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Abstract. In many situations we want to enjoy confidentiality, authenticity and non-repudiation
of message simultaneously. One approach to achieve this objective is to “sign-then-encrypt” the
message, or we can employ special cryptographic scheme like signcryption. Two open problems
about identity-based (ID-based) signcryption were proposed in [16]. The first one is to devise
an efficient forward-secure signcryption scheme with public verifiability and public ciphertext
authenticity, which is promptly closed by [10]. Another one which still remains open is to devise
a hierarchical ID-based signcryption scheme that allows the user to receive signcrypted messages
from sender who is under another sub-tree of the hierarchy. This paper aims at solving this
problem by proposing two concrete constructions of hierarchical ID-based signcryption.
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1 Introduction

In traditional public key infrastructure, certificates leak data and are not easily located.
Strict online requirement removes offline capability, and validating policy is time-consuming
and difficult to administer. Moreover, traditional PKI may not provide a good solution in
many scenarios. For example, in tetherless computing architecture (TCA) [24] where two
mobile hosts wanting to communicate might be disconnected from each other and also from
the Internet. As exchange of public keys is impossible in this disconnected situation, identity-
based (ID-based) cryptosystem fits in very well since the public key can be derived from the
identity of another party [23].

In many situations we want to enjoy confidentiality, authenticity and non-repudiation of
message simultaneously. A traditional approach to achieve this objective is to “sign-then-
encrypt” the message, or we can employ special cryptographic scheme like signcryption which
can be more efficient in computation than running encryption and signature separately. A
recent direction is to merge the concept of ID-based cryptography [22] and signcryption [26].
Two open problems about ID-based signcryption were proposed in [16]. The first one is to
devise an efficient forward-secure signcryption scheme with public verifiability and public
ciphertext authenticity, which is promptly closed by [10]. Another one which still remains
open is to devise a hierarchical ID-based signcryption scheme that allows the user to receive
signcrypted messages from sender who is under another sub-tree of the hierarchy. This paper
aims at solving this problem.
? See [11] for another version of this paper.
?? corresponding author
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1.1 Applications

ID-based cryptography is suitable for the use of commercial organizations. In their settings,
the inherent key-escrow of property is indeed beneficial, where the big boss has the power
to monitor his/her employees’ Internet communications if necessary. Hierarchical structure
is common in nowadays’ organizations, single trusted authority for generation of private key
and authentication of users may be impractical, all these motivated the need of hierarchical
ID-based cryptosystem.

Moreover, hierarchical ID-based cryptosystem is also useful in other scenarios, such as
in TCA, a computing architecture with the concept of “regions”, which can be viewed as a
branch of the hierarchy [15, 23].

1.2 Related Work

Malone-Lee gave the first ID-based signcryption scheme [18]. This scheme is not semantically
secure as the signcrypted text produced is a concatenation of a signature by a variant of Hess’s
ID-based signature [14] and a ciphertext by a simplified version of Boneh and Franklin’s ID-
based encryption [4]. In short, the signature of the message is visible in the signcrypted
message.

On the other hand, Nalla and Reddy’s ID-based signcryption scheme [20] cannot provide
public verifiability as well as public ciphertext authenticity since the verification can only
be done with the knowledge of recipient’s private key. Libert and Quisquater proposed three
ID-based signcryption schemes [16]. None of them can satisfy the requirements for public
verifiability and forward security at the same time.

Boyen’s multipurpose ID-based signcryption scheme [5] is the first scheme that provides
public verifiability and forward security and is also provably secure. However, this scheme
aims at providing ciphertext unlinkability and anonymity. So, a third party cannot verify
the origin of the ciphertext, thus the scheme does not satisfy the requirement of public
ciphertext authenticity. We remark that Boyen’s scheme is very useful in applications that
require unlinkability and anonymity.

The public verifiability of the signcrypted message usually can only be checked with some
ephemeral data computed by the intended recipient of the signcrypted message. The notion of
verifiable pairing was introduced in [8] to ensure the non-repudiation property of the ID-based
signcryption by disallowing the intended recipient to manipulate the ephemeral data.

In 2004, [19] claimed that they were the first one closing the open problem proposed by
[16]; however, the open problem was indeed closed by [10] in 2003. Recently, a simple but
secure ID-based signcryption scheme was proposed in [7] and an ID-based signcryption scheme
with exact security was proposed in [17]. The first blind ID-based signcryption scheme was
proposed in [25]. This scheme offers the option to choose between authenticated encryption
and ciphertext unlinkability. The generic group and pairing model was also introduced in
this paper. Notice that none of the previously mentioned schemes works with hierarchical
ID-based cryptosystem.

2 Preliminaries

Before presenting our results, we give the definition of a hierarchical ID-based signcryption
scheme by extending the framework in previous work (e.g. [10, 25]). We also review the
definitions of groups equipped with a bilinear pairing and the related complexity assumptions.



Signcryption in Hierarchical Identity Based Cryptosystem 3

2.1 Framework of Hierarchical ID-based Signcryption Schemes

An ID-based signcryption (IDSC) scheme consists of six algorithms: Setup, Extract, Sign,
Encrypt, Decrypt and Verify. Setup and Extract are executed by the private key generators
(PKGs henceforth). Based on the security level parameter, Setup is executed to generate the
master secret and common public parameters. Extract is used to generate the private key
for any given identity. The algorithm Sign is used to produce the signature of a signer on
a message, it also outputs some ephemeral data for the use of Encrypt; Encrypt takes the
message, the signature, the ephemeral data produced by Sign and the recipient’s identity to
produce a signcrypted text. Decrypt takes the input of secret key and decrypt the signcrypted
text to give the message and the corresponding signature, finally Verify is used by any party
to verify the signature of a message.

In the hierarchical ID-based signcryption (HIDSC henceforth), PKGs are arranged in a
tree structure, the identities of users (and PKGs) can be represented as vectors. A vector
of dimension ` represents an identity at depth `. Each identity ID of depth ` is represented
as an ID-tuple ID|` = {ID1, · · · , ID`}. The algorithms of HIDSC have similar functions to
those of IDSC except that the Extract algorithm in HIDSC will generate the private key
for a given identity which is either a normal user or a lower level PKG. The private key for
identity ID of depth ` is denoted as SID|` (or SID if the depth of ID does not related to the
discussion). The functions of Setup, Extract, Sign, Encrypt, Decrypt and Verify in HIDSC
are described as follows.

