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Abstract. In 1997, Patarin and Goubin introduce new asymmetric

cryptosystems based on the diÆculty of recovering two systems of mul-

tivariate polynomials from their composition. We make a di�erent use

of this diÆcult algorithmic problem to obtain a way of representing

block ciphers concealing their design but leaving them executable. We

show how to implement our solution giving a compact representation

with Binary Decision Diagrams.
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1 Introduction

Protection of the design of ciphering algorithms is not a new problem. The
situation is a bit paradoxical, as usually con�dentiality is addressed by en-
cryption. At one hand, algorithms can be enclosed into a tamper resistant
circuit. A famous example is given by the Skipjack algorithm history. Its
speci�cations were once classi�ed and it had to stay into devices such as the
Capstone or Clipper chips, known to implement speci�c protections against
reverse engineering [Roe95]. We talk in this case of black-box environment,
where con�dentiality of design relies on physical resistance. At the other
hand, the new concept of white-box cryptography emerges [CEJvO03a,CE-
JvO03b,LN04]. Here, the whole source code is supposed to be known to the
attacker, and the security is provided by logical ways. Note, however, that
in these articles, the sole keys used by the algorithm are to be hidden, the
design of the algorithm being known. We place ourselves in-between and call
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our solution grey-box cryptography. We propose a solution using well-known
tamper response techniques where volatile memories are zeroized whenever
an intrusion is detected, and we accept that some information is recovered by
an intruder. This hypothesis is con�rmed by experiments [Sko02] and seems
quite reasonable to assume. We then �nd ourselves with an instance related
to a well-known algorithmic problem, introduced for cryptographic purposes
by Goubin and Patarin in the two rounds schemes with partial revelation
of the polynomials, noted 2R� schemes [GP97]. In this, we follow works of
Sander et al. [ST98,LS97] where the Quadratic Residue Hypothesis [GM84]
is used to hide polynomials and subsequently programs, and more recently
of Billet and Gilbert [BG03] who utilize the Isomorphism of Polynomials
problem [Pat96, PGC98, CKPS00] to implement a concealed block cipher
with a traceability property.

The remainder of this paper is organized as follows. Section 2 explains
the setting of our solution. Section 3 goes further in details giving some
concrete examples and explaining the method used. Section 4 concludes.

2 A New Way to Implement a Block Cipher Pro-

tecting the Con�dentiality of its Design

2.1 2R� Schemes

Goubin and Patarin introduce in [GP97] new asymmetric cryptosystems
based on the idea of hiding one or two rounds of small S-box computations
with secret functions of degree one or two. The public key is given by
multivariate polynomials of small degree. In the following we recall the
so-called two-rounds schemes, designed to be more secure than one-round
schemes.

Let K be a �nite �eld with q = pm elements. Plaintexts and ciphertexts
are elements of Kn. The secret key consists of three aÆne bijections r; s; t :
Kn ! Kn, and two applications f; g, each given by n quadratic equations
over K. The public key consists of the polynomials P1; : : : ; Pn of degree 4
in n variables that describe the composed mapping H = t Æ g Æ s Æ f Æ r.
When all these polynomials are given, the scheme is called a 2R scheme.
When only some of them are given, the scheme is called a 2R� scheme. The
public-key side computation is just an application of the mapping H. For
the secret-key computations, we need to invert the functions f and g. The
authors propose to choose them among the following classes of functions:

{ C?-functions: monomials over an extension of degree n over K;
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{ triangular functions:

(a1; : : : ; an) 7! (a1; a2 + q1(a1); : : : ; an + qn�1(a1; : : : ; an�1))

where the qi are quadratic;

{ S-boxes functions, which map (a1; : : : ; an) 2 Kn to:

(S1(a1; : : : ; an1); S2(an1+1; : : : ; an1+n2); : : : ; Sd(an1+n2+:::+nd�1+1; : : : ; an1+:::+nd
))

where n =
P

ni and the Si : K
ni ! Kni are quadratic;

{ Combinations of S-boxes with triangular functions;

{ D??-functions: squaring in an extension of K of degree n.

These schemes are based on the diÆculty of decomposing compositions of
multivariate polynomials, i.e. given h = f Æ g, recover f and g. Note that if
we drop t and g in above description, we get the one-round schemes, and they
have all been shown to be insecure [GP97]. The two-rounds schemes have
also been shown to be insecure when g lies in the �rst two classes [GP97].
The variant that we are interested in is 2R with S-boxes, where both f and
g are S-boxes functions.

So far, there exist two di�erent attacks against 2R with S-boxes. In
[Bih00], Biham succeeds in cryptanalysing the scheme. Note that this at-
tack is not based on functionnal decomposition. Another attack has been
published [DFKYZD99], based on the algebraic structure of the scheme and
with the intention of decomposing the composition. However, the attack
imposes restrictions on the scheme:

1. the �eld K should have more than 4 elements;

2. the attack would not work if the S-box functions are not quadratic.

