, is to compute the product in reverse, by setting
j = (m-1)/2—i. We defineP’ = 3™1/2P which can be ficiently computed as
¢m-D2m-1p = g(m-D/2(x1/3 y13%) Then the desired product is

(m-1)/2

IW(Q) [] gsip@(Q)°.
j=0

Itis then relatively straightforward to obtain an explicit description of the algorithm.
We use the notatioa® for a®. For example, in the case= 1 (mod 12) one shows
that

Gip W(Q)* = (oyh YY) — 1) - pu - p?

whereu = x(P'j) + xg) + b. The algorithm in this case is given in Algorithm 2.

11



Algorithm 2 Computation ofjr(P,Q) on E(Fan) : Y2 = x* —x+b, m=1 (mod 12)

case

InpUT: P, Q

Ourrut: n7(P, Q)

Py~ —-P

cif T<OthenT « -T,P« -P

t let P = (xp,¥p), Q= (%o, ¥q)

: | « the line between®+/2p gndP,

IR (7(®))

for j « Oto (m-1)/2do
Ue—Xp+Xg+D
g« oYpYyq — U? — pu—p?
f—f-g

10: Xp — X2 yp e yi?

11 XQ X3, Yo < ¥

12: end for

13: return f@E™-DEM+DE"-bAMD/241)

CcoNoakr®wNRE

Depending on the choice of basis, we can unroll the loop if necessary to exploit the
innate sparseness@fCube roots can be calculated quickly using the method described
by Barreto [1]. However this is still substantially slower than calculating cubes. There-
fore it makes sense to do a precalculation to build a list of all cubes ahdyp, and
to get the cube roots by accessing this list in reverse order. Note however that we only
need the ‘last’ half of the cubes.

The final exponentiation can be obtained for the relatively inexpensive cast-of (

1)/2 extension field cubings, plus nine applications of tRep8wer Frobenius, nine
extension field multiplications, one extension field squaring, one more cubing, and one
extension field division.

If the Tate pairing is required then we should also power T8/8. A sensible
strategy seems to be to raise tepairing value to 32q/L instead, and then to compute
the inverseg-power Frobeniusr to get rid of the extrag-th power. Namely, ifu =
n1(P,Q), thend(P, Q) = n~1(u™""*)u™¥""*-2 which amounts tan extra cubings,
one squaring, three products, one inverse Frobenius and at most three conjugations,
totalling a small amount of extra work compared to the cost of pairing computation.

6 Elliptic curves in characteristic 2

We now consider the case of the supersingular &BE/ey? +y = x° + x + b overFon
whereb = 0,1 andmis odd. We will use the ideas presented in section 4. The order of
E is given in table 2. It follows that the embedding degree in this cake-id.

The fieldFm has elements, t such thas? = s+ 1 andt? = t + s; we will represent
F.m using the basigl, s t, st}. Following [3] we use the distortion mag(x,y) = (X +
P,y + SX+1).

6 As before, there is no loss of generality from considering just one curve equation, as all super-
persingular curves in characteristic two are isomorphic dy¢o one other.
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Table 2.Order of the curveE : y? +y = X3 + x + b overFom, b € Fy.

H#E (Fom) condition
2"+ 1+ (-1)P2™D2Im=1,7 (mod 8
2™+ 1 - (-1)°P2mD2\m= 3,5 (mod 8

Let P = (Xp,yp) € E(Fom). We defineg(x,y) = (x+ 1,y + X). One can verify that
(% Y) = (% y+1) = =(xY), $3(x.Y) = (x+ 1,y + x+1), andg*(x, y) = (x,y). One can
show by induction that

[21P = ¢' (x5, &) (4)

If g = 2" it follows that [g]P = ¢™(P) and we are in the setting of our main result
(sety = ¢™). .

For any field elemena we use the notatioa®) for a?. Depending on the field of
definition ofa we will usually have eithea™ = a or a®™ = a. Hence we can consider
the valuesif) as being modulon or 4m. This allows us to extend to negative values by
al=) = a*™ which can also be interpreted as thet2root ofa.

For future reference we compute hawandt andy behave under powers of the
2-power Frobenius. Elemestsatisfiess) = & = s+ 1,89 = s, and thuss®) = s+i
ands™ = 4D = s4 . Similarly fort, tY = t+ 5, t@ =t + 1,t® =t + s+ 1,t® =1,
and thug® =t +is+ (i) wherer(i) =0 fori =0,1 (mod 4) and-(i) = 1 fori = 2,3
(mod 4). Hencet(™ = té¢™) =t 4 is + 7(-i).

We now show that the eta pairing can be applied in this case.

Lemma 6. Let notation be as above, in particular,g2™ andy = ¢™. Then condition
(3) is satisfied.

Proof. We must show thagy® = . Consider first the case=1 (mod 4). We have
W (%) = pYP(XY) = p(X+ S Y+ X+ (t+9)
= (X+S+1Ly+SX+t+S+X+9
= (X+ &, Y+ SX+1)
= y(x.Y).
Similarly, whenm= 3 (mod 4) we find that
W Y) = 6% () = $*(x + Sy + X+ (t+5+1))
=(X+S+Ly+SX+t+S+1+x+5s+1)
= (X Y).
This completes the proof.

To generalise the Duursma-Lee idea to characteristic 2 is now straightforward using
Theorem 1. LeN = 22" + 1 andM = 22™ — 1. We takeT = q = 2™ (so thatc = 0) and
takea = 2 so thafT?2 + 1 = NL whereL = 1. Then the eta pairing satisfies

(mr(P. Q™)™ = (P

13



Adapting the other methods of [10] gives a very fast pairing computation in charac-
teristic 2.

6.1 A further improvement

As in characteristic 3, we can obtain a further halving of the loop.
Let N = #E(Fm) = 2™ + 2™1/2 4 1. ForP e E(Fan) we have

[£2MD/2 _ 1]P = [2™ - N]P = y(P).

Taking T = ¥2™1/2 _ 1 we haveT = 2" — N soc = —1. Takinga = 2 gives
T241=2NsolL = 2. We haveM = ((2"* — 1)/N = (2™  2m1/2 4 1)(22m _ 1),
Theorem 1 therefore implies that

(rrP.QY)" = PR

from which it follows that

(nr(P.QM)" = Py

We can therefore easily compute the exact Tate pairing using the eta approach in
this case. As before, the halving of the loop is slightliset by the extra squarings
required for the final exponentiation, but we still see an overall gain in performance.

6.2 Implementation details

Let P,Q € E(F.n) be the input points for the eta pairing with = ¥2(™1)/2 _ 1, In
the caseél < 0 we replaceP by —P andT by —T. Thus we havd = 2™/2 4+ 1. To
compute the eta pairing we must compute the Miller functipp, which will require
(m+ 1)/2 doublings and an addition. Note that the addition cannot be ommitted since
the pointP does not have ordér.