– Setup: Based on the input of a unary string 1k where k is a security parameter, it outputs
the common public parameters params, which include descriptions of a finite message
space, a finite signature space and a finite signcrypted text space. It also outputs the
master secret s, which is kept secret by the root private key generator (PKG).

– Extract: Based on the input of an arbitrary identity ID of depth j, it makes use of the
secret key SID|j−1 (if j = 1, the input of the algorithm is s, which is the master secret of
the root PKGs, instead of SID|j−1) to output the private key SID|j for ID.

– Sign: Based on the input (M,SID), it outputs a signature σ and some ephemeral data r.
– Encrypt: Based on the input (M,SA, IDB, σ, r), it outputs a signcrypted message C.
– Decrypt: Based on the input (C,SB, IDB), it outputs the message M , the corresponding

signature σ and the purported signer IDA.
– Verify: Based on the input (σ,M, ID), it outputs > for “true” or ⊥ for “false”, depending

on whether σ is a valid signature of message M signed by ID or not.

These algorithms must satisfy the standard consistency constraint of hierarchical ID-based
signcryption, i.e. if {σ, r} = Sign(M,SA), C = Encrypt(SA, IDB,M, σ, r) and {M ′, IDA′ , σ

′}
= Decrypt(C,SB), we must have M = M ′, IDA = IDA′ and > = Verify(σ′,M, IDA).

2.2 Bilinear Pairing

Let (G, ·) and (G1, ·) be two cyclic groups of prime order q and g be a generator of G. The
bilinear pairing is given as ê : G×G→ G1, which satisfies the following properties:

1. Bilinearity: For all u, v ∈ G and a, b ∈ Z, ê(ua, vb) = ê(u, v)ab.
2. Non-degeneracy: ê(g, g) 6= 1.
3. Computability: There exists an efficient algorithm to compute ê(u, v) ∀u, v ∈ G.
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2.3 Diffie-Hellman Problems

Definition 1. The computational Diffie-Hellman problem (CDHP) in G is defined as follows:
Given a 3-tuple (g, ga, gb) ∈ G3, compute gab ∈ G. We say that the (t, ε)-CDH assumption
holds in G if no t-time algorithm has advantage at least ε in solving the CDHP in G.

Definition 2. The bilinear Diffie-Hellman problem (BDHP) in G is defined as follows: Given
a 4-tuple (g, ga, gb, gc) ∈ G4 and a pairing function ê(·, ·), compute ê(g, g)abc ∈ G1. We say
that the (t, ε)-BDH assumption holds in G if no t-time algorithm has advantage at least ε in
solving the BDHP in G.

Definition 3. The decisional bilinear Diffie-Hellman problem (DBDHP) in G is defined as
follows: Given a 5-tuple (g, ga, gb, gc, T ) ∈ G4 × G1 and a pairing function ê(·, ·), decides
whether T = ê(g, g)abc. We say that the (t, ε)-DBDH assumption holds in G if no t-time
algorithm has advantage at least ε in solving the DBDHP in G.

3 Security model

We present our security model for indistinguishability, existential unforgeability and ciphertext
authenticity for HIDSC.

3.1 Indistinguishability

Indistinguishability for HIDSC against adaptive chosen ciphertext attack (IND-CCA2) is
defined as in the following IND-CCA2 game.

1. The simulator selects the public parameter and sends the parameter to the adversary.
2. There are three oracles except the random oracles (hash oracles).

– Key extraction oracle KEO: Upon the input of an identity, the key extraction oracle
outputs the private key corresponding to this identity.

– Signcryption oracle SO: Upon the input of the message M , the sender IDA, the
recipient IDB, the signcryption oracle produces a valid signcryption C.

– Unsigncryption oracle UO: Upon the input of the ciphertext C, the sender IDA

and the recipient IDB, the unsigncryption oracle outputs the decryption result and
the verification outcome.

The adversary is allowed to perform a polynomial number of oracle queries adaptively,
but oracle query to KEO with input IDB is not allowed.

3. The adversary generates M0,M1, IDA, IDB, and sends them to the simulator. The
simulator randomly chooses b ∈R {0, 1} and delivers the challenge ciphertext C to the
adversary where {σ, r} = Sign(M,SA) and C = Encrypt(SA, IDB,Mb, σ, r). M0 and M1

should be of equal length, and no oracle query have been made and will be made to SO
with input (M0, IDA, IDB) and (M1, IDA, IDB) throughout the game.

4. The adversary can again perform a polynomial number of oracle queries adaptively, but
oracle query to UO for the challenge ciphertext (defined later) from the simulator is not
allowed.

5. The adversary tries to compute b.

The adversary wins the game if he can guess b correctly. The advantage of the adversary is
the probability, over half, that he can compute b accurately.
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Definition 4. (Indistinguishability) A hierarchical ID-based signcryption scheme is IND-
CCA2 secure if no PPT adversary has a non-negligible advantage in the IND-CCA2 game.

Our security notion above is a strong one. It incorporates previous security notions
including insider-security in [1] and indistinguishability in [18].

Notice that if we set the adversary to send the recipient identity IDB to the simulator
before step 1 (say, in an initialization stage) in the game, the security is reduced to the
indistinguishability against selective identity, adaptive chosen ciphertext attack (IND-sID-
CCA2).

3.2 Existential unforgeability

Existential unforgeability against adaptive chosen message attack (EU-CMA2) for HIDSC is
defined as in the following EU-CMA2 game. The adversary is allowed to query the random
oracles, KEO, SO and UO (which are defined above) with the restriction that oracle query
to KEO with input IDA is not allowed.

The game is defined as follows:

1. The simulator selects the public parameter and sends it to the adversary.
2. The adversary is allowed to perform a polynomial number of oracle queries adaptively.
3. The adversary delivers a recipient identity IDB and a ciphertext C.

The adversary wins the game if he can produce a valid (C, IDB) such that C can be decrypted,
under the private key of IDB, to a message M , a sender identity IDA and a signature σ
which passes the verification test and no SO request that resulted in a ciphertext C, whose
decryption under the private key of IDB is the claimed forgery (σ,M, IDA).

Definition 5. (Existential Unforgeability) A hierarchical ID-based signcryption scheme is
EU-CMA2 secure if no PPT adversary has a non-negligible probability in winning the EU-
CMA2 game.

