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Abstract: This paper proposes a new scheme for partially blind signature based on 

the difficulty in solving the discrete logarithm problem. Under the assumption of the 

generic model, random oracle model, and intractable ROS-problem, this paper 

formally proves that the proposed scheme is secure against one-more signature 

forgery under the adaptively parallel attack. Previous schemes using two signing 

equations for plain information and commitment. The proposed scheme uses two 

secret keys to combine these two signing equations, thus it is more efficient than 

previous schemes in both communicational and computational cost.  
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Introduction: Blind signature schemes [1] allow users to blind the messages being 

signed and reshape the outside of signatures such that the signer cannot link the 

signatures and the users. It is a useful building block in applications where anonymity 

is one of the most significant considerations, such as electronic cash and electronic 

voting systems.  

  But it may not be a good idea to blind everything in every application. Considering 

the setting for electronic cash systems, a database is required to store the deposited 

coins so as to detect double spending. In the area of electronic cash systems based on 
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the use of blind signatures, the coins are usually the blind signatures issued from the 

banks, the database will grow unlimitedly if no explicitly expiring date is specified. In 

addition, the banks usually issues coins of different denominations in order to allow 

exact payments, we require clearly inscribing the value of each coin.  

The scheme of partially blind signature proposed in [2], which is based on the 

well-known RSA Cryptosystem, helps a lot to solve the problems stated above. This 

scheme allows the blind signatures explicitly containing some information that the 

signer and user have agreed on. Therefore, the pieces of common agreed information 

can enclose the expiring date, the denominational data and other useful message. 

Based on the difficulty in solving the problem discrete logarithms, the schemes 

proposed in [3-5] are provably secure schemes for partially blind signature as long as 

the issued blind signatures are poly-logarithmic number in the security parameter |q|, 

i.e., the bit length of the group order q. By the more complex protocol (a signature 

scheme with three-party) proposed in [6], those schemes in [3-5] can be modified 

such that they are secure up to polynomial number of issued blind signatures (The 

term polynomial number implies polynomial number in the security parameter |q|.). 

However, the final scheme will result in more expensive computations during the 

interactions between the signer and user. The extra computations are a result of using 

the technique of cut-and-choose to confirm that the user honestly challenges the 

signer. 

 

Contributions: Based on the hardness of discrete logarithm problem, generic model, 

random oracle, and intractability of the ROS-problem proposed in [7-8], the paper 

proposes a provably secure scheme for partially blind signature. The proposed scheme 

outperforms the schemes in [3, 9] in computation and signature size. Furthermore the 

proposed scheme is secure up to polynomial number of issued blind signatures. 
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Notation: Let G be an arbitrary group with prime order q and g be the generator of the 

group. M is an arbitrary message space. a||b denotes a concatenation of strings a and 

b. a ∈R G denotes that the element a is randomly selected from the set G. H(.) is a 

collision-resistant hash function defined as H(.): {0, 1}*
� Zq, where Zq is the additive 

group of integers modulo q. 

 

Proposed scheme: Assume that the user U wants to get a partially blind signature on a 

message m ∈ M. Also, assume that the signer S and user U have agreed on common 

information info∈ M. Let x1, x2∈R Zq be the signer’s secret keys and the corresponding 

public keys be y1 = 1xg and y2 = 2xg , where y1, y2 ∈ G. The signer and user 

cooperatively execute the following steps. 

1. S chooses w∈R Zq, computes the commitment r = gw ∈ G and sends r to the user U. 

2. U chooses u, v ∈R Zq, computes the quantities z = H(info), r’= r gu ( z
21 yy )v ∈ G, 

c’= H(g|| y1|| y2|| m|| info|| r’) and c = c’+ v ∈ Zq. U sends the challenge c to S. 

3. S computes z = H(info) and s = w + c (x1 + z x2) ∈ Zq, and sends s to U as response.   

4. U computes s’ = s + u ∈ Zq. U accepts (m, info, c’, s’) as a valid signature if c’ = 

H(g|| y1|| y2|| m|| info|| gs’( z
21 yy )-c’) , otherwise rejects the response s.      

  

Blindness: Let (info, r, c, s) denote the signer’s view and the user has the 

corresponding signature, i.e., the tuple (m, info, c’, s’). Also assume that the signer 

cannot distinguish the signatures by analyzing the information info. The property of 

blindness requires that the signer’s view is independent of the user’s signature. The 

lemma below proves the blindness of the proposed scheme. 