Given a pointV, it is easy to show that the straight line in doubligs given by

av(xy) = & + )(xv +X) + W +.

The functiongy has divisor 2¢) +(-2V)—3(e0). Hence, by a standard argument similar
to the proof of Lemma 2 combined with the fact that we can disregard functiors of
only, we have

(m=-1)/2

(@) =| [] (g1 (Q)

i=0

)2<m)/

" w@)

where the functioh comes from the elliptic curve addition of [Z%/2]P with +P.

The power "1/2 js somewhat inconvenient. A naive implementation might in-
volve (m— 1)/2 unnecessary squarings because of it. There are two ways around this
problem, which both give equallyfficient solutions. One solution would be to absorb
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the powering by 12 into the equations. Another solution is to re-write the expres-
sion by substituting = 2™/2 —j andP’ = [2(™Y/2]P. This gives

(m-1)/2

frp@(Q) =1W(Q) [ ] genpW(Q)*.
=0

Note that, due to our doubling formula, the ‘point halving’ i [P’ has the same
efficiency as point doubling. Also note that = ¢™/2(\/Xp, /¥p).

We now give some formulae which allow us to present fiitient and general
algorithm. The first result gives the equation of the lifier the final addition (note that
no inversions are required to compute this). The proof of this result is straightforward.

Lemma 7. Let m and b be as above. Define —1whenm= 1,7 (mod 8)and b=1
orwhenm= 3,5 (mod 8)and b= 0. Definee = 1in all other cases. Then T is taken
to be2MD/2 4 ¢,

Let P = (xp,yp). Defined = xp when m= 1,5 (mod 8)andA = xp + 1 when
m = 3,7 (mod 8) Then the formula for the ling, y) through 2(™1/2P andeP is
givenby (x,y) = y+ A(Xx+ xp) +yp + (1L — €)/2.

Lemma 8. Let notation be as above. Defing¥ 1ifm= 1,5 (mod 8)andy =0
otherwise. Definexy= 1ifm = 57 (mod 8)and v = 0 otherwise. Define u=
xSV 4 vi. Then the functionge (4(Q))? is given by

u(xf;l_j) + xg) + V1) + y(P_H) + yg) +(1- vl)xfg_l_j) + s(u+ xg)) +t+ Vo

Proof. Note that [21]P’ = ¢(mD/2-i (x5 172D y1-2D) The resultis proved by a tedious
case-by-case analysis.

For example, whem = 3 gmod 8)andj =2 (mod 4) thenth-1)/2-j =3
(mod 4) and so [2]P" = (x5 + 1,yC2) 1 xE172D 1 1), The function is therefore

o o o 4o 2i
((foZJ))(x(Pl Dt xg+ 9 +y5H D 48t 2J)+1+yq+s>b+t)

=08 x4y xS 1y o) 4t 1
Lettingu = X(P_j) this simplifies to
u(xgl’j) + xg)) + y(P’H) + x(P’l’j) + yg) + s(u+ xg)) +1
as required. The other 15 cases are similar.

Here we give the algorithm in the case of a curve witk: 3 (mod 8).

In this optimized algorithm the point addition is dealt with first, using the formula
of Lemma 7.

Each step in the subsequent loop cosk, ultiplications (1 to computg, 6 to
accumulate it intof by making use of the sparse structureghfin practise to obtain
this speed-up we might have to unroll the loop times 2 (depending on the basis chosen).
The total cost of the loop plus the initial point addition is thereforna #(1)/2 + 1
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Algorithm 3 Computation ofir (P, Q) onE(Fon) : Y2 +y = X3+ Xx+b, m=3 (mod 8)
case

InpUT: P, Q

Ourrut: n7(P, Q)

1: let P = (xp,¥p), Q = (X0, Yq)

2:Ue—Xp+1

B feeu-(Xp+X+)+Yp+Yo+b+1+(U+Xg)S+t

4; fori« 1to(m+1)/2do

5 U Xp, Xp < vXp, Yp < VP

6: g U-(Xp+XQ) +Yp+Yo+Xp + (U+ Xg)S+t
7 f—f-g

8: Xq — X5, Yo < Y5

9: end for

10: return f@m-DE"-2MD24

multiplications. The final exponentiation can be obtained for the relatively inexpensive
cost of fn + 1)/2 extension field squarings, plus three applications of th@@ver
Frobenius, four extension field multiplications, and one extension field division. To
obtain the Tate pairing, the result must be further exponentiated to the power of

Unlike the case of characteristic three, there seems to be no reason to precompute
and store the square roots. This is because a careful implementation of the technique
described in [12] for calculating square roots in the figjd is in fact just as fast as
squaring. In fact it may be a little faster, as large precomputed tables can lead to memory
cache misses which are detrimental to performance.

6.3 Compression of pairing elements

Pairing values lie in the subgroup of ordgf + 1 in Fq4 which is the torusT,(F).
Hence it is trivial to compress pairing values by a factor of 2 using standard torus or
trace methods.

In the case of the eta pairing with= g, the method of Granger, Page and Stam [17]
avoids performing the final exponentiation (though note that their compression method
requires an inversion so is of similar complexity to the final exponentiation anyway).
Their idea is to note that the pairing valeean be written ae = gh = & + e;t whereg
has order dividingq®+ 1) and wheré, ey, €; € Fg. Hence, the valuep/e; is a uniquely
defined element ii¥, corresponding to the class ef

When using the eta pairing with = g — N the method of Granger, Page and
Stam to avoid the final exponentiation cannot be applied. Nevertheless, once the final
exponentiation has been performed one can compress by a factor of 2 using traces or
tori in the standard way.
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7 Genus 2 curves in characteristic 2

We now consider the curfe&q : y? +y = X° + x3 + d with d = 0 or 1 overF.n, where
mis coprime to 6. This curve is supersingular and has embedding degree 12 (see [16]).
The group order is given in Table 3; some examples are listed in Table 4.

In this section we show that the eta pairing approach can be easily applied in this
setting. We give an octupling formula which enables fast point exponentiation and give
a corresponding function for Miller’s algorithm.

A general reduced divisd on a genus 2 curve has support consisting of tflioa
points (i.e.,.D = (P1) + (P2) — 2(c0)). Following Duursma and Lee [10] (also see [18,
19]) we exploit the benefits of usirdegenerate divisofsof the formD = (P) — (c0)
where possible.

Table 3. Order of Jadly) for the curveCy : Y2 +y = x° + X3 + d overFom, d € Fs.

