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Abstract. We present identity-based identification (resp. encryption,
signature, blind signature, ring signature) from composite degree resid-
uosity (CDR). Constructions of identifications and signatures motivated
by several existing CDR-based bandwidth-efficient encryption schemes
are presented. Their securities are proven equivalent to famous hard
problems, in the random oracle model. Motivated by Cocks[12], we con-
struct an identity-based encryption from CDR. Its security is proven
equivalent to a new problem, the JSR (Jacobi Symbol of Roots of two
quadratic polynomials) Problem. We prove JSR is at least as hard as
QRP (Quadratic Residuosity Problem). Furthermore, we present the first
two-way equivalence reduction of the security of Cocks’ IBE, to the JSR
Problem.

1 Introduction

Identity-based cryptography: In 1984, Shamir [37] proposed the idea of identity-
based cryptography in which the identity of each user is used as his public key
string. Shamir’s motivation is to avoid the need for certificates to link users to
their public keys. Since the problem was posed identity-based signature (IBS)
and identity-based identification (IBI) schemes have been proposed [14, 37, 20,
31]. However, Good identity-based encryption (IBE) schemes are far rarer[5].

Due to its wide applications, research on identity-based cryptography has
been a very active area. Many new identity-based signature schemes (resp.
blind signature, ring signature) based on pairings have been proposed[22, 35,
9, 38](resp. [39,40], [39,27,21]).

Composite Degree Residuosity (CDR ): Goldwasser-Micali, Benaloh, Naccache-
Stern, and Okamoto-Uchiyama have worked on trapdoor based on CDR [19, 29,
30]. In 1999, Pailier[33] brought re-envigored interests to this trapdoor mecha-
nism. Since then, it has found widespread applications in verifiable encryption
[7], double trapdoor decryption [6], ..., etc. Several variants of Paillier’s cryp-
tosystem have been proposed recently [8, 16].

In this paper, we introduce identity-based cryptography from the trapdoor
mechanism of CDR. There have been identity-based identifications and signa-
tures from essentially all major trapdoor or one-way mechanisms, including Fact-
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goring, RSA, DL (Discret Log), and pairings[4]. We initiate CDR-trapdoored
studies here. Specifically, we make the following contributions:

Our contributions:

— We present the first identity-based identification and the first identity-based
signature schemes from composite degree residuosity. Our four construc-
tions are motivated by bandwidth-efficient CDR-based encryption schemes,
namely Paillier[33], Catalano, et al.[8], Galindo, et al.[16], and Kurosawa, et
al.[26].

— we present a thorough hierarchy of attacker security models for IBI and
IBS, including passive attacker, enhanced passive attacker, two-stage active
attacker, two-stage concurrent attacker, and parallel one-more attacker.

— We prove the securities of our IBI’s (resp. IBS’s) are equivalent to well-known
hard problems, e.g. RSA[n, n], RSA[n, €], and Factoring, in the random
oracle model (ROM).

— We present the first identity-based encryption from CDR, motivated by
Cocks[12]. Tts security is proven equivalent to a new problem: The JSR (Ja-
cobi Symbol of Roots of two quadratic polynomials) Problem. We prove JSR
is at least as hard as QRP (Quadratic Residuosity Problem).

— We present the first two-way equivalence reduction of the security of Cocks’
IBE [12], to JSR. Previously, only one-way reduction from security of Cocks’
IBE to QRP was known, and only proven by informal arguments.

— We present the first identity-based blind signature and the first identity-
based ring signature schemes from CDR.

The rest of the paper is organized as follows: In Section 2, we review back-
ground results. Section 3 provides security models and formal definitions of secu-
rity notions. In Section 4, we presents the constructions and security analyses of
our IBI’s. In Section 5, we presents our IBE and its security analyses. In Section
6, we presents identity-based signatures, blind signatures, ring signatures. We
conclude in Section 7.

2 Preliminaries

2.1 Related Results

Bellare et al.[4] formalized security models and definitions of security notions
for IBI and IBS schemes. They also systematically studied the formal security
of a dozen or more IBI schemes in the literature. Others, such as [9, 23], studies
formal security of IBS schemes. [23] presented a general transfrom from signature
schemes to IBI schemes using zero-knowledge techniques.

The concept of blind signatures was introduced by Chaum [11], which pro-
vides anonymity of users in application such as e-cash or credential systems. It
allows users to obtain a signature of a message in a way that the signer learns
nothing about the message and the resulting signature.
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The concept of ring signature was introduced by Rivest et al. [36]. A ring
signature scheme is a group signature scheme without group manager. The for-
mation of a group is spontaneous such that diversion group members can be
totally unaware of being conscripted to the group. It allows members of a group
to anonymously sign messages on behalf of the group.

2.2 Notations

We review background results needed subsequently. If N is an RSA modulus,
i.e., N = pq where p, ¢ are different odd primes, then we denote by RSA[n,e| the
RSA problem with exponent e. If N is a positive integer, then QR stands for
the set of quadratic residues modulo N. If p = 2p’ + 1 where p and p’ are both
prime, then p is a safe prime. Denote by SP(¢) the sets of safe prime numbers
of length ¢. Also denote by A(N) the Carmichael’s function taken on N.

Definition 1. (The Quadratic Residuosity Problem, QRP) Given N a product
of two large primes, and Q € Zy, determine whether QQ € QR 5 with probability
non-negligibly over random guessing.

2.3 Some Previous Schemes

We review some CDR-based encryptions, and Cocks’ IBE.

Paillier’s Encryption Scheme [33]: Let N = pq be an RSA modulus and g
an element having order aN with a > 1 in the multiplicative group Z},.. To
encrypt a message m € Z};., Paillier proposed the following mechanism.

gy = g™ 'my" mod N?
where m = m; + maN and he proved that:

— g4 is a bijection between Zy x Z3; and Z7».
— g4 is a one-way trapdoor permutation equivalent to RSA[n,n]
— the above is OW-CPA if and only if RSA[n,n] is hard.

Since €4 is a bijection, for any w € Z};., there exists unique (z,y) such that
x € Zy and y € Zy and w = g4(x,y). Paillier called x the class of w relative
to g(denoted by [w]y). Informally, Paillier call computing [w], given w and g
the computational composite residuosity class problem. If w €< g >, computing
[w]g is called partial discrete logarithm problem (PDL). Paillier assume both of
them are hard. We denote inverting ¢, the Paillier problem and it is equivalent
to RSA[n,n].

Catalano et al.’s Encryption Scheme [8]: Catalano et al.’s proposed an en-
cryption scheme by modifying Paillier’s scheme. Let N be an RSA modulus. Let
e € Zy such that ged(e, A(N?)) =1 and

€t Ln X Ly — L2
(m,r) — (14+mN)r® mod N?
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To encrypt a message m € Zy, randomly generate r € Z};, compute ciphertext
¢ = ge(m,r). Catalano et al. proved that €. is one-way if computational small
e-root problem (CSE) in Z7;, is hard. Informally, the CSE problem is to compute
z €R[0,..., N — 1], given y = 2° mod N2.

Galindo et al.’s Encryption Scheme [16]: Galindo et al. obtained an encryp-
tion scheme as secure as factoring from a modification of Catalano et al.’s scheme.
Let N = pg be an RSA modulus such that p = ¢ = 3 mod 4. Let e € Zx such
that ged(e, A(N)) =1 and

Fe:Zn X QRN g @RN?,

(m,r) — r2¢ + mN mod N>

To encrypt a message m € Zy, randomly generate r € QR and compute ci-
phertext ¢ = F.(m,r). The encryption scheme is one-way if factorization of
N = pq is hard. Note that here p, q are restricted to p = ¢ = 3 mod 4.

Kurosawa et al.’s Encryption Scheme [26]: Kurosawa et al. proposed an one-
way secure encryption scheme based on [24,25]. The public key is N = pq, «
such that ({) = (¢) = —1 and a prime e. The private key is p and ¢. To
encrypt a message m € Zy, randomly generate r € Z}; such that (§) = 1 and
a/r > r mod N, compute

c=(r+a/r)® +mN mod N?
The encryption scheme is one-way if factorization is hard.