 

Lemma 1. The tuple (m, info, c’, s’) is a partially blind signature issued by a signer. 
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Among the four elements in this tuple, the signer has only the knowledge of the item 

info. 

Proof. The signer and user have negotiated the common information info before they 

are engaged in the signing steps, and the signer has no knowledge of the message m, 

therefore the signer partially knows the context (m, info). There exists a unique pair (u, 

v) for every valid signature, i.e., u = s’ - s and v = c - c’. The existence of a unique 

pair (u, v) proves the property of blindness, since the user chooses them randomly 

from Zq, the additive group of integers modulo q.                            �  

 

Before discussing the security of the proposed scheme, the relevant vocabularies: 

novel adaptively parallel attack, ROS-problem, generic model and one-more forgery 

should be introduced. The following briefly describe them. 

 

A new novel adaptively parallel attack on Schnorr’s signatures: For easy reading, the 

novel adaptively parallel attack proposed in [8] is described briefly in the following. 

Assume that a signer has a secret key x ∈ Zq and the corresponding public key y = gx 

∈ G. A Schnorr signature on the message m is the triplet (m, c, z) and verified by 

checking c = H(gz y-c, m). Let an adversary initiate simultaneously l sessions with the 

signer. Then the adversary will receive l commitments g1 = 1rg , …, gl = lrg , where 

ri ∈R Zq, gi ∈ G and i = 1,…, l. In order to compute appropriate challenges, the 

adversary randomly selects ak,1,…, ak,l from the group Zq and messages m1,…, mt from 

the message space M, computes the quantities  

fk = 1,ka
1g … l,ka

lg ∈ G and                                             (1) 

H(fk, mk) for k = 1,…,t.                                                (2) 

Then the adversary finds solvable (l + 1) equations out of the following t equations 
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(3) in the unknown variables (challenges) c1, …, cl over the group Zq.  

H(fk, mk) = ∑ =
l

1i ii,k ca  for k = 1,…, t.                                    (3) 

Without loss of generality, the set of solvable (l + 1) equations are as follows (“s” 

implies solved). 

H(fs, ms) = ∑ =
l

1i ii,s ca  for s = 1,…, l, (l + 1).                              (4) 

  After solving these l variables, the adversary sends them as challenges to the signer. 

The signer sends the following responses back to the adversary. 

zi = ri + ci x ∈ Zq for i = 1,…, l.                                         (5) 

  From the l challenges, l responses in (5), and (l + 1) solved equations in (4), the 

adversary obtains the set of (l + 1) signatures (ms, c’s, z’s) by the following equations.  

c’s = ∑ =
l

1i ii,s ca = H(fs, ms),                                            (6) 

z’s = ∑ =
l

1i ii,s za , s = 1,…, l, (l + 1).                                     (7) 

 

ROS-Problem: The probability of obtaining (l + 1) signatures from l interactions with 

the signer depends on finding the (l + 1) solvable equations (4) from the t equations 

(3). Note that the hash function H(.) has been modeled as a random oracle (ROM) 

proposed in [10-11] that given an input in {0, 1}* outputs a random number in Zq. 

Thus the left-hand sides of equations (3) are random values. Then finding the (l + 1) 

solvable equations (4) from the t equations (3) is essential a ROS-problem stated in 

[7-8]. The ROS-problem is to find an over-determined solvable system of linear 

equations modulo q, i.e., find a solvable subsystem of (l + 1) equations from the 

following t equations. 

∑ =
l

1i ii,k ca = H(ak,1, …, ak,l), where k = 1,…, t, l << t, and ak,i ∈ Zq.            (8) 

The ROS-problem is related to a NP-complete problem [7]. The expected number 
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of solvable (l + 1) distinct equations out of t equations in (8) is stated without proof 

by the following theorem, which is evaluated as Theorem 1 in [8]. 

Theorem 2. A. For arbitrary coefficients ak,i ∈ Zq, the average number of solvable 

subsystems of (l + 1) out of t equations (8) is at most ( 
t  

l+1) / q. 

B. A constant selection of a set of (l + 1) equations out of t equations (8) 

is solvable with probability q-1(1 – q-1 + O(q-2)). 

Lemma 3. The solvable subsystems of (l + 1) out of t equations (8) must be hard to 

find.  