#JacCq)(Fom) condition
22 1 (—1)T2Cm D2 oM (—1) @22y 1im=1, 7,17,23 (mod 24
22m _ (—1)d2@m+1)2 4 pm _ (L)@ )/2 4 1im= 5111319 (mod 24

Table 4. Examples where #J&C)(F.m) is equal to a small cofactor times a prime.

field curve cofactor
Foo Y2 +y=xX+x+1 151681
Foos| YV +y=x>+x 13.1237

Foory? +y = X8 + X3 + 1/198168459411337
Fasoly? +y =8 +x3+1| 2389121789
Fasly? +y=xX+x3+1 1
Fuuly?+y=x+x3+1 1

We note that our special curve has certain properties that lend to faster arithmetic
than the explicit formulae given in [22] for general genus 2 curves, namely that the
equation is sparse and that all the fiméents are defined ové. See [23] for examples
of arithmetic on similar (albeit non-supersingular) curves.

7.1 Arithmetic on the curves
We first introduce the representationiaf: and the distortion map we will be using.

7 In this case not all supersingular equations are isomorphicivétevertheless, the Jacobians
are isogenous, so there seems to be no good reason to consider other curve equations.

8 Note that the definition of degenerate divisors in [18, 19] is that they have lesg fiwints in
their support, whereas our definition is tougher when2 in that we insist on having exactly
one point in the support.
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Choosew € Fx to be a root of the polynomial
X+ +xC+x%+ 1.

Note thatw® = w + 1. Defines; = w? + W*, S, = w* + 1, and letsy € Fo12 be a solution
of &+ s9=w +w.
We will represent elements of the fidfgdn as 12-tuples with respect to the basis

{1, W, W2, W2, WA, WP, So, Wsp, WP So, WS, W so, WSp).
We choose the distortion map
Y(Xy) = (X+ W, Y + % + S1X + o).

We now consider the octupling formula and hence determine whghZan be
written asy(D) for somey.

Consider a divisor of fornrD = (P) — (). In general,jD is not equivalent to a
divisor of the form Q) — (o), but as shown in Appendix A, in this case we have the
octupling formula ® = (P’) — (o) whereP’ = ¢x%(P), 7 is the 2-power Frobenius
map, and

d(%Y) = (X+ 1,y + X% +1).

Note thaip® = —1. As a suggestive (but non-standard) notation, we write [8}p°(P)
and so ® = ([8]P) — (). Koblitz [20] gives a map for 6@, which is exactly the
octupling operation applied twice in succession. Similar results for other supersingular
curves were obtained by Duursma and Lee [10].

Since our basic operation is octupling, we are forced to considey tha@ring in
the case where we have a power éf Bence we will work withq = 23™ rather than
g = 2™. Nevertheless, since our basic operation is octupling, our loops will still have at
mostmi iterations. It follows that, iD is a divisor class defined ov&pm, then

[q]D = [2°"D = ¢™(D)
hence we defing = ¢™.
We also note that it is possible to use the octupling operation for straightforward
scalar multiplication, which yields a simple and speedy implementation.
7.2 Eta pairings in genus 2
We now show that condition (3) is satisfied for our distortion map.

Lemma 9. Let the notation be as above with=023™. Then condition (3) is satisfied.

Proof. We haveq = 23 wherem=1,5,70or11 (mod 12) ang = ¢™.
As before, we write® for a%. We will repeatedly use the easily checked formulae
thatw® =w+ 1,8 = 5+ w2, & = 5 ands?) = 5, + 1.
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First supposen=1 (mod 4) (andsor®d=3 (mod 12)). Then

Y% y) = p(x.y)
=X+ W+ LY+ (S + 1) + SiX+ S + W)
= (X+W,Y+ X + S1X + S)
=y(xy).
Similarly, whenm=3 (mod 4) we haver = —¢p and 3n=9 (mod 12). Hence
YA y) = —¢%O(x.y)
= X+ W+ LY+ (S + 1)+ 51X+ S+ W +1)
= (X+W, Y+ X + SIX+ )
=y(xY).

This proves the lemma. O

Having established this, we can now apply Theorem 1. For the basic generalisation
of Duursma and Lee we take = q = 2™ so thatc = 0. We haveN = 25™ + 1 so that
M = 25™ _ 1. We then take = 2 so thaig? + 1 = N andL = 1. It therefore follows that

(mr(D. DY) = (D.u @M.

Computing the eta pairing with respectTo= 2°™ requiresmiterations of the octu-
pling formula. Interestingly, this is not much better than the basic BKLS-GHS method
generalised to genus 2 (see Section 7.7).

As before, we can obtain a further halving of the loop. et 2°™ andN = 22" +
20@m+1)/2 L om 4 2(m+1)/2 . 1 Consider the equation

(2™ F 2MD/2 L )N = 28M 4 2B™ D2 4 g

This suggests taking = ¥2G™1/2 _ 1 so that, ifD is a divisor defined oveF, (and
hence of order dividindN),

[TID = [q- (2" +2™%2 + 1)N]D = [q]D = (D).

Thenc = —(2™ ¥ 2M™1/2 4 1) in the notation of Theorem 1. Takirg = 2 gives
T2+ 1= LN whereL = 2™! 5 2m3/2 L 2 Theorem 1 therefore implies that

(nr (@, DM = (D@ NY)".

Computing the eta pairing usirig= 2G™/2 _ 1 will require roughlym/2 itera-
tions of the octupling formula, which is clearly superior to the BKLS-GHS method.

7.3 Implementation Details

We compute thegr pairing of divisorsD andD’ using the ordeT = ¥2CG™1D/2 _ 1 As
usual, if T < 0 then sefl = —T andD = —D. Hence we hav& = 2G™1/2 4 1,
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We will exploit the octupling formula. Lefgp be a function such thatfd{p) =
8(P) — ([8]P) — 7(c0). We show in appendix A that,

fap(xy) = (y + ba(x))*(y + bg (X))
gP(XY) = a;'(x)zag(x)
where
ba(X) = + (B + X)X + (XR)X+ Vp
and

b () = (<2 + 1€ + (2 + X0+ (V2 + X0 + X+ 1),

The denominator)(x)*ay(x) can be ignored for the usual reasons. We will be com-
posing our function withy, and so we will use the notatiarg for the function, where
@ = (y+ba(x))? oy andg = (y + by) o .

To compute a functiorfrp with divisor T(P) — (Dtp) — n(c0) whereDrp is a
reduced divisor equivalent D we want to use the above functions. Since{3)/2 =
3(m-1)/2 + 2 we must useni— 1)/2 octuplings and two doublings.

In other words, we have

(m-3)/2

re@(Q) =| [ ] fomp@(QP"™ |1 (Q)12(Q)law(Q)
i=0

wherel; andl, are functions coming from the extra doublings and from the final
addition of 2™1/2((P) — (c0)) and+((P) — (0)).