Cocks ID-based Encryption Scheme [12] Cocks proposed an IBE based on quadratic
residuosity problem (QRP). The user secret key is the square root of a value
Q € QRy related to his identity. To encrypt a message m € {—1,1}, ran-
domly generate ¢ such that the Jacobi symbol (%) = m and compute ciphertext
¢ =t+Q/t mod N. The user holding the square root of Q) decrypt by computing

m = (L'?V‘/@).

3 Security Models

We present our security model, and define security notions.

3.1 ID-based Identification

An identity-based Identification (IBI) scheme is a four-tuple (MKg, UKg, IBP,
IBV) specified as follow.

— (msk,mpk) «— MKg(1*+) is a PPT algorithm which, on input a security
parameter As € N, outputs a master private/public key pair (msk, mpk).
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— (usk) «— UKg(ID, mpk, msk) is a PPT algorithm which , on input ID and
(mpk, msk), generates user secret key usk with overwhelming probability.

— IBP is a PPT algorithm which on input ID, mpk and usk, conduct a 3-move
interactive protocol with querier.

— IBV is a PPT algorithm which on input ID and mpk, conduct a 3-move
interactive protocol with IBP. At the end of the protocol IBV output either
Accept or Reject.

— The 3-move interactive protocol between IBP and IBV, Identification Pro-
tocol, is as follows:

IBP sends a commitment ¢ to IBV.

IBV sends a challenge ¢ randomly chosen from some set.

IBP provides a response s.

Accept/Reject — IBV(ID, mpk, t, ¢, s).

An IBI should satisfy three properties, namely, completeness, soundness and
zero-knowledgeness.

(Completeness.) If all parties act as they should, the end result should be
IBV outputting Accept with overwhelming probability. Formally, for all secu-
rity parameter \s and VID € {0,1}*, (mpk,msk) € [MKg(1*)], and usk €
[UKg(ID, mpk, msk)], 1BV (initialized with mpk,ID) output Accept after inter-
acting with IBP (initialized with ID, usk, mpk) with overwhelming probability.

(Soundness.) If verifier output Accept after interacting with the prover fol-
lowing the 3-move protocol, then prover knows the secret. Formally, usk is com-
puted efficiently from any two acceptable conversation (¢, ¢, s) and (¢, ¢, §) ,where
t,c,s is the commitment, challenge, response respectively, such that ¢ # ¢ with
overwhelming probability. Formal definitions shortly.

(Zero-knowledgeness.) (IBP, IBV) should be zero-knowledge for honest ver-
ifier. That is, there exists a PPT simulator S such that it output acceptable
conversation exhibiting the same probability distribution as the actual conver-
sation.

Remark: There are subtle differences between the identity-based prover, de-
noted IBP, and the ordinary prover of a three-move identification, typically de-
noted P. Discussions later.

Oracles: To model various attack scenarios, we provide the adversary with
the following oracles.

e o o

— Initialization Oracle: ({ID}) «— ZO(L, mpk). Upon inputs the empty string,
L, and mpk, outputs (sets up) an user identity {ID}.

— Key Eaxtraction oracle: (usk) «— KEO(ID,mpk). Upon input ID € {ID}
and mpk, returns the corresponding secret key of ID. (Sometimes known as
Corruption Oracle)

— Conversation Oracle: (t,c,s) «— CO(ID, mpk). Upon input ID and mpk,
returns a valid 3-move conversation w.r.t. ID and mpk.

— Identity-based Prover Oracle: ZBPOy. Upon valid request, conduct the
3-move interactive protocol with querier as follow.

e Sends a commitment ¢ to querier.
e Receives a challenge ¢ from querier.
e Provides a response s such that Accept < IBV(ID, mpk,t,c, s)
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Security notions The goal of an adversary is impersonation. We consider 5
different attack scenarios, namely, passive attack(pal-ib-imp), enhanced passive
attack(pa2-ib-imp), active attack(aa-ib-imp), concurrent attack(ca-ib-imp) and
parallel-one-more attack(plm-ib-imp).

[Game IB-IMP]|

1. Setup Phase: Dealer D runs MKg(1*¢) to obtain (mpk, msk).

2. Probe-1 Phase: Adversary A makes gy (resp. qx, gc, gp) queries to ZO (resp.
KEO, CO, IBPO).

3. (Throw down the) Gauntlet Phase: At some point A decided Probe-1 phase
is over and select a gauntlet ID, IDg, to impersonate. IDg must not have
been submitted to KEO before and must be returned from ZO. Then A
ensures IBV has IDg and mpk, sends g commitments to IBV and receives
gc challenges from IBV.

4. Probe-2 Phase: A makes makes ¢; (resp. {g, 4o, ¢p) queries to ZO (resp.
KEO, CO, IBPO). But A cannot query KEO or ZBPO w.r.t. IDg.

5. Answer Phase: A sends q¢ responses to IBV. IBV outputs Accept or Rejecton
each conversation.

Queries can be arbitrarily interleaved, even across Probe-1 and Probe-2 Phases,
unless otherwise stated explicitly (such as in the Subgames below).

1. Subgame pal-ib-imp (Passive attacker) qx = 4 =qp = Gp =0

2. Subgame pa2-ib-imp (Enhanced passive attacker) No queries to ZBPO
w.r.t. IDg in Probe-1 or Probe-2.

3. Subgame 2s-aa-ib-imp (Two-stage active attacker) One query must end
before another can start, go =1, and ¢p = 0.

4. Subgame 2s-ca-ib-imp (Two-stage concurrent attacker) Gp = 0.

5. Subgame plm-ib-imp (Parallel one-more attacker) None of the above
restrictions.

Let Ng,; be the number of acc’s outputted by IBVip, in Probe-i, ¢ = 1,2. Let
qr,c (resp. p ) be the number of queries to ZBPOrp,, in Probe-1 (resp. Probe-
2). For Subgames pal- (resp. pa2-, plm-)ib-imp, the advantage of the Adversary
is the probability that N1 + Ng,2 > qp,c + §p - For Subgames 2s-aa- (resp.
2s-ca-)ib-imp, the advantage of the Adversary is the probability that Ng o > 0.
We use the ”oracle clone” concept and the two-stage attacker model from [2].
Consult there for further details.

Definition 2. An IBI scheme (MKg, UKg, IBP, IBV) is pal-ib-imp (resp. pa2-
ib-imp, 2s-aa-ib-imp, 2s-ca-ib-imp, plm-ib-imp) secure if no PPT adversary has
non-negligible advantage in Subgame pal-ib-imp (resp. pa2-ib-imp, 2s-aa-ib-imp,
2s-ca-ib-imp, pIm-ib-imp).

In contrast to counterpart security notions in non-IB identification schemes,
we allow queries to the key extraction oracle, and these queries are typically
simulated by backpatching the random oracle in our proofs. Our security models
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differ from the IBI security models in Bellare, et al. [4] most distinctly in the
way the gauntlet prover oracle, ZBPO1p,,, is simulated. The difference is most
contrasted in "one-key” IBI’s such as Guillou-Guisquater IBI [4] (and Paillierl-
IBI and CGHGN1-IBI here). We simulate this 3-move oracle, ZBPOp,., by a
3-move prover oracle while [4] simulated it with a 2-move RSA-Inversion Oracle
just like [2], p.172, 1.-13, did in simulating its non-IB prover oracle. For ”2-
key” IBI’s or other ”witness-indistinguishable” IBI’s such as Fiat-Shamir IBI,
Okamoto-RSA IBI in [4] and HMMV-IBI, KT-IBI here, the difference between
our security models and those in [4] is less pronounced.

Zero-knowledge: We review an old ZK and define a new ZK.

Definition 3. The identity-based prover, IBP, is Honest Verifier Zero-Knowledge
(HVZK) if an arbitrary PPT identity-based verifier IBV, following the interactive
Identification Protocol honestly, cannot gain any knowledge of usk.

Definition 4. The identity-based prover, IBP, is Extraction Resisten Zero Knowl-
edge (ERZK) if there does not exist an PPT algorithm which, when equipped with
identity-based prover oracle w.r.t. ID, IBPOp, can compute usk = UKg(ID,
mpk, msk) from mpk and ID with non-negligible probability.