The adversary is allowed to get the private key of the recipient in the adversary’s answer.
This gives us an insider-security as defined in [1].

Notice that if we set the adversary to send the sender identity IDA to the simulator in
Step 1 in the game, the security is reduced to the existential unforgeability against selective
identity, adaptive chosen ciphertext attack (EU-sID-CMA2).

3.3 Ciphertext Authenticity

Ciphertext authenticity against adaptive chosen message attack (AUTH-CMA2) for HIDSC
is defined as in the following AUTH-CMA2 game. The adversary is allowed to query the
random oracles, KEO, SO and UO, which are defined above. The game is defined as follows:

1. The simulator selects the public parameter and sends the parameter to the adversary.
2. The adversary is allowed to perform a polynomial number of oracle queries adaptively.
3. The adversary delivers a recipient identity IDB and a ciphertext C.

The adversary wins the game if he can produce a valid (C, IDB) such that C can be decrypted,
under the private key of IDB, to a message M , sender identity IDA and a signature σ which
passes the verification test.

Oracle query to KEO with input IDA and IDB is not allowed. The adversary’s answer
(C, IDB) should not be computed by SO before.
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Definition 6. (Ciphertext Authenticity) A hierarchical ID-based signcryption scheme is AUTH-
CMA2 secure if no PPT adversary has a non-negligible probability in winning the AUTH-
CMA2 game.

Outsider-security is considered in this model since the adversary is not allowed to get the
private key of the recipient in the adversary’s answer. This model represents the attack where
a signature is re-encrypted by using a public key with unknown secret key.

4 Scheme 1

4.1 Construction

Let ` be the number of levels of the hierarchy to be supported. Let H1, H2 and H3 be
three cryptographic hash functions where H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → G, and
H3 : G1 → {0, 1}k0+k1+n where k0 is the number of bits required to represent an element of
G, k1 is the maximum number of bits required to represent an identity (of depth `) and n
is the maximum number of bits of a message to be signcrypted. Our first construction of a
hierarchical ID-based signcryption scheme is given below. The construction is based on the
idea in [13].

Setup: On the input of a security parameter k ∈ N, the root PKG uses the BDH parameter
generator [4] to generate G, G1, q and ê(·, ·), where q is the order of groups G and G1. Then
the root PKG executes the following steps.

1. Select an arbitrary generator P0 from G.
2. Pick a random s0 from Zp, which is the system’s master secret key.
3. Compute Q0 = P0

s0 .
4. The public system parameters are

params =< G,G1, ê(·, ·), q, P0, Q0,H1(·),H2(·),H3(·) > .

KeyGen: For an entity with ID|k−1 = {ID1, ID2, · · · , IDk−1} of depth k−1 (for root PKG,
its depth is defined as 0 and its identity is defined as empty string ε), it uses its secret key
SID|k−1 (or the master secret s0 of the root PKGs, if k = 1) to generate the secret key for a
user ID|k (where the first k − 1 elements of ID|k are those in ID|k − 1) as follows.

1. Compute PID|k = H1(ID1, ID2, · · · , IDk−1, IDk).
2. Pick random sk−1 from Zp (this step is not necessary for the root PKG as s0 is already

defined).
3. Set the private key of the user to be SID|k = SID|k−1 · PID|ksk−1 =

∏k
i=1 PID|i

si−1 , where
SID|0 is defined as the identity element in G.

4. Send the values of Qi = P0
si for 1 ≤ i ≤ k − 1 as “verification points” to the user.

Sign: For a user A|k = {A1, A2, · · · , Ak} with secret key SA|k =
∏k
i=1 PA|i

si−1 and the points
Qi = P0

si for 1 ≤ i ≤ k − 1 to sign on a message M , he/she follows the steps below.

1. Pick a random number r from Z
∗
p.

2. Compute PM = H2(M).
3. Compute σ = SA|k · PMr.
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4. Return {σ,Q1, Q2, · · · , Qk−1, QM = P0
r} as the signature and return r as the ephemeral

data for Encrypt.

Encrypt: To signcrypt the message M to user B|l, the steps below are used.

1. Compute PB|j = H1(B1, B2, · · · , Bj) for 1 ≤ j ≤ l.
2. Pads the identity A with a chain of zero bits if it is not of depth `.
3. Return ciphertext C =

{PB|2r, · · · , PB|lr, (M ||σ||A)⊕H3(ĝr), Q1, Q2, · · · , Qk−1, QM}

where ĝ = ê(Q0, PB|1) ∈ G1 and ⊕ represents the bitwise XOR.

Decrypt: For user B|l with secret key SB|l =
∏l
i=1 PB|i

s′i−1 and the points Q′i = P0
s′i for

1 ≤ i ≤ l − 1 to decrypt the signcrypted message C, the steps below are used.

1. Let C = {U2, · · · , Ul, V,Q1, Q2, · · · , Qk−1, QM}
2. Compute V ⊕H3(ê(QM , SB|l)/

∏l
i=2 ê(Q

′
i−1, Ui)) = M ||σ||A.

(for l = 1,
∏l
i=2 ê(Q

′
i−1, Ui) is defined as the identity element in G1.)

3. Return {M,σ,A,Q1, Q2, · · · , Qk−1, QM}.

Verify: For A’s signature {σ,Q1, Q2, · · · , Qk−1, QM}, everyone can do the following to verify
its validity.

1. Compute PM = H2(M).
2. Compute PA|i = H1(A1, A2, · · · , Ai) for 1 ≤ i ≤ k.
3. Return > if ê(P0, σ)/

∏k
i=2 ê(Qi−1, PA|i) = ê(Q0, PA|1)ê(QM , PM ).

(for k = 1,
∏k
i=2 ê(Qi−1, PA|i) is defined as the identity element in G1.)