Appendix B gives more detail on implementing the pairing. In Appendix B.1 the
distortion map is built into the functions, and formulae are derivedffgsp(4(Q))
which do not require the explicit computation of]B. These formulae are computed
efficiently by accessing a table of precomputed values@oandyg. In Appendix B.4
powers of 8 are absorbed into the formulae, which involves precomputing powers of
the second point. Appendix B.7 describes how the final doublings and addition can be
simplified for degenerate divisors. Algorithm 4 details the gengys Pairing for de-
generate divisors in the case whar= 103 (although only trivial changes are required
to modify the algorithm for arbitraryn).

All of these optimisations lead to a very fast pairing implementation on genus 2
curves in characteristic two. Details of timings are given in Section 10.

7.4 Degenerate divisors versus general divisors

We have focussed on the case of degenerate divisors since this gives a convincing ex-
ample where hyperelliptic curves can be superior to elliptic curves. Nevertheless, most
applications will also require pairings to be computed on general divisors.

A general reduced divisor defined ov& on a genus 2 curv€ is represented by
(P1) + (P2) — 2(c0) where eithePy, P, € C(Fy) or P1, P> € C(F) are Galois conjugates
of each other. The Mumford representation for divisors on hyperelliptic curves essen-
tially gives the symmetric functions of the coordinates of the pdiia the support of
the divisor.
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Algorithm 4 The genus 21 pairing whenm = 103

INpUT: P = (Xp,¥p), Q = (X, Yq) € Jc(Fom)
Ourput: f € Fpom

oNOR~RWONE

: » Initialisation: sety = 1 if m= 1 mod 4, otherwisg = 0
: > Precompute powers of P and Q
s xfi] <33, yili] < Y3, %li] X3, Yoli] « ¥3,0<=i<=m-1

fe—1

for i =0to (m-3)/2do
> All k, in the next 2 lines to be considered modaio
ki — (Bm—-9-16i)/2,ky « (kg + 1), ks « (ko + 1)
ks « (Bm—=3+6i)/2,ks « (kg + 1), ke — (ks + 1)

> Calculater «— a+ bw+cw? + dw + 5

d — Xq[Ka] + X1[Ks]

a < Yo[Ko] + (Xu[Ka] + 1 + Xo[Ka]) - Xa[Ko] + d - Xo[Ks] + ya[ka] +y
b Xo[ks] + Xo[ko]

C «— Xo[ka] + Xq[Kq] + 1

> Calculated < e+ fLw+ gwW? + hwt + 5

fo e Xq[Ks] + Xa[Ke]

€ — Yo[ki] + f2 - Xo[Ka] + ya[ks] + X1[Ke] - (Xa[Ks] + Xo[Ko]) + Xa[ks] + ¥
g « Xo[ki] + xa[ke] + 1

h « Xo[ko] + Xo[k1]

f—tf-(a-p)

: end for

: » “Extract” current point kp, Yp)
I Xp « %[100]+ 1
1 Yp « Y1[100] + %;[101]

: > Perform the final doublingaddition
Dt (V2[00 + %[1] - (L+ %[0] + X + X2) + X - %[0] + yp)
D f e B4 (%] + x5, X + X5, 1, %[1] + %[0],0,1,0,0,0,0,0)

. » Perform the final exponentiation
. f - f(26m71)(23m724m2(m+1 /271)
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General divisors may appear as either the first or second components of the pairing
(or both). Handling the second case (i.e., generalising evaluation of a function at a point
to evaluation at a divisor in Mumford representation) is relatively straightforward.

For the first case, bilinearity implies thajr((P1) + (P2) — 2(),D") =
nt(P1, D)t (P2, D) and so one can compute a pairing on divisors by taking a product
of pairings on points. However, in the case where the pétngse actually defined over
Fg this will not be the mostfiicient way to proceed. It is relatively straightforward to
obtain the general formulae: just multiply the functions obtained from the single point
case and then express the resulting polynomials in terms of the symmetric polynomials
in the point coordinates. We leave this as an exercise for the reader; a full discussion
will be given in the thesis of the third author.

From a performance point of view, the cost of computing a pairing between gen-
eral divisors in genus 2 is at worst 4 times the cost of a pairing between single points.
Obviously, various optimisations are applicable, including only performing the final
exponentiation once, sharing some of the function calculations and only having to pre-
compute squarings of points once.

We now briefly discuss how degenerate divisors can be used to speed up pairing-
based cryptosystems. First, note that Kattal. [19] showed (using the random self-
reducibility of the discrete logarithm problem) that there is no loss of security from
using degenerate divisors.

In most of the cases we consider, the divisor class group has (nearly) prime order
N and we work with pairings of ordéd. Hence, a randomly chosen degenerate divisor
(P) — (c0) will have order divisible by our large prime and the pairing value will be
non-degenerate. In the general case of pairings on higher genus curves this assumption
may not hold; we refer to Frey and Lange [13] for a discussion of these issues.

In the case of pairing-based cryptography it is easy to benefit from the use of de-
generate divisors. As a case study we consider the Boneh-Franklin identity-based en-
cryption scheme [7] (similar ideas can speed up aspects of other pairing-based cryp-
tosystems, we refer to Frey and Lange [13] for further discussion). The natural gener-
alisation of this system to gengscurves (see [16]) is to have a master public key pair
D, Dpus = [S]D of divisors; identities are hashed to obtain divisb(¢D); user private
keys are §|D(ID); encryption involves computing [P and the pairing oDy with
D(ID) (and then raising to the powe); decryption involves the pairing o§[D(ID)
with [r]P.

Without loss of security, one can choose several of these divisors to be degenerate.
For example, one can chooBgy, to be degenerate (i.e., chod3gy, first and then set
D = [s}]Dpup). One can also chood¢(ID) to be degenerate, so that we are hashing
to points on the curve, rather than general divisors. This simplified hashing process is
also easier to implement than the general case. Of course, the user private keys are now
general divisors. Encryption therefore involves a pairing of two degenerate divisors and
so can be performed venfifiently, while decryption involves a pairing of general
divisors. This is similar to RSA with small public exponents, where the public opera-
tions are fast compared to the private ones. For some applications this may be a useful
feature.
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7.5 The Final Exponentiation

Theorem 1 relates thgr pairing to the Tate pairing in the genus 2 case as follows

(n7 (@, DM = (D@

whereT = £26MD/2 _ 1 M = (212" — 1)/N, N = 22 4 26m+)/2 4. om 4 p(med)/2 4
andL = 2™ £ 2m3)/2 4 2,

One can compute a bilinear pairing by computingtheairing and raising to the
power of M. However, it is actually morefcient to compute the full Tate pairing with

M2T

n:- - By factoringM we get the product
M = (5™ — 1)(2" 5 20mD/2 4 1)(2%M 5 28m /2 4 1)

Note thatL can be written ag = 2(2™ ¥ 2™1/2 4 1), which cancels out with the
middle factor ofM and the squaring of ther function. The exponent to compute the
Tate pairing is now;

(26m _ l)(23m T 2(3m+1)/2 + 1)(¢2(3m+1)/2 _ l)

Some cancellations occur whilst unrolling the multiplication of the second and third
factor, and we get
(26m _ 1)(?m T 24m2(m1)/2 _ 1)

Note that raising an element to the power 8f 2ver Fxan can be computed with a
simple conjugation. Also note that, once the powering #8 (21) has been performed,
we haveZ™*! = 1 and soz! = 27, i.e., computing an inverse is done by simple
conjugation. Using these facts, we can compute the final exponentiatiom-#ilj/2
squarings, 4 Frobenius actions, 2 multiplications and a division.