Proof. By Theorem 2.B, the lemma is proved. However, this lemma intends to 

describe a more concrete concept. Since there are at most (
t 

l+1) / q solvable (l + 1) 

equations, then it seems feasible to forge Schnorr signature after some interactions 

with the signer. Using the example presented in [8], if finding a set of (l + 1) solvable 

equations is easy, then the novel adaptively attack is possible for l = 4, t = 250, and q 

= 2200, i.e., (250 / 120) ≈ (
t 

l+1) / q. This result contradicts the security of Schnorr 

signatures and proves the lemma.                                        �  

 

Generic Model: In equation (1), a new group element fk ∈ G is generated by fk = 

1,ka
1g … l,ka

lg . This is a generic step in the Generic Group model (GM). We introduce 

some vocabularies of GM, for further details please refer to [8, 12-15]. A generic step 

for group element consists of multivariate exponentiations (mex), i.e., mex: d
qZ × Gd � 

G, (b1,...,bd, g1,..., gd) a  ∏ =
d

1i
b
i

ig , where d ≥ 0. Queries to the hash oracle and 

interactions with the signer are also generic steps. A generic algorithm is a sequence 

of t generic steps: Giving t’ group elements f1,...,ft’, computes the set of t - t’ group 
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elements {fi | fi =∏ −
=
1i
1j

b
j

jf , i = (t’ + 1),…,t}, where non-group elements b1,…,bi-1 ∈ 

Zq depend arbitrarily on i and the set of the previous collision of group elements. Thus 

a new group element is generated using the recorded data.  

 

One-more forgery: For an integer l polynomial in the security parameter, a practically 

blind signature scheme should be secure against the forgery of (l, l + 1) even under 

the novel adaptively parallel attack mentioned above. The security of (l, l + 1) forgery 

for blind signature was proposed in [4-5, 16]. The success of (l, l + 1) forgery implies 

that after l interactions with the signer, the adversary has obtained (l + 1) signatures 

with non-negligible probability without knowing the signer’s secret key. If the number 

l is polynomial in the security parameter then the (l, l + 1) forgery is called one-more 

forgery. In the electronic cash systems, the schemes of blind signature are essential 

ingredients of anonymous electronic cash. The success of (l, l + 1) forgery implies 

that an adversary can spend more coins than he had withdrawn from the bank. The 

proposed scheme’s security is discussed in the following. 

 

Security: A generic adversary is an adversary in the model of ROM + GM. Under this 

model, the generic can interact with the signer, perform multivariate exponentiations, 

and query hash oracle. Assume that a generic adversary A is given the public 

parameters: the group G of prime order q, generator g of G, signer’s public keys (y1, 

y2), and an oracle for H(.). Also assume the adversary A has performed t generic steps 

including l times of signer interactions, i.e., the adversary A can construct at least l 

valid signatures. We want to prove that A cannot have probability of success better 

than (
 t
 2) / q, if A conduct an adaptively parallel attack to produce (l + 1) valid 

signatures, i.e., the one-more signature forgery under the adaptively parallel attack.   
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Since the adversary A has conducted t generic steps including l interactions with the 

signer. Hence, the signer has generated the set of tuples {(wi, si, gi)| gi = iwg ∈ G, wi 

∈R Zq, si = wi + ci (x1 + zi x2) ∈ Zq, zi = H(infoi), ci is the ith challenge of the adversary 

A , i = 1, 2,…l}. Also assume the adversary A has produced some t’ elements of G 

(including the received commitments) and queried t’’ times to the hash oracle, where t 

= t’ + t’’. Let f = {f1 = g, f2 = y1, f3 = y2, f4,...,ft’ ∈ G} be the set of t’ elements 

generated by A, where fi = 2,ia
g − 1,ia

1y − 0,ia
2y  ∏ =

l
1j

a
j

j,ig for i = 1, 2,..., t’. For example, 

the exponents of group element f1 are a1,-2 = 1, a1,-1 = a1,0 = ...= a1,l = 0. Obviously, 

the adversary chooses exponents ai,j ∈ Zq depending arbitrarily on the previously 

computed non-group data and collided group elements such that fi is dependent on fi-1, 

fi-2,..., f1.  

In the following probabilistic analysis, the probability space consists of H(.), y1, y2, 

and the signer’s random coins w.  

 

Lemma 4. The probability of triple collisions among the group elements f1, f2,..., ft’ is 

at most (
 t'
  3) / q

2.  