4.2 Efficiency Analysis

We first consider the communication efficiency of the scheme. The signcrypted message is
shortened by one G1 element, as compared with using the schemes HIDE and HIDS in [13]
together. Moreover, the size of the signcrypted message can be further reduced if the sender
and the receiver have a common low-level PKG ancestor. The modification incurred includes
using a fixed sk−1 instead of a random one for each invocation of KeyGen. For verification side,
since the sender and the receiver share some common “verification points”, these points can
be omitted from the transmission. For encryption side, the ciphertext size can be reduced by
using the concept of “Dual-HIDE” in [13], which can be seen as an extension of the concept of
non-interactive key sharing in [22]. The basic idea behind non-interactive key sharing is that
a same value can be computed either from the sender’s private key and the recipient’s public
key or from the recipient’s private key and the sender’s public key. The sender is required to
get his/her private key before the encryption can be done, but there is no practical difference
in the case of signcryption since the sender who are going to sign the message must have
his/her private key ready anyway. In our proposed construction, the “non-interactive agreed
secret key” created by the sender ID whose the common ancestor with the receipt is at level
m is ê(SID|m, P0) = ê(P0, SID)/

∏l
i=m+1 ê(Qi−1, PID|i). To utilizing it, simply replace ĝ with

this agreed secret key.
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For the computational efficiency, chosen ciphertext secure HIDE requires the transformation
in Section 3.2 of [13], while our scheme does not require such transformation as the integrity
checking of the ciphertext is obtained from the signature. Notice that the above modification
from the concept of “Dual-HIDE” distributes the computational effort of the sender and that
of the recipient in a more even way.

4.3 Security analysis

Theorem 1. Suppose that the (t, ε)-BDH assumption holds in G, then the above scheme is
(t′, qS , qH , qE , qR, ε)-adaptive chosen ciphertext (IND-CCA2) secure for any t′ < t− o(t).

Proof. Dealer D gives (g, ga, gb, gc) to Simulator S and wants S to compute ê(g, g)abc. Set
P0 = g,Q0 = ga. S sends the system parameter to A. S randomly picks µ with 1 ≤ µ ≤ qH .

Phase 1: Query on H1 for input (A1, · · · , Ak):

– If k = 1, the µ-th query to H1 with k = 1 is back patched to gb. The corresponding
identity is denoted as ID∗b. Adds the entry < ID∗b, g

b > to tape L1 and returns gb.
– Otherwise, randomly picks λ ∈ Zp; add < A1, · · · , Ak, λ > to L1 and returns gλ.

When there is a query on H2 for input M , randomly picks λ ∈ Zp; adds < M,λ > to L2 and
returns (ga)λ. Query on H3 is handled by producing a random element from the codomain,
and adding both query and answer to tape L3.

Key Extraction Oracle (KEO): For input identity A = {A1, · · · , Ak} ∈ Zpk where k ≤ `.

– If A1 = ID∗b , then aborts the simulation.
– Otherwise, look up at the tape LK =< ID1, · · · , IDu, α1, · · · , αu−1 > which stores the

previously extracted keys. Let y be the maximal value such that {ID1, · · · , IDy} =
{A1, · · · , Ay} for some tuple < ID1, · · · , IDu, α1, · · · , αu−1 >∈ LK . Then:
• For 1 ≤ i ≤ y, get αi from the list and set Qi = gαi . Get Pi = H1(A1, · · · , Ai) from
L1 and also get λ from (A1, λ) ∈ L1.

• For y < i ≤ k, query the value of Pi from H1. Randomly generate αi ∈ Zp.
• Put < I1, · · · , Ik, α1, · · · , αk−1 > in LK . Set the private key as SA|k =

∏k
i=1 Pi

si−1 =
(ga)λ · P2

α1 · · ·Pkαk−1 . Returns SA|k and Qi = gαi for 1 ≤ i ≤ k − 1.
Note that the private key satisfies the required form.

Signcryption Oracle (SO): For input message M , sender A|k = {A1, · · · , Ak}, and recipient
B|l = {B1, · · · , Bl}.

– If A1 = ID∗b, query PM from H2 and obtain λM from < M,λM >∈ L2. Query PA|i
from H1 and obtain λi from < A1, · · · , Ai, λi >∈ L1, for 1 ≤ i ≤ k. Randomly generate
αi ∈ Zp for 1 ≤ i ≤ k. Compute σ = (ga)(αkλM )

∏k
i=2 g

λiαi−1 , Qi = gαi for 1 ≤ i ≤ k − 1,
QM = (gαk)(gb)−1/λM . Query PB|i from H1 and obtain get λBi from < B1, · · · , Bi, λBi >∈

L1, for 1 ≤ i ≤ l. Compute Ui = (gαk)(gb)−
λBi
λM for 2 ≤ i ≤ l, V = (M ||σ||A|k) ⊕

H3(ê(ga, (gαk)(gb)−
λB1
λM )). Return the ciphertext C = {U2, · · · , Ul, V,Q1, · · · , Qk−1, QM}.
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S puts < A|k,B|l,M,C > in LS . It is easy to see that the signature will pass the
verification test:

ê(P0, σ)/
k∏
i=2

ê(Qi−1, PA|i)

= ê(g, (g(aαkλM ))
k∏
i=2

gλiαi−1)/
k∏
i=2

ê(gαi−1 , gλi)

= ê(g, g(aαkλM ))ê(g,
k∏
i=2

gλiαi−1)/
k∏
i=2

ê(g, gλiαi−1)

= ê(gαk , g(aλM ))
k∏
i=2

ê(g, gλiαi−1)/
k∏
i=2

ê(g, gλiαi−1)

= ê(ga, gb)ê(gαk , g(aλM ))ê(gaλM , (gb)
−1/λM )

= ê(ga, gb)ê((gαk)(gb)−1/λM , gaλM )
= ê(Q0, PA|1)ê(QM , PM ).

– Otherwise, S retrieves the private key of A|k using the same way as KEO and then uses
it to run signcryption and gets ciphertext C. S puts < A|k,B|l,M,C > in LS .

Un-signcryption Oracle (UO): For input senderA|k = {A1, · · · , Ak}, recipientB|l = {B1, · · · , Bl}
and ciphertext C = {U2, · · · , Ul, V,Q1, · · · , QM}.

– For the case B1 = ID∗b, S finds if < A|k,B|l,M,C > is in LS . If so, returns M . Otherwise,
S searches for all combinations < M,σ > such that < M,h2 >∈ L2, < g′, h3 >∈ L3, for
some h2, h3, under the constraints that ê(g, σ) = ê(ga, PA|1)ê(QM , h2)

∏k
i=2 ê(Qi−1, PA|i)

and h3 ⊕ V = M ||σ||A|k. S simply picks one of the valid message M from the above
and return it as answer. If no such tuple is found, the oracle signals that the ciphertext is
invalid.

– For other cases, S retrieves the private key of B|l using the same way as KEO and then
uses it to decrypt and verify.