7.6 Compression of pairing values

After the final exponentiation our pairing values lie in the subgroup of oaferd? + 1)

in ]F;lz. This subgroup is the torus(Fg:) so we can represent the field elements using
2 elements oF ;. rather than 6. This gives compression by a factor of 3. The details are
similar to those given by [17].

7.7 Computing BKLS-GHS using octupling

In this section we will briefly look at computing the Tate pairing using the BKLS-GHS
algorithm, degenerate divisors and the fast octupling operation defined previously. At
first glance, the group ordéd ~ 22™ requires about2/3 iterations of the octupling
formula, so the BKLS-GHS method looks competitive. However, care is needed as the
additions will destroy the special form of the divisor. The best approach is to postpone
the additions until the end. In other words, compute the appropriate function&"ey 2
2@m1)/2p 2mp and 2™1/2pP separately in dferent loops and then add them up at the
end.
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Let hy, hy, hg be the functions that arise from Cantor composition and reduction of
the divisors that occur af?P, 28™1/2p 2Mp gnd 2™1/2p, The function we desire is
then:

f= f22m fz(arml)/z f2m fz(mu)/z h1h2h3

This can be computed using23 octuplings, as well as a few additions and doublings.
The powers of 8 can also be absorbed as is done in Appendix B, however as each
function is raised to a étierent power, we require four fiérent sets of formulae. We

can take some advantage of similarities between the four functions however, to speed
up the computation. The end result is afiatent if messy pairing computation. See
section 10 for timings.

8 The Duursma-Lee hyperelliptic curves

Duursma and Lee [10] also consider the cur@esy? = xP — x + d over Fym where
p > 5andd # 0. The genus o€ is (p — 1)/2. Whenp =3 (mod 4) the embedding
degree ik = 2p and #Jadt)(Fpn) | (p"P+1). The distortion map ig(x, y) = (o — X, iy)
wherei? = -1 andpP —p + 2d = 0.

Duursma and Lee [10] show thaf(x, y) — (o)) is equivalent to X** + 2d, —y"").
Letq = p™ wheremis coprime to D. Let (X, y) = (X + 2d, -y). If P € C(Fpn) then it
follows thatq((P) — (o)) is equivalent tog™(P)) — («0). Hence we sef = ¢™.

We check condition (3) for this case. Note th8t= p — 2d.

If p=3 (mod 4) then we have (sinceis odd)

vt = g™y (x,y)
= """ - x,i""y)
= ¢"M(p — 2dm- x, —iy)
= (o = x.1y)
= Y(X.Y).

Having established this, we sdt= pP™+ 1, T = p™, ¢=0,a = pandL = 1 and apply
Theorem 1 to show that the eta pairing approach recovers the results of Duursma and
Lee.

If p=1 (mod 4) then the embedding degrekis p and our methods do not
immediately apply. Theorem 1 can be generalised so that condition 3Féads= LN,
in which case we may choose= p. But whenp™ =1 (mod 4) we havé®" =i and
so condition (3) is not satisfied.

There are two natural open problems for these curves. The first is to develop an eta
pairing for the cases whege= 1 (mod 4). The second natural problem is to give the
further halving of the loop for these curves. We leave these problems for future research.

9 The Rubin-Silverberg approach

Rubin and Silverberg [25] (also see [26, 29]) have proposed an alternative way to view
pairings on Abelian varieties. Their method can be thought of as a method for comput-
ing pairings on trace zero subvarieties of Weil restrictions of elliptic curves. A simpler
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way to think about their method is as a form of point compression for pairings on elliptic
curves.

The Jacobian of the supersingular genus 2 curve considered in Section 7 is a 2-
dimensional Abelian variety oveff,m with embedding degrek = 12. Another way
to get this Abelian variety (up to isogeny) is with the Rubin-Silverberg approach, by
taking thek = 4 elliptic case and using the Rubin-Silverberg construction with3,
to obtain a 2-dimensional Abelian variety with embedding degred 3 12. We recall
the details in this case.

LetEp : y?+y = X3+ x+bwith b = 0, 1 overF, be the supersingular elliptic curves
with embedding degree= 4. The idea of Rubin and Silverberg is to compute pairings
with points defined oveF.:m wheremis coprime to 12. This means that pairing values
lie in Fouam.

To transmit group elements, Rubin and Silverberg propose a compression method
so that the element is represented using only 2 elemeiisirHence, the bandwidth
is about 2n bits but the finite field security is'2", which corresponds to ‘security
multiplier 6'.

The groupE(Fuxsn) clearly hasE(Fom) as a subgroup. Indeed, we can write

E(F23m) = E(]Fzm) X A

whereA is a finite group and one can check that the ordek isf 22™ + 26™1)/2 4 om 4
2m1/2 4 1 Note that this agrees with the group orders in Table 3.
The following result is an important classification/Af

Lemma 10. Let m be coprime to 12. L&t be the trace map with respect fgsm/Fom.
Then A= {P € E(Fyn) : Tr(P) = 0}.

The method is to perform pairing computations with the cufvever Fosn S0 that
the pairing values lie iff,:n. Suitable group orders are the same as in the genus 2 case
(e.g.m = 103 with a 192-bit subgroup).

Write Fysm asFon(0) whereg® = 6 + 1. So points irE(F,n) are represented as, /)
wherex is represented as a triplgy( X1, X) overF.n with respect to the bas|4, 6, 6°}.

To transmit a point we first apply point compression so that we need send only
the x-coordinate and a single bit determining the sign (sometimes even this bit can be
removed). Then to transmit thecoordinate just seng, andx; (and possibly another
bit).

To recover (decompress) we must do the following: Gi¥gandx; compute an el-
ementx; € Fom such that there is a poiftwith x-coordinate Xo, X1, X2) which satisfies
Tr(P) = 0.