Comparing ERZK with HVZK: Either model has its relative strength. The
former considers ZBPO and dishonest verifiers but needs to extract the entire
secret usk. The latter is concerned about not leaking any part of the knowledge,
usk. The ERZK (for ”one-key” ibp) is strictly weaker than computational sta-
tistical ZK because it is about a a PPT disnonest verifier extracting all of usk,
not just a part of it. However, IBP’s where there exists usk’ # usk such that
knowing usk’ also enables a PPT algorithm to simulate ZBPO1p, does not have
ERZK. This technicality simplifies our presentation.

3.2 ID-based Encryption

An identity-based encryption (IBE) scheme is a four-tuple (MKg, UKg, encrypt,
decrypt), specified as follow.

— MKg, UKg defined before.

— ¢ <« encrypt(ID, mpk, m) is a PPT algorithm which, on input ID, mpk and
message m, produces ciphertext c.

— m «— decrypt(ID, mpk, usk, ¢) is a PPT algorithm which on input ciphertext
¢, ID, mpk, usk, output message m or fail.

Oracles: To model the attack scenario, we provide the adversary with the
following oracles.

— Z0O, KEO defined before.

— Decryption Oracle: (m) < DO(c,ID). On input ciphertext ¢ and ID € {ID},
output the corresponding message m, or output fail if no message corre-
sponding to the queried ciphertext exists.
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Security notions We are interested in the completeness and the semantic
security.

(Completeness.) A legitimate ciphertext should be decryptable by the in-

tended user. Formally, for all security parameter As and VID € {0, 1}*, (mpk, msk) €
[MKg(1*+)], and usk € [UKg(ID,mpk, msk)],m « decrypt(ID, mpk, usk,c) if
¢ « encrypt(ID, mpk, m) with overwhelming probability.

Semantic security: Attackers should not gain information or knowledge

of the message from the ciphertext. We definie the semantic security via the
following game(s).

[Game IB-Semantic-Security]
Setup Phase: Dealer D runs MKg(1%¢) to obtain (mpk, msk).

2. Probe-1 Phase: Adversary A queries the oracles.

4.

D.

Gauntlet Phase: A sends its choice of gauntlet ID, IDg, and message my €
{0,1}¢. IDg must not have been submitted to XEO before. D randomly gen-

erates message mg € {0, 1}¢, flips fair coin b € {0, 1}, computes cg =encrypt(ID,mpk,
my), and sends cg to A.

Probe-2 Phase: A queries oracles, except querying IDg to LEO and querying
(Cg,IDg) to DO .

Delivery Phase: A outputs an estiamte b’ of b, and an estimate m’ of my.

Queries can be arbitrarily interleaves even across Probe-1 and Probe-2 Phases,
unless explicitely stated otherwise such as in the Subgames below:

1.

(sub-)Game IB-OW-CPA: No DO queries in any Phase, and b = 0. The
Adversary’s advantage is the probability m’ = mg, minus the probability of
guessing correcting by random m’. The latter probability equals 2.
(sub-)Game IB-IND-CPA: No DO queries in any Phase, mo # mq is
required, and myg is uniformly randomly generated among all messages not
equal to my. The Adversary’s advantage is the probability, minus 1/2, that
b =b.

(sub-)Game IB-IND-CCA: That mg # m; is required, and my is uni-
formly randomly generated among all messages not equal to my. The Ad-
versary’s advantage is the probability, minus 1/2, that b’ = b.

Definition 5. An IBE scheme (MKg, UKg, encrypt, decrypt) is IB-OW-CPA
(resp. IB-IND-CPA, IB-IND-CCA ) secure if no PPT adversary has a non-negligible
advantage in Game IB-OW-CPA (resp. IB-IND-CPA, IB-IND-CCA ).

In contrast to similar security notions for (non-IB) encryptions, we allow

queries to LEQO, and typically simulate these queries by backpatching the random
oracle in our proofs.

3.3 ID-based Signature

An identity-based signature (IBS) scheme is a four-tuple (MKg, UKg, IBSS, IBSV)
specified as follow.
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— MKg, UKg are defined before.

— (0) < IBSS(ID, mpk, usk, m) is a PPT algorithm which, on input ID, mpk,
usk and message m, generate a signature o.

— Accept/Reject «— IBSV(ID, mpk,m, o) is a PPT algorithm which, on input
1D, signature o, message m, output Accept or Reject.

An IBS should satisfy two properties, namely, completeness and soundness.

(Completeness.) A legitimate signature should be accepted. Formally, for
all security parameter Ay and VID € {0,1}*, (mpk,msk) € [MKg(1*+)], and
usk € [UKg(ID, mpk, msk)|, Accept « IBSV(ID, mpk, m,o) with overwhelming
probability if o « IBSS(ID, mpk, usk, m).

(Soundness.) An invalid signature should be rejected. Formally, for all se-
curity parameter Ay and VID € {0,1}*, (mpk, msk) € [MKg(1*+)], and usk €
[UKg(ID, mpk, msk)], Reject <+ IBSV(ID, mpk, m, o) with overwhelming proba-
bility if o « IBSS(ID, mpk, usk, m).

Oracles: To model the attack scenario, we provide the adversary with the
following oracles.

— 70O, KEO defined before.
— Signing Oracle: 0 — SO(ID, mpk, m). Upon inputs ID € {ID}, mpk and
message m, output a signature o such that Accept «— IBSV(ID, mpk,m, o).

Security notions The accepted security notion for IBS is existential unforge-
ability against adaptive chosen ID and message attack (uf-cma).

[Game IB-UF-CMA]

1. Setup Phase: Dealer D runs MKg(1*¢) to obtain (mpk, msk).

2. Probe Phase: Adversary A can issue queries to the oracles. At some point,
A chooses a gauntlet ID, IDg, to forge a signature with on any message of
its choice. A cannot submit IDg to KEO and it must be returned from ZO.

3. Delivery Phase: At the end, 4 submit a signature o for message m of IDg. m
and ID¢g pair must not be submitted to SO before. D outputs either Accept
(if Accept — IBSV(ID, mpk, m, o)) or Reject (otherwise).

The advantage of adversary is defined as the probability that Dealer output
Accept.

Definition 6. An IBS scheme (MKg, UKg, IBSS, IBSV) is uf-cma-secure if no
PPT adversary has non-negligible advantage in Game IB-UF-CMA.

3.4 Blind ID-based Signature

An blind identity-based signature (BIBS) scheme is a five-tuple (MKg, UKg, IBP,
Warden, IBSV) specified as follow.

— MKg, UKg, IBP, IBSV are defined before.
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— (o) < Warden(ID, mpk, m) is a PPT algorithm which, on input ID, mpk,
and message m, interact with IBP and generate a signature o as follow.
e |IBP sends a commitment ¢t to Warden.
e Warden sends a challenge ¢ to IBP.
e IBP provides a response s.
e Warden output o such that Accept < IBSV(ID, mpk,m, o).

An BIBS should satisfy three properties, namely, blindness, completeness
and soundness.

(Blindness.) The signature outputted by Warden cannot be linked to any
of the conversation between Warden and IBP. Formally, let the adversary keeps
the transcript 7 of the interaction between IBP and Warden. Then given a valid
o, we say that BIBS is blind if:

Prob{c by Warden} = Prob{c by Warden|T }

(Completeness.) A legitimate signature should be accepted. Formally, for
all security parameter A\, and VID € {0,1}*, (mpk,msk) € [MKg(1*+)], and
usk € [UKg(ID, mpk, msk)], Accept « IBSV(ID, mpk, m, o) with overwhelming
probability if o < Warden(ID, mpk, m) (interacted with IBP(initialized with ID,
usk, mpk).

(Soundness.) An invalid signature should be rejected. Formally, for all se-
curity parameter Ay and VID € {0,1}*, (mpk, msk) € [MKg(1*+)], and usk €
[UKg(ID, mpk, msk)], Reject « IBSV(ID, mpk, m, o) with overwhelming proba-
bility if o <+~ Warden(ID, mpk, m) (interacted with IBP(initialized with ID, usk,
mpk).

Oracles: To model the attack scenario, we provide the adversary with oracles
70O, KEO and ZBPO which are as specified before.

Security notions: Accepted security notion for BIBS scheme is security
against parallel one-more existential forgery attack. Consider the following game
(Game IB-UF-P1M).

1. Setup Phase: Dealer D runs MKg(1*¢) to obtain (mpk, msk).

2. Probe Phase: Adversary A can issue queries to the oracles. In particular,
A can issue queries to ZBPO for g, times. Queries to oracles can be made
concurrently and in an interleaving manner.