Witness Extraction: As in the IND-CCA2 game, at some point A chooses plaintext M0,M1,
and sender A|k on which he wishes to be challenged. S retrieves the private key of A|k
and Q1, · · · , Qk−1, QM using the same way as KEO. S queries PB|i from H1 and obtain get
λBi from < B1, · · · , Bi, λBi >∈ L1, for 2 ≤ i ≤ l. S randomly picks V ∈ {0, 1}k0+k1+n

and responds with challenge ciphertext C = {(gc)λB2 , · · · , (gc)λBl , V,Q1, · · · , Qk−1, g
c}. All

further queries by A are processed adaptively as in the oracles above, with no private key
extraction of B|l. Finally, A returns its final guess b′. S ignores the answer from A, randomly
picks an entry < g′, h3 > in L3, and returns g′ as the solution to the BDH problem.

If the recipient identity is B|l = {B1, · · · , Bl} with B1 = ID∗b, to recognize the challenge
ciphertext is incorrect, A needs to query random oracle H3 with g′ = ê(Q0, PB|1)c = ê(g, g)abc.
It will leave an entry < g′, h3 > on L3, from which S can extract g′ = ê(g, g)abc. ut

Theorem 2. Suppose that the (t, ε)-CDH assumption holds in G, then the above scheme
is (t′, qS , qH , qE , qR, ε)-adaptive chosen message (EU-CMA2) secure for any t′ < t − o(t),
ε′ > ε/e2qSqE.
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Proof. Dealer D gives (g, ga, gb) to Simulator S and wants S to compute gab. Set g1 = ga, g2 =
gb. The initialization, setup and the simulation of oracles are similar to those in the proof of
Theorem 1. The difference is that probabilistic simulations are used in the simulation of two
hash oracles: the one for hashing the identity (H1(·)) and the one for hashing the message
(H2(·)).

Queries on oracle H1 for identity (A1, · · · , Ak) : If k = 1, S embeds part of the challenge gb

in the answer of many H1 queries [12]. S picks λ ∈R F∗q and repeats the process until λ is not
in the list L1. S then flips a coin W1 ∈ {0, 1} that yields 0 with probability ζ1 and 1 with
probability 1 − ζ1. (ζ1 will be determined in the probability analysis shortly afterward.) If
W1 = 0, then the hash value H1(A1) is defined as gλ; else returns H1(A1) = (gb)λ if W1 = 1.
In either case, S stores < A1, λ,W1 > in the list L1.

On the other hand, if k > 1, S performs the simulation as that in the proof of Theorem 1.

Queries on oracle H2 for message M : In this case, S embeds the remaining part of the
challenge ga in the answer of many H2 queries. S picks β ∈R F∗q and repeats the process until
β is not in the list L2. S then flips a coin W2 ∈ {0, 1} that yields 0 with probability ζ2 and 1
with probability 1− ζ2. (ζ2 will be determined later.) If W2 = 0, then the hash value H2(M)
is defined as (ga)β; else returns H2(M) = gβ if W2 = 1. In either case, S stores < M,β,W2 >
in the list L2.

Witness Extraction: After such probabilistic behaviour is introduced to the simulation, S will
fail for the KEO query of (A1, · · · , Ak) if W1 = 1 is found in the corresponding entry of A1

in L1. The SO query for the signcryption of message M done by (A1, · · · , Ak) will fail too
when W1 = 1 and W2 = 1 are found in the corresponding entry of A1 in L1 and M in L2

respectively.

At the end of the game, A returns a forgery C = {U2, · · · , Ul, V,Q1, Q2, · · · , Qk−1, QM}
which is the signcryption of message M done by (A1, · · · , Ak). S cannot solve the CDH
problem if the forgery is not related to the problem instance at all, i.e. when W1 = 0 is found
in the corresponding entry of A1 in the list L1 and W1 = 1 and W2 = 0 are found in the
corresponding entry of A1 in L1 and M in L2 respectively.

For successful cases, S gets the forged signature {σ,Q1, Q2, · · · , Qk−1, QM} by the decryption
of the signcrypted text. Suppose that λi is the corresponding entry of P |i in the list L1 and β is
the corresponding entry of PM in the list L2, since σ =

∏k
i=1 (Pisi−1)·PMr = gab·

∏k
i=2 (Pisi−1)·

PM
r, C can compute the solution of the CDH problem by σ/

∏k
i=2 (Qi−1

λi) ·Qk−1, QM
β .

Probability Analysis: The probability that S answers to all private key extraction queries is
ζ1
qE . S can answer all signcrypt queries for users H1(A1, · · · , Ak) where < A1, λ, 0 > is in

the list L1, so the worst case for S to answer all signcrypt queries correctly happens when all
signcrypt requests are for users H1(A1, · · · , Ak) where < A1, λ, 1 > is in the list L1. For these
class of users, S can still signcrypt given the message is M where < M,β, 0 > can be found
in the list L2, so the probability for S to successfully answer all signcrypt requests is ζ2

qS .

Finally, the probability that A makes a forged signature for user H1(A1, · · · , Ak) where
< A1, λ, 1 > is in the list L1 is 1 − ζ1 and the probability that A makes a forged signature
on message M where (M,β, 1) is in the list L2 is 1− ζ2. Hence the probability for S to solve
CDH problem successfully is fqE (ζ1)fqS (ζ2) where fx(ζ) = ζx(1 − ζ). Simple differentiation
shows that fx(ζ) is maximized when ζ = 1− (x+ 1)−1, and the corresponding probability is
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1
x(1− 1

x+1)x+1. So the maximum probability for S to solve CDH problem successfully is

1
qSqE

(1− 1
qS + 1

)qS+1(1− 1
qE + 1

)qE+1

For large qS and qE , this probability is approximately equal to 1/e2qSqE .
ut

Theorem 3. Suppose that the (t, ε)-CDH assumption holds in G, then the above scheme is
(t′, qS , qH , qE , qR, ε)-adaptive chosen message (AUTH-CMA2) secure for any t′ < t− o(t).

Proof. Dealer D gives (g, ga, gb, gc) to Simulator S and wants S to compute ê(g, g)abc. Set
P0 = g,Q0 = gc. S sends the system parameter to A. S randomly picks µa, µb with 1 ≤
µa, µb ≤ qH .