In this case the trace is B) = P+ (P) + 72(P) wherer is the 2"-power Frobenius
map. So the condition is th& =(P) andx?(P) sum to zero, or in other words, lie on a
straight line. The decompression procedure is to deduce whiehsures that there is
a linel(x,y) = 0 through the three points.

Let P = (Xp,yp) and writel(X,y) = y + UpX + U; whereup,u; € Fam. Define
1(x,y) = I(x,y) + 1. Then

1%, Y)I(X.Y) = ¥? + Y+ (UoX + Ug) + (UpX + Up)?
=X+ X2 + (Up + L)X + (UF + Uy + ).
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Also, .
1(X VI Y) = (X = Xp)(X = Xe(p)) (X = Xezp) = X + T + S x+ N

from which we deduce that = S? + 1. One can check that = xp andS = X3 + X2 +
X1 X2 + xg. Hencex; is a solution to the equation

Y+ xy? + (G + %o+ 1+ X8) = 0.

Solving this equation involves solving a quadratic and then taking square roots. A single
bit is needed to distinguish the two roots of the quadratic and to ensure a unique solution
to the decompression process.

The total cost is solving a quadratic and then taking a square root, plus solving
another quadratic to recover tiieoordinate of the point.

From a performance point of view it is essential to compare the running time of
the pairing computation on the genus 2 curve with the Rubin-Silverberg method. In a
general implementation, where we may be required to compute the pairing of general
divisors on the genus 2 curve, then the Rubin-Silverberg approach may be superior.

10 Experimental results

We have proposed a number of algorithms for pairing computation which apply to dif-
ferent supersingular curves. The only natural way to compare these methods is to give
running times for equivalent security levels. A precise formulation of ‘equivalent secu-
rity’ is deeply problematic, but a reasonable approach is to consider parameters so that
the valuegX is roughly the same. This would mean that the cost of index calculus in
the finite field is roughly equal for all examples. Twdtdrent field sizes are chosen for
testing. Firstly, 950-bit finite fields with &fl) q = 22%9, (g=1) q = 3%, (g=2) q = 27°,

and 1230-bit finite fields with (g1) g = 239, (g=1) q = 3'%/, (g=2) q = 2103,

As noted, there are two fligrent ways to view the dimension two case, the first
using the genus 2 curve directly, and the second using the Rubin-Silverberg approach.
The relative performance is seen by comparing the running time of the pairing on the
Jacobian of the curve ovébm with the pairing onE(F,sm). The latter will be roughly
the same as the cost of a pairing B(F,~) wheren? ~ 3m. Note that this does not
take into account the cost of conversion between the Rubin-Silverberg Abelian variety
representation and the elliptic curve over the larger field.

Table 5 gives some running times for calculating the 950-bit case, and Table 6 the
running times for the 1230-bit case. As noted earlier, we use the notafmrthe eta
pairing with T = g and writen for the faster variant witfl = q — N. In both tables,
cases 1 to 3 illustrate the computation of thpairing for the elliptic characteristic 2
and 3 cases, as well as the genus 2, characteristic 2 case. Cases 4 to 7 give timings for
the computation of ther pairing, where the genus 2 “general” case is a general divisor,
rather than a divisor with one point on it as is the case for the third and sixth entries in
the tables. The final case in Table 6 gives a time for computing the Tate pairing using
BKLS-GHS.

The first observation to make from the tables is that the pewethod is clearly
superior to they generalisation of the Duursma-Lee method for all cases. In Table 5, the
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Table 5. Running times for pairing computation (950-bit finite field).

case curve optimisation pairing time (ms
1 |E(Fj230) elliptic char 2, 3.16
2 | E(Fg) |elliptic char 3 (see [17]) 4.05
3 | C(Fy) genus 2 1.95
4 |E(Fxs9)| elliptic char 2nr 1.70
5 | E(Fg) elliptic char 35t 2.72
6 | C(Fy79) genus 2t 1.25
7 |C(Fys)| genus 2 generair 4.20

Table 6. Running times for pairing computation (1230-bit finite field).

case curve optimisation  |pairing time (ms
1 |E(Fy07)| elliptic char 25 5.83
2 |E(Fa27)| elliptic char 3 8.42
3 |C(Fo103) genus 2; 3.00
4 |E(Fxo7)| elliptic char 2nr 3.50
5 |E(Fa127)| elliptic char 3nt 5.36
6 |C(Fo103) genus 2t 1.87
7 |C(Fo03)| genus 2 generajr 6.42
8 |C(F,w03)|genus 2 BKLS-GHS 3.15

elliptic char 2 case is 46% faster, the elliptic char 3 case is 32% faster, and the genus 2
char 2 case is 36% faster.

The second observation is that the genug: 2airing is considerably faster than
either of the elliptic cases for both levels of security. In Table 5, the genpgscase
is 26% faster than the elliptic char 2 case, and 54% faster than the elliptic char 3 case.
The diference is even more pronounced in Table 6. The timings for the genus 2 BKLS-
GHS method confirm the surprising observation that the BKLS-GHS method is roughly
computationally equivalent to themethod in the genus 2 case.

One of the potential advantages of using hyperelliptic curves is that the base field
can be much smaller than that required for an elliptic curve, for the same level of se-
curity. Great potential savings can be realised if an element of the base field can be
represented in a single machine word, rather than using a multi-precision representa-
tion, and for comparison with elliptic curves we regard it as quite “fair” to try to exploit
this feature.

So in implementing arithmetic in the fielfbs andFye we take advantage of the
128-bit registers available to those processors, like the Pentium IV, which support the
SSEZ2 instruction set, and have written a special function to carry out field multiplication
using SSEZ2 instructions. This is twice as fast as a standard multi-precision implemen-
tation, and improves the overall timings by about 50%.

All timings were done on a Pentium IV running at 3 GHz.
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11 Conclusions

We have presented the eta pairing approach to compute pairings on supersingular
curves. This approach generalises and clarifies the Duursma-Lee algorithm. We have
provided full examples of the method in characteristic 2 for genus 1 and 2, which turn
out to be very #iciently implementable.
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A The hyperelliptic function fgp

We now derive an explicit expression for the functiigp needed for Miller’s algorithm
on the supersingular hyperelliptic cur@g : y> +y = X°> + X3 + b.

Let P = (xp, Yp). We will consider divisord,, = n(P) — n(c). To achieve this we
will consider thereduced divisor (via Cantor’s algorithmp;, which is equivalent to
Dn. We will consider functions such thét, = D}, + (fy).

29



The divisorD; = (P) — () has Mumford representation

(@1(x), b1(x)) = (X + Xp, Yp).

We take the functiorf, = 1.