Proof. Let us define the discrete random variables Xijk for 1 ≤ i < j < k ≤ t’ as follow: 

Xijk = 1 if collision occurs, i.e., fi = fj = fk, but otherwise Xijk = 0. The probability that 

fi = fj = fk is 1 / q2, thus the expectation of the discrete random variable E[Xijk] = 1 × 

(1 / q2) + 0 × (1 – 1 / q2) = 1 / q2. The expected number of triplets is just the sum of 

the expectations, that is, ∑ ∑ ∑=
−
=

−
=

't
3i

1i
2j

1j
1k ijk ]X[E = (

 t'
  3) / q2. Since the trivial 

collisions, i.e., the event (Collision = {fi = fj = fk | 1 ≤ i < j < k ≤ t’} and Collision is 

independent of the signer’s secret), contribute no information to solve the signer’s 

secret data, we ignore the probability of trivial collisions. Thus, we have proved 
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Lemma 4.                                                           �  

 

Lemma 5. If there occurs non-trivial triple collisions, then the signer’s secret data, i.e., 

(x1, x2, w1, …, wl), are solvable with overwhelming probability. 

Proof. Assume the non-trivial collision triplet is fi = fj= fk ∈ G, the relationship if
glog  

= jf
glog  = kf

glog  is true. Since if
glog = ai,-2 + ai,-1 x1 + ai,0 x2 + ∑ =

l
1e ee,i wa , 

jf
glog = aj,-2 + aj,-1 x1 + aj,0 x2 + ∑ =

l
1e ee,j wa and kf

glog = ak,-2 + ak,-1 x1 + ak,0 x2 + 

∑ =
l

1e ee,k wa , therefore, the following equations (9) and (10) are obtained. 

ai,-2 + ai,-1 x1 + ai,0 x2 + ∑ =
l

1e ee,i wa = aj,-2 + aj,-1 x1 + aj,0 x2 + ∑ =
l

1e ee,j wa mod q (9) 

aj,-2 + aj,-1 x1 + aj,0 x2 + ∑ =
l

1e ee,j wa = ak,-2 + ak,-1 x1 + ak,0 x2 + ∑ =
l

1e ee,k wa mod q (10) 

From (9) and (10), the signer’s secret keys x1 and x2 are expressed in (11) and (12). 

x1 = b1,0 + ∑ =
l

1e ee,1 wb  mod q                                       (11) 

x2 = b2,0 + ∑ =
l

1e ee,2 wb  mod q                                       (12) 

Interacting with the signer l times, the adversary A has l linear polynomials si = wi 

+ ci (x1 + ai x2) in Zq[x1, x2, w1,…, wl], i.e., x1, x2, w1,…, wl are indeterminate variables 

over Zq. For each polynomial, the variable x1 and x2 are replaced with x1 = b1,0 + 

∑ =
l

1e ee,1 wb and x2 = b2,0 + ∑ =
l

1e ee,2 wb . Thus, A has l linear polynomials in Zq[w1,…, 

wl]. Because the adversary chooses exponents ai,j ∈ Zq depending arbitrarily on the 

previously computed non-group data, the l linear polynomials in Zq[w1,…, wl] are 

solvable with overwhelming probability (1 - q-1)(1 - q-2)…(1 - q-l+1).            �  

 

Lemma 6. The probability of two pairs of pair collision among the group elements f1, 
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f2,..., ft’ are at most ((
 t'

  2) / q)2. 

Proof. Let us define the discrete random variables Xij for 1 ≤ i < j ≤ t’ as follow: Xij = 

1 if collision occurs, i.e., fi = fj, but otherwise Xij = 0. The probability that fi = fj is 1 / 

q, thus the expectation of the discrete random variable E[Xij] = 1 × (1 / q) + 0 × (1 – 1 

/ q) = 1 / q. The probability of a pair collision is just the sum of the expectations, that 

is, ∑ ∑=
−
=

't
2i

1i
1j ij ]X[E = (

 t'

  2) / q. Thus the probability of two pairs of pair collision is 

((
 t'

  2) / q)2. Like the proof in Lemma 4, the event of trivial pair collision is ignored. 

Therefore, Lemma 6 is proved.                                          �  

 

Lemma 7. If there occurs two pairs of non-trivial pair collision, then the secret data, 

i.e., (x1, x2, w1, …, wl), are solvable with overwhelming probability. 

Proof. Assume the two pairs of non-trivial collision pair are fi = fj and fm = fn, where fi , 

fj, fm, fn ∈ G. Thus the equations if
glog = jf

glog  and mf
glog = nf

glog are obtained. 