Phase 1: Query on H1 for input (A1, · · · , Ak):

– If k = 1, the µa distinct query to H1 with k = 1 is back patched to ga. The corresponding
identity is denoted as ID∗a. Adds the entry < ID∗a, g

a > to tape L1 and returns ga.
– If k = 1, the µb distinct query to H1 with k = 1 is back patched to gb. The corresponding

identity is denoted as ID∗b. Adds the entry < ID∗b, g
b > to tape L1 and returns gb.

– Otherwise, randomly picks λ ∈ Zp; add < A1, · · · , Ak, λ > to L1 and returns gλ.

When there is a query on H2 for input (A1, · · · , Ak,M), randomly picks λ ∈ Zp; add < M,λ >
to L2 and returns (gc)λ. Query on H3 is handled by producing a random element from the
codomain, and adding both query and answer as a single tuple to tape L3.

Key Extraction Oracle (KEO): For input identity A|k{A1, · · · , Ak} ∈ Zpk where k ≤ `, if
A1 = ID∗a or A1 = ID∗b, aborts the simulation. Otherwise proceeds as in KEO of the proof
of Theorem 1.

Signcryption Oracle (SO): For input message M , sender A|k = {A1, · · · , Ak}, and recipient
B|l = {B1, · · · , Bl}.

– If A1 6= ID∗a and A1 6= ID∗b, S retrieves the private key of A|k using the same way as
KEO, then uses it to run signcryption and gets ciphertext C. S puts < A|k,B|l,M,C, r >
in LS .

– If A1 = ID∗a or A1 = ID∗b, proceeds as in SO of the proof of Theorem 1. The only
change is that S puts < A|k,B|l,M,C, λM

−1 > in LS .

Un-signcryption Oracle (UO): For input senderA|k = {A1, · · · , Ak}, recipientB|l = {B1, · · · , Bl}
and ciphertext C = {U2, · · · , Ul, V,Q1, · · · , Qk−1, QM}.

– If B1 = ID∗a or B1 = ID∗b, proceeds as in UO of the proof of Theorem 1.
– Otherwise, S retrieves the private key of A|k using the same way as KEO and then uses

it to decrypt and verify.

Witness Extraction: As in the AUTH-CMA2 game, finally A returns a recipient identity B|l
and a ciphertext C. S does the followings:
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– With probability qS/(qS + qR) choose a random element from LS and a random element
< g′, h3 > from L3. If the element chosen from L3 has the form of < A|k,B|l,M,C, r >,
compute ê(σ, gb)/

∏k
i=2 ê(Qi−1

λAi , gb)ê(garλM , gb), where< A1, · · · , Ai, λAi > and< M,λM >
is in L1 and L2 respectively. If the chosen element has the form of < B|l, A|k,M,C, r >,
then compute as in the above with B|l substituting A|k if possible.

– With probability qR/(qS + qR) choose a random element from LS and a random element
< g′, h3 > from L3. If the element chosen from L3 has the form of < A|k,B|l,M,C, r >,
compute g′−λM , where < M,λM >∈ L2. On the other hand, if the chosen element has the
form of < B|l, A|k,M,C, r >, compute g′−λM , where < M,λM >∈ L2.

Now we analyze the simulation. Suppose that the SO responds to query (A|k,B|l,M) and
caused an entry < A|k,B|l,M,C, r > being added to LS , if σ is a valid signature, then
ê(g, g)abc = ê(σ, gb)/

∏k
i=2 ê(Qi−1

λAi , gb)ê(garλM , gb). On the other hand, if the UO can decrypt
with H3(g′) where g′ = ê(Q0, PB|1)r = ê(QM , gbc) = ê(g−a/λM , gbc), then we can obtain
ê(g, g)abc = g′−λM . ut

5 Scheme 2

5.1 Construction

Let H be a cryptographic hash function where H : {0, 1}∗ → Zp. We use H(·) to hash the
string representing the identity into an element in Zpk, the same hash function will be used
in the signing algorithm too. Similar to [3], H is not necessarily a full domain hash function.
Notice that the identity string is hashed to Zp instead G in scheme 1, so we use Ii to denote
H(IDi) for 1 ≤ i ≤ `, where ` is the number of levels of the hierarchy to be supported. Our
second construction of HIDSC, based on the ideas in [9] and [3], is given below.

Setup: On the input of a security parameter k ∈ N, the root PKG uses the BDH parameter
[4] to generate G, G1, q and ê(·, ·), where q is the order of groups G and G1. Then the root
PKG executes the following steps.

1. Select α from Z
∗
p, h1, h2, · · · , h` from G and two generators g, g2 from G

∗,
2. The public parameters are: {g, g1 = gα, g2, h1, h2, · · · , h`, ê(g1, g2)}.
3. The master secret key is dID|0 = g2

α.

KeyGen: For a user ID|k − 1 = {ID1, ID2, · · · , IDk−1} of depth k − 1, he/she uses his/her
secret key dID|k−1 to generate the secret key for a user ID|k (where the first k − 1 elements
of ID|k are those in ID|k − 1) as follows.

1. Pick random rk from Zp.
2. dID|k = {d0Fk(Ik)rk , d1, · · · , dk−1, g

rk}, where Fk(x) is defined as g1
xhk.

Sign: For a user ID|k with secret key {g2
α
∏k
j=1 Fj(Ij)

rj , gr1 , · · · , grk} to sign on a message
M , he/she follows the steps below.

1. Pick a random number s from Z
∗
p.

2. Compute h = H(M, ê(g1, g2)s).
3. Repeat Steps 1-3 in case the unlikely event s+ h = 0 occurs.
4. For j = {1, 2, · · · , k}, compute yj = dj

s+h.
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5. Compute z = d0
s+h.

6. Return {s, y1, y2, · · · , yk, z} as the signature.

Encrypt: To signcrypt a message M ∈ G1 to user ID|l = {ID1, ID2, · · · , IDl}, the ciphertext
to be generated is

{F1(I1)s, F2(I2)s, · · · , Fl(Il)s, ê(g1, g2)s ·M, gs, y1, y2, · · · , yk, z}.

Decrypt: For a user ID′|l with secret key {d′0 = g2
α
∏l
j=1 Fj(I

′
j)
r′j , d′1 = gr

′
1 , · · · , d′l = gr

′
l}

to decrypt the signcrypted text {u1, · · · , ul, v, w, y1, y2, · · · , yk, z}, he/she follows the steps
below.

1. Compute σ = ê(g1, g2)s by ê(w, d′0)/
∏l
j=1 ê(uj , d

′
j).