3. Delivery Phase: A produces g, + 1 triples of (ID;,m;,0;) fori =1,..q5 + 1
such that ID; has never been submitted to XEO. A wins the game if all the
signatures are valid and all ID; € {ID}.

The advantage of adversary is defined as the probability that it wins Game
IB-UF-P1M.

Definition 7. A BIBS scheme (MKg, UKg, IBP, Warden, IBSV) is one-more-
unforgeable(uf-plm-secure) if no PPT adversary can win Game IB-UF-P1M
with non-negligible advantage.
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4 ID-based Identifications from CDR

We present several IBI’s which are derived from four bandwidth-efficient CDR-
based encryption schemes, namely Paillier[33], Catalano et al.[8], Galindo, et
al.[16], and Kurosawa et al.[26]. Then we prove the equivalence of their securities
to well-known hard problems. A general method of constructing IBI’s from other
bandwidth-efficient encryption schemes is presented in Appendix B.

Paillier1-IBI and Paillier2-IBI schemes
MKg On input 1%¢, generate two primes p,q from SP()\,), compute N = pq.
Chooses cryptographic hash function H; : {0,1}" — Z%. and compute g =
1+ N. The master secret key is (p, q).
UKg For an identity ID, the secret key is a pair (z,y) € (Zy,Z}) such that
g°yN = H,(ID).
Identification Protocol
1. IBP chooses 1 €gr Zn,r2 €g LY, computes t = 0(g"roN mod N2) and
sends t to IBV.
2. IBV chooses ¢ € Zy, and sends ¢ to IBP.
3. IBP computes s; =11 — cx mod N, s = roy~“ mod N and sends s1, $o
to IBV.
4. IBV verifies whether t = 6(H;(ID)¢g* so™ mod N?)

In Paillierl-IBI, € is the identity mapping. In Paillier2-IBI, 6 is a collision-free
secure hashing of suitable range and domain (0 : Zy. — Z}y).

CGHGN1-IBI and CGHGN2-IBI schemes
MKg On input 1%, generate two primes p,q from SP()\;), compute N = pq.
Choose a sufficiently large prime e satisfying ged(e, A(N?)) = 1. Chooses
cryptographic hash function H; : {0,1}" — Z%. and compute g = 1+ N.
The master secret key is (p, q).
UKg For an identity ID, the secret key is a pair (x,y) € (Zy,Z}) such that
9"y° = H,(ID).
Identification Protocol
1. IBP chooses 71 €r Zy,ra €r LY, computes t = 6(g"r2® mod N?) and
sends t to IBV.
2. IBV chooses ¢ € Z., and sends ¢ to IBP.
3. IBP computes s; = r; — cxz mod N, so = 7oy~ mod N? and sends s1, So
to IBV.
4. 1BV verifies whether t = §( H(ID)¢g%1 s5° mod N?)

In CGHGN1-IBI, 4 is the identity mapping. In CGHGN2-IBI, 6 is a collision-free
secure hashing of suitable range and domain (6 : Ly — Z’j\,z).

How large is e sufficiently large? The prime exponent e has to be sufficiently
large to guard against the impersonation described in Appendix A. We have in
mind e is 80 to 160 bits.

GMMYV-IBI scheme
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MKg On input 1%+, generate two primes p,q from SP()\,), compute N = pq.
Choose random prime exponent e (of length A.) such that ged(e, \(N)) = 1.
Chooses cryptographic hash function Hy : {0,1}" — Z’y». The master secret
key is (p, q,d) such that de = 1 mod A\(N). Also publish some small integer
K and /.

UKg For an identity ID, the secret key is (z,yx) € (Zk,Zn) such that z2¢ +
yr N = H;(ID||k) = Q) mod N2 for k=1,--- , K.

Identification Protocol

Repeat the following for 7 =1,--- ,£:
1. IBP chooses 1, €r Z3,r2,+ €r ZnN, computes t, = 7"1,726 + ro, - N mod

N2 and sends t, to IBV.

IBV sends a binary vector (¢1 -,--- ,ck.r) to IBP.

3. IBP sends to IBV sy, = r1 ;- [[(zx) %~ mod N? and sy, = rgyfrl_’fe —

> ck,Tykx,;Qe mod N.
4. 'V verifies whether ¢, = 5%?(1 + N)*27 T](Q) ™ mod N2.

o

We have in mind k¢ =~ 80 to 160.

Given a random ID and a random "tail” k, the probability of Q) being a
quadratic residue (QR) and therefore the probability of successfully producing
xy, is only about 1/4. There are at least two techniques to increase that prob-
ability towards 1. The first technique follows [12]. The hashing is iterated (up
to a certain limit), Hy(H;(---(ID)---)), until it yields the first value, Q, whose

Jacobi symbol (%) = 1. Then user is told which one of Q and —@Q is a quadratic
residue in mod N. The IBI can be altered by having the sender tell, in the first
move, which one of Q and —Q is QR. Or, two, the IBI can be conducted in
parallelism of two, for  and for —Q, respectively. Note that testing for (%) =1
without knowledge of the factoring of N is efficient [12]. This technique require
N = pg such that p = ¢ = 3 mod 4 and is satisfied when N is safe-prime modulus.

The second technique alters UKg by decrypting multiple @’s with multiple
tails. If a sufficient number of tails are decrypted, at least one of H(ID||tail)
is likely to be a quadratic residue mod N, and produces the user secret key
successfully.

KT-IBI scheme

MKg On input 1%+, generate two primes p,q from SP()\;), compute N = pq.
Choose random o €g Zy such that () = () = —1.Chooses cryptographic
hash function Hy : {0,1}" — Z%.. The master secret key is (p,q). Also
publish some small integer K and £ .

UKg For an identity ID, the secret key is (z,yi) € (Z%,Zn) such that Qp =
Hi(ID) = (x1 + a/x1) + ypN mod N? for k = 1,--- K. Denote Ay =
(21 + a/x) mod N? and By, = (2 — a/x) mod N2.

Identification Protocol

Repeat the following for 7 =1,--- , £:

1. IBP chooses 1 €r Z}y,m2,+ €r ZN, computes t, = 7’1,72 + 72N mod
N2 and sends ¢, to IBV.

2. IBV sends a binary vector (ci.-,--- ,ck,-) to IBP.
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3. IBP sends to IBV sy, = 71, [[(Br) 7 mod N? and s3» = ro 172 —
> ck772ykAkB,€_2 mod N.
4. IBV verifies whether t, = s7 (14 N)%2~ [1(Qx? — 4a)®*~ mod N2,

Security Analyses We prove the equivalence of the securities of our IBI
schemes to well-known hard problems in the random oracle model. Proofs are in
the Appendices.

Theorem 1. Paillier1-IBI, Paillier2-IBI, CGHGN1-IBI, CGHGN2-1BI, GMMV-
IBI, KT-IBI are HVZK.

Theorem 2. Paillier1-IBI is pal-ib-imp (resp. pa2-ib-imp) secure, if and only
if RSA[n,n] is hard, in the random oracle model (ROM). Paillier2-1BI is pal-ib-
imp (resp. pa2-ib-imp, 2s-aa-ib-imp, 2s-ca-ib-imp) secure, if and only if RSAn,n]
is hard, in ROM.

Theorem 3. CGHGNI1-IBI is pal-ib-imp (resp. pa2-ib-imp) secure, if and only
if RSA[n,e] is hard, in ROM. CGHGN2-IBI is pal-ib-imp (resp. pa2-ib-imp, 2s-
aa-ib-imp, 2s-ca-ib-imp) secure, if and only if RSA[n.e] is hard, in ROM.

Theorem 4. GMMV-IBI is pal-ib-imp (resp. pa2-ib-imp, 2s-aa-ib-imp, 2s-ca-ib-
imp) secure, if and only if and only if factoring is hard, in ROM.

Theorem 5. KT-IBI is pal-ib-imp (resp. pa2-ib-imp, 2s-aa-ib-imp, 2s-ca-ib-imp)
secure, if and only if and only if factoring is hard, in ROM.

Theorem 6. Paillier1-IBI (resp. CGHGN1-IBI) is 2s-ca-ib-imp and 2s-aa-ib-
mmp secure if and only if its identity-based prover has ERZK, in ROM.