Note as well that the 2R� schemes, i.e. when some of the polynomials
describing the composition are kept secret, are not subject to these atttacks.

2.2 Our Idea and a Way to Implement It

Our idea is to use the same problem as in 2R� schemes for protecting the
con�dentiality of the design of block ciphers.

A block cipher is usually composed of several rounds, and a round itself
is composed of di�erent operations. The description of these operations con-
stitutes the design of the algorithm: they have been chosen by the designer
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and they are an evidence of its know-how. Our method aims at keeping
these design secret by composing rounds. For a given cipher acting on n-
bit blocks, let x1; : : : ; xn be the boolean input variables and y1; : : : ; yn the
output bits after the �rst round. Each yi can be expressed as a boolean
function p1;i in the variables x1; : : : ; xn and obtained by combination of its
component functions, including an S-box function. We compute as well
the boolean functions (p2;i)1�i�n corresponding to the second round of the
cipher. Let (qi)1�i�n be the boolean functions that implement these two
rounds (an example with DES is shown on Fig. 1). This system of boolean
functions allows us to describe the two rounds of the cipher in an executable
way, but without revealing information about the design of the algorithm.

8>><
>>:

R2(1)=q1(L0(1); : : : ; L0(32); R0(1); : : : ; R0(32))
R2(2)=q2(L0(1); : : : ; L0(32); R0(1); : : : ; R0(32))

...
R2(32)=q32(L0(1); : : : ; L0(32); R0(1); : : : ; R0(32))

L0 R0

L1 R1

L2 R2

K1

K2

f

f

Figure 1: Two rounds of DES.

We further subtract some equations from attackers analysis by a physical
mean. The design of the algorithm is stored in a volatile memory which is
zeroized when an intrusion is detected. Such techniques known as tamper
response can be implemented following various ways [Wei00]. The simplest
one is a quick drop of the power line of the memory (see Fig. 2). Due to data
remanence phenomena [Gut01] and external conditions [Sko02], it is hard to
exactly predict how many equations will be erased. Now the con�dentiality
of the design is based on the same problem as the 2R� scheme.

There is one point that we have not tackled yet but that is worthy of
attention: the treatment of the secret key. As the key is usually diversi�ed
into several subkeys (one for each round), we have several possibilities to
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implement the block cipher, among them:

1. The boolean functions have additionnal variables ki so that for each
round, the corresponding subkey can be input, the key schedule be-
ing performed separately. At one hand, this allows 
exibility in key
injection, and has the advantage that each round can be represented
by the same boolean functions, so we can implement the whole cipher
with only one composition of two rounds. On the other hand, it adds
a lot of variables to the boolean functions we have to compute.

2. The secret key is integrated into the boolean functions, i.e. we per-
form the key schedule before the implementation of the cipher and we
compute the boolean functions with only the text variables as input.
This has the drawback that every round will have a di�erent expres-
sion, so we have to compute and implement every composition of 2
rounds separately.

3. If the cipher permits it, we can envisage an intermediate solution.
When the block cipher has a very simple key-schedule, it is possible to
integrate the main key and the key-schedule into the boolean functions.
We can think for instance about the block cipher 3-Way [DGV94]
of which key-schedule is reduced to bitwise XOR-ing a short round
constant to the main key. This allows us to implement all the cipher
with only one composition of two rounds, but without adding too many
variables to the boolean functions.

These di�erent solutions may lead to di�erent levels of security.

global

VCC SRAM

power
gate
on/o�

V

V

t

tamper
detection

Figure 2: Physical implementation of the \�" of 2R�.
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3 An example

3.1 BDDs

We choose binary decision diagrams (BDDs) for representing boolean cir-
cuits. They were introduced in 1986 by Bryant [Bry86] and are known to
give a compact representation of logical functions. Some operations are de-
�ned on BDDs. For instance, we can use their composition for step by step
computing the BDDs standing for one or many rounds. As well, the algo-
rithm for evaluating BDDs can be considered as a trivial way to implement
our solution with a network of multiplexers.

BDDs are data structures used to represent boolean functions. Here we
shortly present their properties, the interested reader is referred to [Bry86,
Bry92,And97].

Let f be a boolean function of n variables. If fjxi=b denotes the function
resulting when the i-th variable is replaced by the constant b, the Shannon
expansion of the function f around variable xi is given by:

f = xi � fjxi=1 + xi � fjxi=0

This simple relation is used to represent boolean functions as particular
graphs in an if-then-else notation.

De�nition 1 A binary decision diagram (BDD) is a rooted, directed acyclic
graph with two types of nodes. A non-terminal node N is labelled i 2
f0; : : : ; ng and has two children noted low(N) and high(N). A terminal
node is labelled 0 or 1 and has no child.

A graph having root node labelled i denotes the function fi

fi(x1; : : : ; xn) = xi � fhigh(N)(x1; : : : ; xn) + xi � flow(N)(x1; : : : ; xn)

The set of values fx1; : : : ; xng describes a path in the graph starting from
the root : at each node labelled i, we follow the high child if xi = 1 (\THEN")
and the low child otherwise (\ELSE").