Similar to the proof in Lemma 5, the following equations (13) and (14) are derived. 

ai,-2 + ai,-1 x1 + ai,0 x2 + ∑ =
l

1e ee,i wa = aj,-2 + aj,-1 x1 + aj,0 x2 + ∑ =
l

1e ee,j wa mod q (13) 

am,-2 + am,-1 x1 + am,0 x2 +∑ =
l

1e ee,m wa = an,-2 + an,-1 x1 + an,0 x2 +∑ =
l

1e ee,n wa mod q(14) 

From (13) and (14), the signer’s secret keys x1 and x2 are expressed in (15) and (16). 

x1 = b1,0 + ∑ =
l

1e ee,1 wb  mod q                                       (15) 

x2 = b2,0 + ∑ =
l

1e ee,2 wb  mod q                                       (16) 

Following the same procedure in Lemma 5, the proof of Lemma 7 is completed.   �  

 

Lemma 8. (The generic adaptively parallel attack) From the l interactions with the 

signer, the adversary A obtains (l + 1) signatures with probability not better than 1/q, 
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except he can solve ROS-problem or there exists group collisions or hash collisions. 

Proof. The set of tuples {(wj, gj, cj, sj)| wj ∈R Zq, gj = jw
g ∈ G, j = 1,...,l} describes the 

interactions between the signer and adversary. The signer sends gj to the adversary A 

and responds sj = wj + cj (x1 + zj x2) to A when receiving the challenge cj, where zj = 

H(infoj). Suppose that the adversary A is able to constructs (l + 1) different valid 

signatures (mi, infoi, c’i, s’i), i = 1, ..., (l + 1). Then, c’i= H(g|| y1|| y2|| mi|| 

infoi|| i'sg ii 'cz
21 )yy( − ).  

Since the adversary has generated t’ distinct group elements, he obtained a set of 

group elements f = {f1 = g, f2 = y1, f3 = y2, f4,…ft’ ∈ G }. In addition, he has queried t’’ 

times to the hash oracle, i.e.,  

ck = H(g|| y1|| y2|| mk|| infok|| fk) for k =1,...,t’’ and fk ∈ f.                   (17) 

 Therefore, there is a mapping from k ∈ {1, 2,…, t’’} to each i ∈ {1, 2,…,(l + 1)} such 

that i'sg ii 'cz
21 )yy( − = fi  and fk = fi. Let us denote fk as fki if fk = fi. Thus, the 

adversary A has the following equations (18) and (19). 

fi = i'sg ii 'cz
21 )yy( −

 = 2ii1ii xz'cx'c'sg −−                                 (18) 

fki =
∑+++
=

−−
l

1j
jj,ki20,ki11,ki2,ki waxaxaa

g =
∑ −−+++
=

−−
l

1j
2jj1jjj,ki20,ki11,ki2,ki )xzcxcs(axaxaa

g (19) 

From equations (18) and (19), we deduce equation (20) below. 

s’i = aki,-2 +∑ =
l

1j jj,ki sa + (c’i + aki,-1  - ∑ =
l

1j jj,ki ca ) x1 + 

(c’i zi + aki,0 - j
l

1j jj,ki zca∑ = ) x2                                    (20) 

  Since x1 and x2 are signer’s secret key, the adversary can successfully compute s’i if 

he can set the coefficient of x1 and x2 to zero, i.e., (c’i + aki,-1 -∑ =
l

1j jj,ki ca ) = (c’i zi + 

aki,0 - j
l

1j jj,ki zca∑ = ) = 0. This implies the adversary can find two solvable (l + 1) 

equations (21) and (22) out of t’’ equations (17).  
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c’i = -aki,-1 +∑ =
l

1j jj,ki ca = H(g|| y1|| y2|| mki|| infoki|| fki) , i = 1,..., (l+1)       (21) 

c’i = (-aki,0 + j
l

1j jj,ki zca∑ = )( zi)
-1 = H(g|| y1|| y2|| mki|| infoki|| fki), i = 1,..., (l+1)(22) 

  The suggestion of finding two solvable (l + 1) equations (21) and (22) out of t’’ 

equations (17) contradicts the intractability of the ROS- problem. Thus the probability 

that equations (21) and (22) hold true cannot exceed 1 / q. Also the generic adaptive 

parallel attack has assumed that there is no collision of group elements and hash 

values, therefore, the adversary cannot have probability of success better than 1 / q. �  

 

Lemma 9. Due to collisions of hash value, the adversary A obtains (l + 1) signatures 

with probability not better than (l × t’’ / q). 