2. Obtain the message M by v · σ−1

Verify: For ID|k = {ID1, ID2, · · · , IDk}’s signature {σ, y1, y2, · · · , yk, z}, everyone can do
the following to verify its validity.

1. Compute h = H(M,σ).
2. Return > if ê(g, z) = σ · ê(g1, g2

h
∏k
j=1 y

Ij
j )
∏k
j=1 ê(yj , hj), ⊥ otherwise.

5.2 Efficiency Analysis

We first analyze the computational efficiency. For the proposed scheme 1, admissible encoding
scheme [4] are required for the hash functionH1 andH2, which is computationally expensive as
such scheme requires log2(q/p)-bit scalar multiplication in E(Fq) where Fq is the field on which
G is based and p is the size of the group G. Using the example from [21], if log2 p = 512 and the
embedding degree of pairing is 6, then log2 q should be at least 2560 and hence 2048-bit scalar
multiplication is needed. Scheme 2’s hash function does not rely on such admissible encoding
scheme. Moreover, chosen ciphertext secure HIDE requires the transformation in Section 4
of [6], while our scheme does not require such transformation as the integrity checking of the
ciphertext is obtained from the signature.

For the communication efficiency of the scheme, the signcrypted message is shortened by
one G1 element, as compared with using the scheme in [9] and [3] together.

5.3 Security Analysis

Theorem 4. Suppose that the (t, ε)-Decision BDH assumption holds in G, then the above
scheme is (t′, qS , qH , qE , qR, ε)-selective identity, adaptive chosen ciphertext (IND-sID-CCA2)
secure for any t′ < t− o(t).

Proof. Dealer D gives (g, ga, gb, gc, T ) to Simulator S and wants S to output 1 if T = ê(g, g)abc

or output 0 otherwise. Set g1 = ga, g2 = gb, g3 = gc.

Initialization: Adversary A sends an identity ID∗ = {ID1
∗, · · · , IDk

∗} ∈ Zkp of depth k ≤ `
that it intends to attack to S.

Setup: S randomly picks α1, · · · , α` ∈ Zp and defines hj = g1
−I∗j gαj ∈ G for j = 1, · · · , `. S

sends the system parameter (g, g1, g2, h1, · · · , h`, ê(g1, g2)) to A.
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Phase 1: Query on H for input (M,σ):

– If (M,σ, h) ∈ L for some h, return h.
– Otherwise, randomly picks h ∈ Zp; add (M,σ, h) to L and returns h.

Key Extraction Oracle (KEO): For input identity ID = {ID1, · · · , IDu} ∈ Zpu where u ≤ `.

– If ID = ID∗ or ID is a prefix of ID∗ , then aborts the simulation.
– Otherwise, let j be the smallest index such that Ij 6= I∗j . S firstly derives a private key

for identity {I1, · · · , Ij}, from which it then construct a private key for ID. S randomly
picks r1, · · · , rj ∈ Zp and sets:

d0 = g2

−αj
Ij−I∗j

j∏
v=1

Fv(Iv)rv , d1 = gr1 , · · · , dj−1 = grj−1, dj = g2

−1
Ij−I∗j grj

We now show that (d0, d1, · · · , dj) is a valid random private key for (I1, I2, · · · , Ij). Let
r̃j = rj − b/(Ij − I∗j ), then we have:

g2

−αj
Ij−I∗j Fj(Ij)rj = g2

−αj
Ij−I∗j (g1

Ij−I∗j gαj )rj = g2
a(g1

Ij−I∗j gαj )
rj− b

Ij−I∗j = g2
aFj(Ij)r̃j

So the private key satisfies the required form.

Signcryption Oracle (SO): For input message M , sender IDA|k = {IDA1, · · · , IDAk}, and
recipient IDB|l = {IDB1, · · · , IDBl}.

– If IDA|k equals ID∗ or a prefix of ID∗, then S randomly chooses h ∈ Zp, and computes
σ = ê(g1, g2)−h. Then S randomly picks r1, · · · , rk ∈ Zp, computes yv = g2

rv for 1 ≤ v ≤ k
and z =

∏k
v=1 g2

rvαv . Then S adds the tuple (M,σ, h) to L to force the random oracle
H(M,σ) = h. Finally, S returns the ciphertext C =
{F1(IB1)−h, F2(IB2)−h, · · · , Fl(IBl)−h, σ ·M, g−h, y1, y2, · · · , yk, z}.
S puts < IDA|k, IDB|l,M,C,−h, h > in LS .

– Otherwise, S retrieves the private key of IDA|k using the same way as KEO and then uses
it to run signcryption and gets ciphertext C. S puts < IDA|k, IDB|l,M,C, s, h > in LS .

Un-signcryption Oracle (UO): For input sender IDA|k = {IDA1, · · · , IDAk}, recipient IDB|l =
{IDB1, · · · , IDBl} and ciphertext C = {u1, · · · , ul, v, w, y1, · · · , yk, z}.

– For the case IDB|l = ID∗, S finds if (IDA|k, IDB|l,M,C, s, h) is in LS . If so, returns M .
Otherwise, S searches for a valid M in all entries < M,σ, h >∈ L, under the constraints
that σ ·M = v, σ = ê(g, z)/(ê(g1, g2

h
∏k
j=1 y

IDA|j
j )

∏k
j=1 ê(yj , hj)) and ê(w,Fj(IBj)) =

ê(g, uj) for 1 ≤ j ≤ l. S simply picks a message in one of the valid M in the above and
return it as the answer. If no such tuple is found, the oracle signals that the ciphertext is
invalid.

– For other cases, S retrieves the private key of IDA|k using the same way as KEO and then
uses it to decrypt and verify.

Witness Extraction: As in the IND-sID-CCA2 game, at some point A chooses plaintext
M0,M1, and sender IDA|k on which he wishes to be challenged. S picks a random bit
b ∈ {0, 1} and responds with challenge ciphertext C = {g3

α1 , · · · , g3
αl , T ·Mb, g3, y1, · · · , yk, z},
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where (y1, · · · , yk, z) is a valid signature from IDA|k. All further queries by A are processed
adaptively as in the oracles above. Finally, A returns its final guess b′. If b = b′, then S outputs
1 meaning T = ê(g, g)abc. Otherwise it outputs 0 meaning T 6= ê(g, g)abc.