Now considerD, = 2(P) — 2(c0). One can show that this divisor has Mumford
representationgg(x), bo(x)) = (X% + X3, (X5 + X3)x + y2). This divisor is reduced (so no
reduction step in Cantor’s algorithm is performed). Hebée= D, and so the function
f, may be chosen to be 1.

Now considerD4 = 4(P) — 4(c0). The Mumford representation (after performing
the composition step of Cantor’s algorithm) is

(@a(%), Da(¥)) = (x* + X5, + (3G + X)X + (XB)X + Vp).

This divisor is not reduced. We havig(+ bs + X° + X3 + b)/as(x) = a,(X) = X2 + X +
(x5 +8) andby(x) == ba(x) + 1 (Modaj(x)) = (x5 + 1)x + (Y8 + 8 + x&* + 1).

We must consider functions and divisors. The diviBaiis equivalent to the divisor
D, = E - 2(x0) whereE is effective. The divisoiD; has the Mumford representation
(@,(x), by (x)) given above. Denote b the ‘negative’ of E. The functionas(x) has
divisor 4() + 4(P) — 8(co) while the functiona;(x) has divisorE + E — 4(c0). The
functiony + bs(x) has divisor 4P) + E — 6(co) while the functiony + bs(x) + 1 has
divisor 4(P) + E — 6(c0). It follows that

((y + ba(x9))/2,(X)) = 4(P) - E - 2(c0).

Hence we definds = (y + ba(x))/a,(x) and we haved, = D + (f4).

Now for the final step (thankfully!). We double the divisbf, using Cantor’s com-
position rule to obtaiy = 2E—4(c). Note thatDg = 2D4 = 2(D} +(fs)) = Dg+(f42).
One computes the Mumford representatiobgfto be

(5 09, b5 (9) = (2,092 (2 + 1) + (2 + XE)x-+ (VA% + X+ Xt + 1)

and one can check thath{{)? + by + f(X))/ag(x) = ag(X) = (x + (&* + 1)). Thus,
by(x) = by (X)+1 (modag(x)) = Yo'+ X2+ 1. Define [8P = (X&*+ 1, y&*+ xi?8+ 1).
We obtainDg = ([8]P) — (o) which confirms the octupling formula for the point (8]
Algorithm 5 describes divisor octupling in detail.

We now consider principal divisors. As befoget by (x) has divisor E + (8]P) -
5(c0) and @4(X)) = ([8]P) + ([8]P) — 2(c0). Hence we hav®; = Dj + (f4) where
fo = (v + b ()/a(9).

Putting it all together, we get

(fg) = 8(P) — ([8]P) - 7(x)

where

o= (L1000 V2 500
09 | &
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Algorithm 5 Octupling of a divisor I, v]
IneuT: divisor [u, V).
Ovurput: [U,V] = 8[u, V].
if deg(l) = 2then » [u,V] = [X? + Uy X + Ug, V1 X + Vo]
[U, V] e [X2 + U + (Up + Ug + 1)%%, (V1 + Up)®*X + (Ug + U + V1 + Vo + 1)%9]
else ifdegl) = 1 then » [u, V] = [X + U, Vo]
[U,v] « [x+ (Uo + 1)%%, (vo + U3 + 1)%]
else> [u,v] =[1,0]
[, v] «[1,0]
end if

B Efficient implementation of pairings in genus 2

B.1 Precomputation

We will precompute a table of powers x$ andyp (these are the initial input values for
the pointP) labelled as

XD =rl(xe) =@, and ¥ =7'(yp) =2

fori=0,1,...,m-1.

We focus on computing the terifig p((Q)) (i.e. we do not bring Frobenius actions
into this computation).

Note that, at loop iteration the current value of the-coordinate of [¥]P can be
written in terms of the precomputed initial values as

6' .
Xf:') + (i)

wherey;(i) is 1 wheni is odd and 0 otherwise. Similarly, the current value of yhe
coordinate of [#]P is

Y+ ()XY 4 ya(i)

whereys(i) = 1 wheni = 1,2 (mod 4) and 0 otherwise.
Obviously, in the above the exponentsirﬁx(,f') are taken modulm. One sees that
they wrap around rapidly.

B.2 The« factor
Write a = (y + bs(X))? o ¢ as a function of Xq, o). We have ¥ + bs(X)) o ¢ =
Y+ ¢+ 51X+ S+ (X+ WP+ (0 + X)X+ W) + (G)(X+ W) + Y
and squaring gives
Y2+ X+ S + S+ X8+ xXAWP + W + WP + (X5 +8) (¢ + W) + () (0 + WP) +yB.
Now, 55 = (W* + 1)* = wands? = (W? + w*)? = w* + w+ 1. Also, §§ = Sp + W° + W2,
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Expressing as a 12-tuple we geas follows: The first component is
V24 48+ 1+ (8 8+ xEx v
and the remaining components are
K+ X+ 148, 1+ 1L, + %+ x2+x8,1+1,1,0,0,0,0,0)

which can be slightly simplified.
Finally, we want to evaluate this omnd, yo) and to replace the current value far
with the precomputed values. We obtain the 12-tuple with first component

Yo + X+ O 4+ 5 I + (D + L+ 91 (i))3G + YO + 1 ()xEH + y5(i) + 1
and remaining components

(% + X8 X + X5 4 y1(i) + 1,0,x8 + x5, 0,1,0,0,0,0,0).

B.3 Thep factor
We then do a similar thing fg8 = (y + by) o y. We have

B =Y+ X+ SX+ S+ (2 + L)X+ W)2 + (2 + XO) (X + W) + (Ype + x50 + x28 + 1).
We expands, = 1+w* etc and writext® + 2 = x1°(1+ x2?). Hence can be expressed
as a 12-tuple with first component

Y+ 0 + (0F + X)X+ YB + XL+ x) + 1
and remaining components

(82 + x5, x + 332+ 1,0, X% + x,0,1,0,0,0,0,0).

_Finally, we substitute,y) = (Xq,Yq) and insert the precomputed valugs =
X 1 ya(i) andyp = Y& + 1 ()X + y3(i). Using the formulay(i)(1 + y1(i)) = 0
gives the 12-tuple with first component

yo + (" + y1(i))3 + (6

+yO+ )y (o) (X(PGHS) +y1() + 1) +vy3() + 1.

6i+4
+ X|(::I+ ))XQ

and remaining components
O+ X0, g + X8 + y4(i) + 1,0, + Xq.0,1,0,0,0,0,0).