De�nition 2 A BDD is ordered (OBDD) if, on all paths through the graph,

the labels respect a given order. An OBDD is reduced (ROBDD) if the

following conditions are sati�ed:

uniqueness: two nodes having the same label and children are equal;

non-redondant tests: there are no node with both children leading to the

same node.
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Figure 3: The conditions of ROBDDs.

These three conditions for constructing an ROBDD are illustrated on Fig. 3.
Figure 4 shows an example on the function f(x; y; z) = x � y + z.

Note that ROBBDs depend only on the order of the variables, so they are
canonical representations of functions. In other words, for a given variables
order, any way of computing an ROBBD leads to the same result. There

xx

y yy

zz z z z

00 0 0 1 11 1 1 1

decision tree ROBDD

Figure 4: Representations of the function f(x; y; z) = x � y + z.

exist various types of BDDs. Here we use signed BDDs, where a tag is
added on each link for if we have to complement the result. This leads to
more compact representations, as a function and its complementary can be
represented by the same BDDs.

3.2 Grouping together two rounds of DES

To �x ideas, we here give some �gures (see Tab. 1) on the number of nodes
needed to represent the right part of the composition of the �rst two rounds
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of DES with signed ROBDDs. What we exactly compute is illustrated by
Fig. 1. Each one of the 32 bits here stands as a logical function of 34
variables. Note that when represented by polynomials, each of these logical
functions has degree 25 and more than 150000 terms. We used the BDD
library [Yun] to compute the composition of two rounds. The following table
gives the exact complexity of the resulting BDDs, which varies from 6667 to
34947 nodes (13750 on average), R(i; j) standing for the j-th bit of the right
block after i rounds of DES. Note that in this experiment the key is �xed to
a random value. As for the variable ordering, it has a great in
uence on the
size of the BDDs, for instance the size of the BDD for one bit can be more
than 1.5 millions of nodes with some orders. The �gures given here were
obtained with an order that gives acceptable size for all BDDs. However,
we think that the complexity can be further reduced, for instance by using
a speci�c order for each output bit. Further research is needed to explicit
the relation between the input variable ordering and the size of the resulting
BDD.

bit #nodes bit #nodes bit #nodes bit #nodes

R(2,1) 13448 R(2, 9) 16536 R(2,17) 17256 R(2,25) 9402
R(2,2) 30741 R(2,10) 13564 R(2,18) 34947 R(2,26) 13449
R(2,3) 9322 R(2,11) 6667 R(2,19) 7240 R(2,27) 6944
R(2,4) 7095 R(2,12) 7067 R(2,20) 13436 R(2,28) 25947
R(2,5) 6938 R(2,13) 32393 R(2,21) 7002 R(2,29) 6813
R(2,6) 19294 R(2,14) 9285 R(2,22) 7057 R(2,30) 20057
R(2,7) 7057 R(2,15) 6914 R(2,23) 16337 R(2,31) 17070
R(2,8) 9592 R(2,16) 16076 R(2,24) 18064 R(2,32) 7070

Table 1: Complexity of BDDs for the right block of DES after 2 rounds.

3.3 An implementation

In a straightforward implementation of the complete DES, 8 sets of 64 BDDs
(one set for each pair of rounds) are placed in a memory and we run through
them, according to the value of the 64 input bits. Each node (except the
last one) is coded on 40 bits and consists of its variable number, 2 tags for
the signs of the \THEN" and \ELSE" links (we use signed ROBBDs), and
the addresses of its \THEN" and \ELSE" nodes. All the BDDs necessary
to represent the 16 DES rounds need approximately 18 Mo of memory to
be stored using this representation. We used a RAM memory, which is

8



accessed by an FPGA (Field Programmable Gate Array). The FPGA is
programmed to take as input the 64 plaintext bits, and to run through the
BDDs in memory according to these values. When the FPGA reaches the
leaves of the last set of BDDs, it gets the 64 output bits. The throughput
of this implementation is 152 Kbits/s.

As a comparison, the white-box DES implementation of [LN04], which
is a software implementation, occupies 4.5 MB and encrypts one block in
30ms.

4 Conclusion

We introduce a new way of implementing cryptographic algorithms preserv-
ing their con�dentiality. Our technique demands some tamper response in
case of intrusion to obtain an instance of a hard algorithmic problem. There
is still avenues to improve this. For instance, and as usual with BDDs,
variable ordering should have a great importance for size optimization of
manipulated graphs [Bry92]. A very simple implementation of this scheme
consists in storing BDDs in an external but tamper responsive SRAM, and
to add some logic to run through this memory. From another point of view,
note that some cryptographic algorithms are more diÆcult to represent this
way as they rely on primitives for which BDDs are not so eÆcient such as
multiplicators or rotators. Finally, we try to place ourselves outside known
attacks but we are dealing with special instances where a sparse polyno-
mial is composed with approximately itself. We invite readers to carefully
analyze our solution before using it.
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