These Theorems are proved in Appendices C, D, E, F, G, K.

We have not been able to prove Paillierl-IBI or CGHGNI1-IBI has ERZK.
There are may methods in the literature to convert an arbitrary HKZK scheme
to one which is statistical ZK[1,32,17]. These methods can be used to convert
Paillier1-IBI and CGHGNI1-IBI to statistical ZK and therefore ERZK. Then
a similar theorem to Theorem 6 can be proved to establish the 2s-ca-ib-imp
security of the converted scheme. However, many known methods of conversion
increases the number of moves beyond 3 moves, or decresse the length/entropy
of the challenge, or both. It is an open problem to prove the 3-move Paillier1-IBI
or CGHGNI1-IBI has ERZK.

5 ID-based encryption from CDR

Motivated by Cocks [12], we construct an IBE scheme from CDR, called CDR-
IBE. Its security is proven equivalence to a new hard problem. Furthermore,
we prove the equivalence of the security of Cock’s original IBE [12] to this new
problem.

[CDR-IBE scheme]



14 Man Ho Au and Victor K. Wei

MKg Same as Paillierl-IBI, but with the additionally requirement p = ¢ =
3 mod 4.

UKg For an identity ID, compute @ = H7(ID), where hashing H; is applied
repeatedly until the first result () whose Jacobi symbol is (%) = +1. The
secret key is (flag, z,y) where (Case 1) flag = 1, ¢*y*N = Q, if Q € QRy;
or (Case 2) flag = —1, g°y*N = —Q, if —q € QRy.

encrypt message m € {—1,+1}: Choose t,t' € Z, with () = (%) = m.
Randomly generate r, 7. Send ¢ = g"(t + Q/t) and ¢ = g" (' — Q/t").

(0+2ij+”)

decrypt If flag = 1, then compute message= . Else, compute

message:(ww).

Note that the Jacobi symbol can be computed without knowing the factoring of
N[12].

Security analyses of CDR-IBE and of Cocks’ IBE[12]: We prove the
equivalence of the security of CDR-IBE (resp. Cock’s IBE[12]) to a new hard
problem, the JSR Problem. We also prove JSR is at least as hard as QRP. We
also present a conversion of CDR-IBE to an IB-IND-CCA secure IBE scheme.

Definition 8. (Jacobi Symbol of Roots of 2 Quadratic Polynomials (JSR) Prob-
lem) Let N = pq where primes p = ¢ = 3mod4, p =2 +1, g = 2¢' + 1
and p', ¢ are also primes. (%) = 1, and 0® — 4m,(0')® + 47 € QRy. Let
f(X)=X2—0X+m, f/(X)=X2—0'X —m, t is any root of f(X) and t' is any
root of f'(X). The JSR Problem is to compute, based on the above assumptions:

(4), if 7 € QRy
(tﬁ)a Zf _FEQRN

Note either polynomial has four roots in Zy. If m# € QR y then the four roots
of f(X) have identical Jacobi symbols while exactly two of the roots of f/'(X)
have positive Jacobi symbols. If —7 € QR then the four roots of f/(X) have
identical Jacobi symbols while two of the roots of f(X) have positive Jacobi
symbols. In JSR, roots from different polynomials may have different Jacobi
symbols. Also (=) = (5) = —1, (5) = 1, (%) = (5).

JSR(N,m,0,0') = {

Lemma 7 The JSR Problem is at least as hard as QRP.

Proof Sketch: Set o =t +m/t, o’ =t —m/t' where (%) =1 and (%) =—1,
and the solution of JSR also solves QRP. a

Theorem 8. CDR-IBE is IB-OW-CPA secure if and only if the JSR Problem
18 hard, in ROM.

Proof Sketch: W.lo.g, 7 € QRy, and 0 = t + 7/t, o/ = t' — 7/t’. Easily,
breaking IB-OW-CPA is equivalent to computing JSR with the additional as-
sumption that (§) = (%) which reflects a valid ciphertext. Note f(X) has four
roots with identical Jacobi symbols, while f/(X) has four roots, exactly two of
which have posibive Jacobi symbols. It is witness indistinguishable to decryptor
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whether (t—l\;) is +1 or -1. Therefore the additional assumption can be dropped
and the theorem is proved. a.

Using the same security model and the same proof technique, we can easily
obtain that

Corollary 9 Cocks’ IBE[12] is IB-OW-CPA if and only if JSR is hard, in ROM.

It remains an open problem to prove JSR equivalent to QRP.

There are well-known methods to convert an OW-CPA encryption to an IND-
CCA encryption[3, 13, 33]. They can be used to convert CDR~IBE to an IB-IND-
CCA-secure IBE with multi-bit messages. We demonstrate by using OAEP[3].
Let m be a multi-bit message, G and H be secure hashing functions. Randomly
generate r. Let s = (m||0°) ©G(r), t = H(s)Pr, ctxt be the bit-by-bit CDR-IBE
encryption of (s||t). Then the scheme is IB-IND-CCA secure in ROM, provided
the padding length ¢ is sufficiently large.

The particular conversion in Cocks [12] can also be used. But it comes without
a formal proof of security.

We make the observation that CDR-IBE (resp. Cocks’ IBE) can be used as
an oblivious transfer (OT)[15]. In a 1-2 OT, Alice sends Bob two messages, Bob
receives at most one, and Alice does not know which one. In a chosen 1-2 OT[28],
Bob gets to choose which one he receives. CDR-IBE (resp. Cock’s IBE) can be
used as a chosen 1-2 OT as follows: Alice and Bob both know N, and Bob may
know its factoring. Bob generates 7, (§;) = 1, and sends it to Alice. Alice verifies
(#) = 1, then encrypts multi-bit message mq to the case m € QRy bit-by-bit,
and she encrypts multi-bit message mq to the case —m € QR bit-by-bit, using
CDR-IBE (resp. Cocks’ IBE). This is indeed a chosen 1-2 OT: Alice is assured
Bob can only decrypt one message, but she does not know which one. But its
bandwidth efficiency is poor.

6 ID-Based Signature, Blind Signature, Ring Signature

We can further transform our proposed IBI into IBS schemes following the Fiat-
Shamir paradigm. The resulting schemes are shown below.

Paillier1-IBS and Paillier2-IBS schemes
MKg Same as Paillierl-IBI, except picking one more cryptographic hash func-
tiOI’l, HQ : ZNZ X Z}kvz — ZN
UKg Same as Paillier]1-1BI.
IBSS On input message m, randomly pick r; €r Zy,r2 €g Z} and computes:
1. t =6(g"ry™ mod N?)
2. ¢ = Hy(m,t)
3. 81 =r1 —cxr mod N
4. so =1y~ mod N
Return the signature (t,s1,s2) € (Zy2,Zn, Zy)
IBSV Check whether t = 6(H;(ID)#2(m1) g515,N mod N?)
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CGHGN1-IBS and CGHGN2-IBS schemes
MKg Same as CGHGNI1-IBI, except picking one more cryptographic hash func-
tion, Hy : Zn2 X L2 — Ze.
UKg Same as CGHGNI1-IBI.
IBSS On input message m, randomly pick r; €g Zy,ro €g Zj and computes:
1. t=0(g"ry° mod N?)
2. c= H2 (m, t)
3. 81 =r1 —cxr mod N
4. 89 = roy ¢ mod N?
Return the signature (t,s1,s2) € (Zy2,ZnN,ZY2)
IBSV Check whether t = (H; (ID)#2(™1) g515,N mod N?)

GMMYV-IBS scheme

MKg Same as GMMV-IBI, except picking one more cryptographic hash func-
tion, Hy : {0,1}* — {0, 1} %%

UKg Same as GMMV-IBI.

IBSS On input message m, Randomly pick ri » €r Zn,ror €r Zjy for 7 =

1,---,¢ and computes:
L. tr =77 4 ry N mod N?
2. [01’17 S CK1, 5 CLe, ,CK,Z] — Hg(m,tl, . ’W)
3. 817 =717 [[(xx) " mod N? and sy, = 7’2777’1_772_6 -3 ck77yk:v,:26 mod
N.
Return the signature (¢1,--- ,t¢, 81,1, S1.¢,52,1 " ,S2.0)

IBSV Compute [c11, - ,Cr1, " ,C1,05° s Ci,0] = Ha(m, t1,--- , 7). Check whether
tr = S%?’(l + N)SQYT H(Qk)cﬂk mod N2 for 7 = 17 e ae'

KT-IBS scheme

MKg Same as KT-IBI, except picking one more cryptographic hash function,
Hy :{0,1}* — {0, 1} K¢,

UKg Same as KT-IBI.