If the recipient identity is ID∗, then the value of ê(g1, g2)s is equal to ê(ga, gb)c = ê(g, g)abc.
If A has the advantage ε to guess b correctly, then S has the advantage ε to solve the DBDHP.

ut

Theorem 5. Suppose that the (t, ε)-CDH assumption holds in G, then the above scheme
is (t′, qS , qH , qE , qR, ε′)-selective identity, adaptive chosen message (EU-sID-CMA) secure for
any t′ < t− o(t), ε′ > ε · (1− qS(qH + qS)/q).

Proof. (Sketch) Dealer D gives (g, ga, gb) to Simulator S and wants S to compute gab. Set g1 =
ga, g2 = gb. The initialization, setup and the simulation of oracles are the same as the proof of
Theorem 4. At the end of the game, A returns a forgery C = {u1, · · · , ul, v, w, y1, · · · , yk, z}
using h from H query. By forking lemma, we rewind A to the time when the H query was
issued and get C ′ = {u′1, · · · , u′l, v′, w′, y′1, · · · , y′k, z′} using h′ from H query. We can get
dj = (yj/y′j)

(h−h′)−1
for 1 ≤ j ≤ k. Then we can calculate d0 = (z/z′)(h−h′)−1

. Finally we can
get g2

α = d0/
∏k
j=1 dj

αj which is the solution to the CDH problem. ut
Let us consider the possibility for SO to fail. The only possibility for introducing an error

is in defining H(M,σ) which is already defined. Since σ takes its value uniformly at random
in G1, the chance for the occurrence of one of these events is at most (qH + qS)/q for each
query. Therefore over the whole simulation, the chance of an error is at most qS(qH + qS)/q.
Hence S succeeds with probability at least ε · (1− qS(qH+qS)

q ). ut

Theorem 6. Suppose that the (t, ε)-CDH assumption holds in G, then the above scheme is
(t′, qS , qH , qE , qR, ε)-selective identity, adaptive chosen message (AUTH-sID-CMA2) secure
for any t′ < t− o(t).

Proof. (Sketch) By the construction of the game of AUTH-CMA2, we can see that if an
adversary wants to win the game, he either forges a signature from a signer or forges an
encryption using a valid signature.

For the first case, by theorem 5, if an adversary can forge a signature in the above scheme,
then he can solve the CDH problem.

For the second case, let the adversary gets a signature {s, y1, y2, · · · , yk, z}, where yj =
dj
s+h, for j = {1, 2, · · · , k} and z = d0

s+h, and gets ê(g1, g2)s, gs from the corresponding
signcryption with recipient identity not IDB|l = {IDB1, · · · , IDBl}. Then the adversary needs
to forge an encryption by computing {F1(IB1)s, F2(IB2)s, · · · , Fl(IBl)s} from the knowledge
of {F1(IB1), F2(IB2), · · · , Fl(IBl), ê(g1, g2), g}. This is the same as the CDH problem.

Therefore, if an adversary wants to win the game, he has to solve the CDH problem. ut

6 Conclusion

Two concrete constructions of hierarchical identity based signcryption are proposed, which
closed the open problem proposed by [16]. Our schemes are provably secure under the random
oracle model [2]. Moreover, our schemes do not require transformation which is necessary for
the case of hierarchical identity based encryption as the integrity checking of the ciphertext is
obtained from the signature. We believe that hierarchical identity based signcryption schemes
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are useful in nowadays commercial organization and also in new network architecture such as
tetherless computing architecture. Future research directions include further improvement on
the efficiency of hierarchical identity based signcryption schemes and achieving other security
requirements such as public ciphertext authenticity ([10, 16]) or ciphertext anonymity ([5]).
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17. Benôıt Libert and Jean-Jacques Quisquater. The Exact Security of an Identity Based Signature and its

Applications. Cryptology ePrint Archive, Report 2004/102, 2004. Available at http://eprint.iacr.org.
18. John Malone-Lee. Identity Based Signcryption. Cryptology ePrint Archive, Report 2002/098, 2002.

Available at http://eprint.iacr.org.
19. Noel McCullagh and Paulo S. L. M. Barreto. Efficient and Forward-Secure Identity-Based Signcryption.

Cryptology ePrint Archive, Report 2004/117, 2004. Available at http://eprint.iacr.org.
20. Divya Nalla and K.C. Reddy. Signcryption Scheme for Identity-Based Cryptosystems. Cryptology ePrint

Archive, Report 2003/066, 2003. Available at http://eprint.iacr.org.
21. Dong Jin Park, Kihyun Kim, and Pil Joong Lee. Public Key Encryption with Conjunctive Field Keyword

Search. In Chae Hoon Lim and Moti Yung, editors, Information Security Applications: 5th International
Workshop, WISA 2004, Jeju Island, Korea, August 23-25, Revised Selected Papers, volume 3325 of Lecture
Notes in Computer Science, pages 73–86. Springer-Verlag, 2004.

22. Ryuichi Sakai, Kiyoshi Ohgishi, and Masao Kasahara. Cryptosystems based on Pairing over Elliptic Curve.
In Proceedings of Symposium on Cryptography and Information Security (SCIS 2000) C-20, 2000.

23. Aaditeshwar Seth. Personal Communication, September 2004.
24. Aaditeshwar Seth, Patrick Darragh, and Srinivasan Keshav. A Generalized Architecture for Tetherless

Computing in Disconnected Networks. Manuscript.
25. Tsz Hon Yuen and Victor K. Wei. Fast and Proven Secure Blind Identity-Based Signcryption from Pairings.

In A. J. Menezes, editor, Topics in Cryptology - CT-RSA 2005, The Cryptographers’ Track at the RSA
Conference 2005, San Francisco, CA, USA, Febrary 14-18, 2005, Proceedings, volume 3376 of Lecture
Notes in Computer Science, San Francisco, CA, USA, February 2005. Springer. To Appear. Also available
at Cryptology ePrint Archive, Report 2004/121.

26. Yuliang Zheng. Digital Signcryption or How to Achieve Cost (Signature & Encryption)<< Cost(Signature)
+ Cost(Encryption). In Burton S. Kaliski Jr., editor, Advances in Cryptology: Proceedings of CRYPTO
1997 5th Annual International Cryptology Conference, Santa Barbara, California, USA, August 17-21,
1997, volume 1294 of Lecture Notes in Computer Science, pages 165–179. Springer-Verlag, 1997.