It remains to multiply ther andg together éiciently. But first we consider how to
absorb the powers of 8 into the equations.
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B.4 Absorbing powers of 8

We break the computation of the eta pairipdP, Q) into two parts, the main part is the
loop corresponding to then(— 1)/2 octuplings, and the secondary part is the final two
doublings and addition. The main part can be expressed as the product

(m-3)/2

n fg23p(¥(Q))
i=0

23(m-3-2i)/2

wherefgsp = a3 as described previously. The goal of this section is to write this as

(m=-3)/2

Ik

i=0

where eachHfj is an equation which has the 2-power Frobenius action already brought

into the equation. Using the formulae ferandg above we will compute®™"* and
3(m-3-2i)/2
B :

To achieve this #iciently requires precomputation of the 2-power Frobenius orbit
of the pointQ, so definefor =0,1,...,m-1

(i) _ 2 ) _ 2
X5 = % and 5 = yg.

The most delicate part of the argument is handling wowand o behave under
powering by 3(M3-2)/2 Recall thaw® = w + 1 from which we deduce

$ =g+wW
£=g+1 (5)
$=9+w+1

Note thatmis coprime to 12 and so is odd. We hav&= w + 1 and so, sincenf— 3 -
2i)/2=i (mod 2) we havev®™ ™ = w + y4(i). The same formula holds whewis
replaced byw? or w*. For sy note thatifm=1 (mod 4) then

7 =50ty (W + s()
while if m=3 (mod 4) then
S = 04 nlwW 4 (i) + 1

We denote by,(m, i) the valueys(i) whenm=1 (mod 4) andys(i) + 1 otherwise.

B.5 Thea factor

The basic shape of the terwill be similar to previously, except a few extra terms due
to equation (5). The process is simple, just bring the 2-power operation into the formula
and simplify the ‘exponents’.
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The “constant” term will be

y(Q(3m—7—6i)/2) + (Xg3m—7—6i)/2))3 ((3m—l+6|)/2) fj(3m—3+6i)/2))xg":’m—6i—5)/2) +

+(Xp
(X(P(Bm—3+6i)/2) +1+ Vl(i))ngm_7 6i)/2) + y(P(3m—3+6|)/2) +71(i)Xg3m_1+6i)/2) + )/3(i) +1
plus when (h—3-2i)/2 is odd (i.e., whenis odd) another term must be added (coming
from the fact that\y?))® = w?l + 1 and thesy term). We write this other term as

710 Q™ + 1 ya(i) + XD D) 4 ya(mi).

We can applyy1(i)(1 + y1(i)) = 0O, cancel various terms and simplify the cubing of
(Bm-7-6)/2) 'The expression simplifies to

XQ
y((3w7—6i)/2) + (X((3w1+6i)/2) + X((3rm3+6i)/2))X((3m—5—6i)/2)

((Bm-3+6i)/2) ((83m-5- 6|)/2)) ((Bm-7-6i)/2)

*Q
whereys(i) =1ifi=1 (mod 4) and 0 otherwise.

The remaining terms are (note that there is an additipp@w? term due to thes
term):

((Bm-3+6i)/2)

(x5 +1+x +Yp + ys(i)

(XgSm—S—Gi)/Z) T ngm_7_6i)/2))w+ (Xgam—S—Gi)/Z) + X(P(3m—3+6i)/2) T 1)W2
+(X((3m l+6|)/2) (FESm—3+6|)/2))\N4 + %

As usual, the indices inside round brackets should be reduced modaldhe range
{0,1,...,m-1}.

B.6 Thep factor

We now consider thg factor. One sees that the “constant termpdf™ " i

is
y(Q(Sm—Q—Gi)/Z) 4 (Xg3m+l+6i)/2) +yl(i))x((3m—7—6i)/2) 4 (x4 K((BM1460)/2)

y((3m—1+6|)/2)

+71() + 1) +y3(i) + 1

(Bm-1+6i)/2)y . (3M-9-6i)/2)
X )Xo

3m-1+6i)/2 3m+1+6i)/2
+X(P(m—+|)/ )(Xg m+1+6i)/2)

plus
Y1 (|) (X((3m—l+6|)/2) + X((3m—7 6i)/2) + yl(l) + 1) + y4(m’ |)

This simplifies to

JET-9-6)/2) | (BMH1+6)/2) | (31-1+6)/2))  (3m-9-6)/2) | \(@m-1+61)/2)
Q Xp )Xg +Y¥p

+(Xp
+Xg3m+1+6|)/2)(Xg3m—l+6|)/2) + Xg3m—7—6i)/2)) + X(P(Bm—1+6i)/2) + )/5(i)
The remaining terms are (again, including&)w? term)

(X(P(3m+1+ei)/2) 4 XgSm—l+6i)/2))W 4 (X(P(3m+1+6i)/2) 4 Xg3m—9—6i)/2) + P

+(ngm-7—ei)/2) N Xg3m—9—6i)/2))w4 + s
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B.7 Simplifying the final operations

After the loop of (n— 1)/2 iterations, it remains to perform two doublings and an
addition. For the case in which the input divisors are both of the fofm= (P;) —
(c0) the final addition can be skipped as it has no impact on the function. Note that
(28™D/2 1 1)D; = ¢(D1), whereg(D1) = (X + 1,y + X* + 1) — (). Denote byD; the
reduced divisor 8™1/2D,. D} is equivalent tas(D1) — D1 = (¢(P)) — (P).

Now, letv be the vertical line througR and—P. So {) = (P) + (-P) — 2(c). Then

(@(P)) = (P) + (V) = (¢(P)) + (=P) — 2(c0)
Hence, by the uniqueness of the reduced divisors in Mumford representation we have
D" = (¢(P)) + (=P) — 2(c0).

As one of the points oB’ is —P, the composition stage of Cantor’s algorithm immedi-
ately cancel$® and—P using a vertical line function. As we don’t need to know what the
“current” divisor is before the addition, we can also skip the two doublings. We know
from Appendix A that the mumford representation of the diviBoe 4(P) — 4(c0) is
(au(X), ba(x)) = (X* + X3, 3 + (€ + x8)x2 + (x3)x + Y&). So, we need to extract the point
on the divisor after theni— 1)/2 octupling phase, square the function twice, and then
multiply it by the function defined below;

y+ba(x) = y+ X3+ (& + xE) P + (X)X + ¥
Building the distortion map into the formula gives us a constant term;
Y+ (L+ X+ + Xb) + XpX + Y
and the remaining terms are;
(0 + X5, X8 + x5, 1, ¥% + %,0,1,0,0,0,0,0).

When we are working with the general divisor case, we cannot skip the final addition
as we can for the simple divisor case. For both the doublings and the addition, we need
to evaluate the points on the second divisor at the fungtiers;x® + I,x? + 11X + o,
wheres, I, 11, 1o come from Cantor’s algorithm. After building the distortion map into
this formula, we get the “constant” term;

(y + 3% + X(S0C + 17) + 123 + 1)
and the remaining terms are;

(502 + |1, X+ s1x + |2, 51, %% + %,0,1,0,0,0,0).
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