IBSS On input message m, Randomly pick ri1 » €r Zn,ror €r Zjy for 7 =

1,---,¢ and computes:
1. t, = rieT + ro,- N mod N2
2. [01,1, S L CK1, 5 C1e, ,CK,Z] = Hg(m,tl, o ,te)
3. 817 =71, [[(Bk)~ " mod N? and s5 , = 7"2,77#17’3—2 ck,T2ykAkB,;2 mod
N.
Return the signature (¢1,--- ,t¢, 51,1, S1,¢,52,1 " ,52,0)
IBSV Compute [c11, - ,Cr1, " ,Cle:" »Ck,0) = Ha(m,t1,--- ,t7). Check whether

tr =7 (1+N)*>~ [1(Qx% — 4a)° mod N? for 7 =1,--- , .

Security Analyses of IBI’s: We prove the security of our signature schemes.
It is well-know that passive secure and HVZK identification schemes produces
uf-cam-secure signatures via the Fiat-Shamir paradigm. We have the following
theorem. Proof omitted.

Theorem 10. Paillier1-IBS (resp. Paillier2-IBS, CGHGN1-IBS, CGHGN2-IBS,
GMMV-IBS, KT-IBS) is uf-cma-secure if and only if RSA[n,n/ (resp. RSA[n,n],
RSA[n,e], RSA[n,e], Factoring, Factoring) is hard, in ROM.
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ID-based blind signature (BIBS) We extend our Paillier1-IBS and CGHGN1-
IBS to Blind IBS (BIBS) as follows.

Paillier1-BIBS and CGHGN1-BIBS schemes
In Paillier1-BIBS, M = N while in CGHGN1-BIBS, M = e.
MKg Same as corresponding IBS.
UKg Same as corresponding IBS.
IBP Same as corresponding IBI.
IBSV Same as corresponding IBS.
Warden

1. Warden send a request to IBP and receive commitment .

2. Warden chooses r3 €g Zn,ra €r Zy, 0 €r Zy and computes t' =
H,(ID)%tg™r4M mod N2. Warden then computes ¢/ = Ho(m,t') and ¢ =
¢ — 6 +rM for some integer c,r such that 0 < ¢ < M. Sends c to IBP.

3. IBP returns s1, sy to Warden.

4. Warden computes s = s1 + r3 mod N, s5 = H;(ID)"sary mod N (for
CGHGNI1-BIBS, Warden computes sy in Zj.instead of Z3). Warden
outputs (m,t', s, s5) as the signature of message m.

Theorem 11. Our blind identity-based signatures, Paillier1-BIBS and CGHGN1-
BIBS, have blindness.

ID-based ring signature, and its blind version: We also present the first
identity-based ring signature (IBRS) and blind identity-based ring signature
(BIBRS), from paillier1-IBI, in Appendix H.

7 Conclusion

We have presented 4 different IBI schemes from CDR and extend them to IBS.
We also extend some of them to BIBS and IBRS. We also construct an encryption
scheme from CDR motivated by Cocks. We provide rigorous definition of security
models and proven our constructions under them. In particular, we provide a
thorough hierarchy of attacker models for IBI. Our schemes are possibly more
efficient than other pairing-based identity-based signature schemes as pairing
operations is expensive. It is also possible to extend our scheme using composite
degree greater than 2 as in [34].
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A Small exponent cryptanalysis of CGHGN1 and 2

The value of e should be chosen sufficiently large such that the following im-
personation probability is sufficiently small: For @Q = H;(ID), adversary obtains
from Conversation Oracle (¢, ¢, s1, $2), then impersonate with (¢, é, s1, $2) where
§y = Q(¢=9/¢sy mod N? for any challenge ¢ such that e | (¢ — ¢). It is safe to use
e of length 80 bits. In our setting, we set challenge to be within Z. so that such
cryptanalysis is not possible.

B Transformation from Encryption to ID-based
Identification

We outline a transform to build IBI from encryption schemes satisfying certain
conditions.

B.1 Requirement for Encryption

We call an encryption scheme II satisfy the following requirements a convertible
encryption scheme.

— IT is OW-CPA secure and without known CCA attacks.

— I is bandwidth-efficient, in the sense that the combined length of plaintext
m and randomness used in encryption r roughly equals the length of the
ciphertext c.

— The relation ((m,r),c) is in N'P.

— There exists cryptographic hash function H such that its range is in the
ciphertext space with non-negligible probability.

— Decryption of the ciphertext ¢ recovers both message m and randomness 7.

Roughly speaking, a suitable encryption scheme IT=(Kg, Encrypt, Decrypt)
can be transformed into an IBI, (MKg, UKg, IBP, IBV), as follow.

Mkg MKg(1*+) = Kg(1*+) On input security parameter 1+, run Kg and obtain
(pk, sk). The master public key mpk = pk and master secrete key msk = sk.
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UKg UKg(ID, mpk, msk) = usk = Decrypt(H(ID)). On input ID, randomly
generate tail and compute Q=H(ID||tail) such that Q is decryptable. Run
Decrypt(Q,sk) and obtain (m,r). The user secret key is (m,r) and tail is also
given to the user. If the output of H is always decryptable, then tail is not
needed.

Identification Protocol Since the relation (usk, H(Q||tail))is NP, by theorem
5 in [18], a protocol of zero-knowledge proof exists. In the implementation,
since tail is unknown to the verifier, prover has to send the tail to verifier in
advance.

Remarks: [18] provides an efficient systematic implementation of the zero-
knowledge proof. However, it is impractical. To yield a practical IBI, simple
designs in the paradigm of a 3-move X' protocol should be handcrafted.

C Proof of Theorem 1

Simulator S can generate transcript of Paillier1-IBI for any ID such that Hy(ID) =
Q as follow:

1. Randomly generate c¢,s1 €r Zy and s €g Z}.
2. Compute t = Q°g°' s mod N?
3. the simulated transcript is (¢, ¢, s1, $2).

It is easy to verify that the generated transcript is indistinguishable from ac-
tual transcript. Similarly, S can generate transcript of Paillier2-1IBI, CGHGN1-
IBI, CGHGN2-IBI, GMMV-IBI and KT-IBI. Thus, Paillierl-IBI, Paillier2-I1BI
,CGHGN1-IBI, CGHGN2-IBI, GMMV-IBI and KT-IBI are HVZK (wrt secret
key). 0.

D Proof of Theorem 2

It is obvious that if an adversary can solve RSA[n,n| problem, it can extract
the private key for all ID and can thus break Paillierl-IBI and Paillier2-IBI. We
prove the pal-ib-imp security of Paillier1-IBI first.

Setup Dealer D gives (N, u) to simulator S and ask S to compute y such
that 4V =« mod N. Set mpk = N.

Oracle Simulation

1. (ZO) Randomly generate a set of ID € {0,1}*. Return {ID}.

2. (H; Oracle) Assume Z makes qg, queries to the oracle. Let ID; be the it?
query to the H; oracle. § chooses r € [1,...,qm,] and set Hi(ID,.) = u. For
other Hy query for ID;, S randomly generate z;, y; and set Hy (ID;) = g%y} .

3. (KEO)When Z query KEO for 1ID;, S return (z;,y;). If Z query KEO for
ID,., § output failure and abort.

4. (CO) Suppose H{(ID) = @, S random generate c, sy, s2, compute ¢t =
Q°g*1sY mod N2. Then return (t,c, s1, 52).
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Witness Extraction Eventually, impersonator Z output the gauntlet ID
and act as cheating prover. If the gauntlet ID is not ID,., output failure and
abort. Do rewind simulation once and obtain two valid transcripts with same
commitment from Z, namely, (¢, ¢, 1, s2), (t, ¢, 51, S2). Assume t = g*b" mod N2.

gabN _ gcac+51 (y082)N mod N2
ai N — géw+§1 (yéSAQ)N mOd N2

z=($1—s1)/(c—¢) mod N

g“b

The last equation come from the fact that [¢], is unique modulo N. § can compute
y as follow.

t = u(s2)Y mod N
t = u®(s3)Y mod N

ut™% = (85/s2)N mod N

Denote by s $5/s9 mod N. S then compute (d, k1, ko) such that d = ged(N, c—¢)
and k1N + ka(c — é) = d. If d # 1, then S successfully factorize N (since 0 <
¢,é < N). Hence, ky N +ko(c—¢) = 1. u = uF1NoF2(c=8) = (y(F1)(5)k2)N mod N.
Thus, y = u*s*> mod N.