Proof. Assume that the tuple (mv, infov, cv, sv) is a valid signature (the subscript v 

implies “valid”). After interacting l times with the signer, the adversary A obtains at 

least l valid signatures. Let ck = cv be a hash collision. Then, cv = H(g|| y1|| y2|| mv|| 

infov|| vsg vv cz
21 )yy( − ) = ck =H(g|| y1|| y2|| mk|| infok|| fk), where k, v ∈ {1,..., t’’}, k ≠ 

v and vsg vv cz
21 )yy( −

 ≠ fk. If fk = ksg kk cz
21 )yy( − , then the tuple (mk, infok, ck, sk) is 

also a valid signature. Thus the following equations (23) and (24) are obtained. 

sv = av,-2 +∑ =
l

1j jj,v sa + (cv + av,-1  -∑ =
l

1j jj,v ca ) x1 + 

 (cv zv + av,0 - j
l

1j jj,v zca∑ = ) x2                                         (23) 

sk = ak,-2 +∑ =
l

1j jj,k sa + (ck + ak,-1  -∑ =
l

1j jj,k ca ) x1 + 

 (ck zk + ak,0 - j
l

1j jj,k zca∑ = ) x2                                         (24) 

After interacting l times with the signer, the kth group element fk is generated. Thus 

the coefficients ak,b, b = -1, 0, 1,…, l, are chosen such that (av,-1  -∑ =
l

1j jj,v ca ) = (ak,-1  
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-∑ =
l

1j jj,k ca ) and (av,0 - j
l

1j jj,v zca∑ = ) = (ak,0 - j
l

1j jj,k zca∑ = ). Therefore, sk = (sv - 

av,-2 + ak,-2) mod q, if there exists the hash collisions cv = ck and zv = zk. Namely, the 

adversary could forge a signature, by giving valid signatures and hash collisions. 

Since a signer cannot distinguish signatures by analyzing the plain text info, the event 

zv = H(infov) = zk = H(infok) occurs with high probability. Therefore, the probability 

of the hash collisions cv = ck and zv = zk is at most (l × t’’ / q), since the adversary has 

queried hash oracle t’’ times.                                            �  

 

Theorem 10. From the l interactions with the signer, an adversary A obtains (l + 1) 

signatures with probability not better than 1/q + ((
 t'

  2)/q)2 + (
 t'

  3)/q
2 + (l × t’’)/q < (l × 

t)/q. 

Proof. The adversary can achieve his goal in the following cases:  

1. Collisions of group elements, 

2. Adaptively parallel attack, and  

3. Collisions of hash values. 

 By lemma 4-7, the probability of the first case is at most ((
 t'
  2)/q)2 +(

 t'
  3)/q

2. By lemma 

6, the probability of the second case is at most 1/q. In the third case, the probability 

does not exceed l / q. Therefore, combining three cases, the adversary A obtains (l + 1) 

signatures with probability not better than 1/q + ((
 t'

  2)/q)2 + (
 t'

  3)/q
2 + (l × t’’)/q. In the 

case (t’)3 < q, the probability expression is given by the compact form (l × t)/q.    �  

 

Performance: Compare with the schemes in [3, 9], Table 1 shows that the proposed 

scheme is more efficient in both the computational cost and message size. The scheme 

in [9] has been incorporated the restrictive property, the comparison is made on the 
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non-restrictive version. In estimating the computational cost, we count only the 

modular exponentiations.  

 

Table 1: The comparisons of the proposed scheme, schemes in [9] and [3]  

 Proposed scheme Scheme [9] Scheme [3] 

Signer’s computations 1 3 (2.17)* 3 (2.17)*  

User’s computations 6 (2.5)* 8 (4.68)* 8 (4.68)* 

Verifier’s computations 3 (1.25)* 3 (2.34)* 4 (2.34)* 

Signature size 2 |M| + 2 |q| 2 |M| + 4 |q| 2 |M| + 4 |q| 

* The technique of efficient simultaneous multiple exponentiations [17] is used to 

evaluate the modular exponentiations. 

 

Conclusions: The paper proposes a new provably secure scheme for partially blind 

signatures. Comparing with previous schemes, the proposed scheme has smaller 

signature size and less computational cost than that of the schemes in [3, 9]. We think 

that the improvement is due to the use of double secret keys. Using two secret keys 

combines the response message for plain information with response message of 

commitment. Thus the integration of response messages contributes to the efficiency 

of the proposed scheme in both the signature size and computational cost. The 

computational cost for signer, user and verifier are all reduced significantly. For the 

signer, the relief of computing is valuable, since the signer would be the bottleneck in 

the environment of electronic cash. Also, by Theorem 10, the proposed scheme is 

secure up to polynomial number of issued signatures.   
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