We proceed to prove the pa2-ib-imp security of Paillierl-IBI. The proof is
similar except the simulation of the prover oracle which is outlined as follow.

Oracle Simulation ZBPO: Suppose H;(ID;) = Q;, since the secret key for
ID; is known, S can stimulate perfectly. The only ID S cannot stimulate is ID,.,
but query to ZBPO for ID,. is not allowed in the pa2-ib-imp Subgame.

We proceed to prove the 2s-ca-ib-imp security of Paillier2-1BI, which implies
the 2s-aa-ib-imp security, pa2-ib-imp security and pal-ib-imp security.

Setup Dealer D gives (IV,u) to simulator S and ask S to compute y such
that ¥ = v mod N. Set mpk = N.

Oracle Simulation

1. (ZO) Randomly generate a set of ID € {0, 1}*. Return {ID}.

2. (H; Oracle) Assume Z makes qg, queries to the oracle. Let ID; be the it?
query to the Hy oracle. & chooses r € [1,...,qm, ] and set Hy(ID,) = u. For
other Hy query for ID;, S randomly generate z;, y; and set Hy(ID;) = g%y} .

3. (KEO)When T query KEO for ID;, S return (x;,y;). If Z query KEO for
ID,., § output failure and abort.

4. (ZBPO) S simulate ZBPO by backpatching the 6 oracle as follow. S ran-
domly generate ¢ such that ¢ is different from all the previous output of the 6
oracle and send ¢ as commitment. When challenge ¢ come, S randomly gen-
erate random generate s, sy and compute h = Q°¢** 55 mod N2. Backpatch
O(h) =t.

Witness Extraction This is similar to the proof in Paillierl-IBI. By doing
rewind simulation once, S obtain two transcripts (t, ¢, s1, $2) and (¢, &, §1, §2). By
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lunchtime argument, Z must have query 0 oracle such that there exists h with
t =0(h). S can compute y as follow.

h= UC(SQ)N mod N
h = uf(s3)Y mod N
ut™% = (8/s2)N mod N

Denote by s $3/s2 mod N. S then compute (d, k1, k2) such that d = ged(N, c—¢)
and k1N + ka(c — é) = d. If d # 1, then S successfully factorize N (since 0 <
¢,é < N). Hence, ki N +ko(c—¢) = 1. u = uF1NuF2(c=8) = (4(F1)(5)k2)N mod N.
Thus, y = u*1s*2 mod N. a.

E Proof Sketch of Theorem 3

It is obvious that if an adversary can solve RSA[n,e] problem, it can extract the
private key for all ID and can thus break CGHGN1-IBI and CGHGN2-IBI. We
first prove the pal-ib-imp security of CGHGN1-IBI.

Setup Dealer D gives (N, e, u) to simulator S and ask S to compute the
RSA[n,e] problem on u. Set mpk = (N, e).

Oracle Simulation

1. (ZO) Randomly generate a set of ID € {0, 1}*. Return {ID}.

2. (Hy Oracle) Assume Z makes qg, queries to the oracle. Let ID; be the
i'" query to the H; oracle. S chooses r € [1,...,qp,] and set H;(ID,) = u.
For other Hy query for ID;, S randomly generate x;,y; and set H;(ID;) =
g%iy¢ mod N2.

3. (KEO)When T query KEO for 1ID;, S return (z;,y;). If T query KEO for
ID,, & output failure and abort.

4. (CO) Suppose Hi(ID) = @, S random generate c, sy, S2, compute t =
Q°g* 5§ mod N2. Then return (t,c, s1,$2).

Witness Extraction Eventually, impersonator Z output the gauntlet ID
and act as cheating prover. If the gauntlet ID is not ID,., output failure and
abort. Do rewind simulation once and obtain two valid transcripts with same
commitment from Z, namely, (¢, ¢, s1,s2) and (¢, ¢, §1, $2).

t =u’(s2)® mod N
t = u®(s2)° mod N
u"¢ = (53/s2)° mod N
Denote by s §2/s2 mod N. S then compute (d, k1, ko) such that d = ged(e, c—¢)
and kye+ko(c—¢) =d. Since 0 < ¢,¢é < e, d = 1. Hence, kye+ka(c—¢) =1. u =
uFreyh2(c=0) = (y(F1)(s)k2)¢ mod N. Thus, y = u*s*2 mod N. S successfully
compute y € [0, ..., N — 1] such that y* = u mod N and win the game.

We proceed to prove the pa2-ib-imp security of CGHGN1-IBI. The proof is
similar except the simulation of the prover oracle which is outlined as follow.
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Oracle Simulation ZBPO: Suppose H;(ID;) = Q;, since the secret key for
ID; is known, S can stimulate perfectly. The only ID S cannot stimulate is ID,.,
but query to ZBPO for ID,. is not allowed in the pa2 Subgame.

We proceed to prove the 2s-ca-ib-imp security of CGHGN2-IBI, which implies
the 2s-aa-ib-imp security, pa2-ib-imp security and pal-ib-imp security.

Setup Dealer D gives (N, u) to simulator S and ask S to compute y such
that y¢ = u mod N. Set mpk = (N, e).

Oracle Simulation

1. (ZO) Randomly generate a set of ID € {0, 1}*. Return {ID}.

2. (H; Oracle) Assume Z makes g, queries to the oracle. Let ID; be the it?
query to the Hy oracle. § chooses r € [1,...,qm, ] and set Hy(ID,) = u. For
other H;y query for ID;, S randomly generate z;,y; and set Hy(ID;) = g®iys.

3. (KEO)When T query KEO for 1D;, S return (z;,y;). If T query KEO for
ID,, § output failure and abort.

4. (IBPO) S simulate ZBPO by backpatching the 0 oracle as follow. S ran-
domly generate t such that ¢ is different from all the previous output of the 6
oracle and send t as commitment. When challenge ¢ come, S randomly gen-
erate random generate s1,s2 and compute h = Q¢g*1s§ mod N?. Backpatch

0(h) = t.

Witness Extraction This is similar to CGHGN1-IBI and is thus omitted.O.

F Proof Sketch of Theorem 4

It is obvious that if an adversary can solve factorization problem, it can extract
the private key for all ID and can thus break the system. We proves the 2s-ca-
ib-imp security of GMMV-IBI which implies the 2s-aa-ib-imp, pa2-ib-imp and
pal-ib-imp security.

Setup The proof is by witness indistinguishability. Dealer D gives (N) to
simulator S. S generate a large prime e, two small number K, ¢. Set mpk =
(N,e, K, ?).

Oracle Simulation

1. (ZO) Randomly generate a set of ID € {0,1}*. Return {ID}.

2. (H; Oracle) For query for ID, § randomly generate x;,y; (fori=1,--- | K)
and set Hy(ID|]i) = x;%¢ + y; N mod N?2.

3. (KEO) When Z query KEO for ID, S return (z;,y;) (fori=1,--- | K).

4. (IZBPO) S knows all the secret keys and can thus simulate perfectly.

Witness Extraction Eventually, impersonator Z output the gauntlet 1D
and act as cheating prover. Do rewind simulation once (for any rounds, say,
round j). For visual comfort , we drop the subscript j here. Two valid transcripts
with same commitment from Z, namely, (¢,c, s1, $2), (¢, &, $1,$2) are obtained.



ID-based Cryptography from Composite Degree Residuosity 25

Here, ¢ and ¢ are binary vectors.

t = s7¢ H 22 mod N

cli]=1
t= 8% H ¢ mod N
eli=1
(51/51)% = ( H x;/ H z;)% mod N
fi=1  eli]=1

Since Z cannot distinguish which square root S is using, with probability 1/2,
s1/s1 # £([ 121 %i/l1¢j=1 @) mod N. S compute the ged of their difference
and successfully factorize N. a.

G Proof Sketch of Theorem 5

It is obvious that if an adversary can solve factorization problem, it can extract
the private key for all ID and can thus break the system. We proves the 2s-
ca-ib-imp security of KT-IBI which implies the 2s-aa-ib-imp, pa2-ib-imp and
pal-ib-imp security.
Setup The proof is by witness indistinguishability. Dealer D gives (N) to
simulator S. § generate o and two small number K, ¢. Set mpk = (N, o, K, £).
Oracle Simulation

1. (ZO) Randomly generate a set of ID € {0,1}*. Return {ID}.

2. (Hy Oracle) For query for ID, § randomly generate x;,y; (fori=1,--- | K)
and set Hy(ID||i) = (z; + o/x;) + y;N = Q; mod N2.

3. (KEO)When T query KEO for ID, S return (x;,y;) (fori=1,--- , K).

4. (ZBPO) S knows all the secret keys and can thus simulate perfectly.

Witness Extraction Eventually, impersonator Z output the gauntlet ID
and act as cheating prover. Do rewind simulation once (for any rounds, say,
round j). For visual comfort , we drop the subscript j here. Two valid transcripts
with same commitment from Z, namely, (¢, ¢, s), (¢, ¢, §) are obtained. Here, ¢
and ¢ are binary vectors.

t=s> H ) mod N
t= 812 H ) mod N
($1/51)° = ([] (@i —a/fai)/ H — a/z;))?> mod N
c[i]=1

Since 7 cannot distinguish which square root S is using, with probability 1/2,
s1/s1 # (L1 (@i — /@i) /115521 (¥ — /i) mod N. S compute the ged of
their difference and successfully factorize N. a.
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H ID-based ring signature and its blind version

We construct IBRS (identity-based ring signature) from Paillierl-IBI and its
blind identity-based ring signature (BIBRS) version. For details of the security
model, see [10]. (For completeness, the primitive and security model of IBRS is
shown in appendix J.)

Paillier1-IBRS scheme
MKg Same as the Paillier1-IBI, except picking another cryptographic hash func-
tion Hs : {0,1}" — Zy
UKg Same as the Paillier]1-1BI.
RingSign Let L = {ID;,IDs,...,ID;} be the set of the k identities. For some
message m € {0,1}*, a signer 7 uses his private key (z,,yr) to generate
a (1,k)-ring signature with respect to L as follows. Randomly pick r1 €g
Zn,ro €r Z3 and computes:
1. t = g™ re™ mod N2
2. Cry1 = HQ(L,?TL, t)
3. Fori=n+1,..,k1,...,m—1, pick s; €g Zn, s} €gr Z} and compute
¢is1 = Ho(L,m, Hy(ID;)% g% s, mod N?)
4. sp,a such that s;+alN = r; —x,cy, for some integer a and 0 < s < N.
5. 80 = g®roy~ ¢ mod N
6. The ring signature on m is (L, ¢1, $1, 5, 52, 5, ..., Sk, §},)-
RingVerify A public verifier checks a signature onm (L, ¢1, s1, 8, S2, 85, .., Sk, S},)
of a set of identities as follow.
1. Fori=1,...,k — 1, compute ¢;y1 = HQ(L,m,Hl(IDi)CigSngN)
2. Check whether ¢; = Ha(L, m, Hl(IDk)ckgsks%N) mod N2.
3. If yes, accept, otherwise, reject.

Remarks: Paillier ring signature can be used as a Zero-Knowledge proof-of-
membership identification scheme.

I Proof of Theorem 11

(Paillier1-BIBS, CGHGN1-BIBS) In Paillier1-BIBS, M = N while in CGHGNI1-
BIBS, M = e. Let S be IBP and obtain usk from UKg(ID, mpk, msk). Suppose S
gets 0; = (t;,51.;,52.;) and message m; where t; = H; (ID)H2(tim5) gs1. sé”] mod
N2 for j € [0,...,k]. Let (t;,ci,814,82,) for i = 0,...,k be the data exchanged
during the blind signature generation protocol.

It is sufficient to show that there exist blinding factors that maps each of the

(ti,ci, 81,4, 52,i) to (0, mj). Since we have
t; = Hl(ID)Cigsl-ris% mod N?
t;H,(ID)° = Hy(ID)“ " g* 53" mod N2
tiHl (ID)5QT3T4M = H1 (ID)Ci+6gsl’i+r3 (8277;7’4)M mod N2
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There always exists §, 3, 74 such that ¢;+3 = Ha(tj,m;) , s1,+r3 = s1; mod N
and sp;r4 = $2; mod N ( mod N? for CGHGNI1-BIBS here). Then, t; =
t;H;(ID)?g"7r4™M mod N2. As every data exchange during the signature gen-
eration protocol can lead to (¢, m;), even an infinitely powerful S cannot tell
which data exchange actually produce the signature with probability > 1/k. O.

J ID-based Ring Signature

An identity-based ring signature (IBRS) scheme is a four-tuple (MKg, UKg,
RingSign, RingVerify) specified as follow.

— MKg, UKg are defined before.

— (o) « RingSign(L, mpk, usk,m) is a PPT algorithm which, on input a list
of ID L, mpk, one usk corresponding to one of the ID in £ and message m,
generate a signature o.

— Accept/Reject < RingVerify(L, mpk, m, o) is a PPT algorithm which, on in-
put a list of ID L, signature o, message m, output Accept or Reject.

An IRBS should satisfy three properties, namely, completeness, soundness
and signer ambiguity.(Completeness.) A legitimate signature should be ac-
cepted. Formally, for all security parameter \; and VID € {0, 1}*, (mpk, msk) €
[MKg(1*+)], and usk € [UKg(ID, mpk, msk)], Accept « RingVerify({ID}, mpk, m, o)
with overwhelming probability if o < RingSign({ID}, mpk, usk, m).

(Soundness.) An invalid signature should be rejected. Formally, for all se-
curity parameter \; and VID € {0,1}*, (mpk, msk) € [MKg(1*+)], and usk €
[UKg(ID, mpk, msk)], Reject — RingVerify({ID}, mpk, m, o) with overwhelming
probability if o <+ RingSign({ID}, mpk, usk, m).

(Signer-ambiguity) We gives a formal definition of signer-ambiguity. An
IBRS scheme is unconditionally signer-ambiguous if any adversary(with infinite
computing power) cannot tell the identity of the actual signer with probability
greater than 1/r, where r is the cardinality of the ring.

Oracles: To model the attack scenario, we provide the adversary with the
following oracles.

— 70O, KEO defined before.
— Ring Signing Oracle: 0 +— RSO(L, mpk, usk, m). Upon inputs a list of IDL,
mpk and message m, output a signature o such that Accept < RingVerify(L, mpk, m, o).

Security notions Security of IBRS scheme against existential forgery under
adaptive chosen ID and message attack(ring-uf-cma) is defined in the following
game(Game RING-UF-CMA).

1. Setup Phase: Dealer D runs MKg(1%¢) to obtain (mpk, msk). mpk is then
given to adversary A.
2. Probe Phase: A can issue queries to oracles adaptively.
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3. Delivery Phase: At the end, A submit a signature on m for the an ID list L.
m and £ pair must not be submitted to RSO before and none of the ID in
L has been submitted to LEO . D outputs either Acceptor Reject

The advantage of adversary is defined as the probability that D outputs
Accept.

Definition 9. An IBRS scheme (MKg, UKg, RingSign, RingVerify) is ring-uf-
cma-secure if no PPT adversary has non-negligible advantage in Game RING-
UF-CMA.

K Proof Sketch of Theorem 6

One direction of the proof is easy: If ERZK does not hold, then there exists a
PPT algorithm which can compute usk from given mpk and ID with queries to
IBPO1p. To prove the opposite direction, assume there is a PPT algorithm A
which can impersonate ID¢ in Probe-2 Phase after completing all ZBPO queries
in Probe-1 Phase. Simulator S simulates A. It also simulates, in ROM with
backpatching if necessary, all of A’s queries to ZO, CO, KLEO. It also simulates all
non-ID¢g queries to ZBPO by backpatching usk. It simulates ZBPO1p, queries
by consulting the real-world ZBPO1p,, oracle. Then S rewinds A to the challenge
in Probe-2, to extract usk. a.



