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Abstract. A blind signature scheme is a protocol for obtaining a digital signature from a signer,
but the signer can neither learn the messages he/she sign nor the signatures the recipients obtain
afterwards. Partially blind signature is a variant such that part of the message contains pre-agreed
information (agreed by the signer and the signature requester) in unblinded form, while threshold
blind signature distributes the signing power to a group of signers such that a signature can only
be produced by interacting with a predetermined numbers of signers. In this paper, we propose
a threshold partially blind signature scheme from bilinear pairings and an ID-based partially
blind signature scheme, which are provably secure in the random oracle model. To the best of
authors’ knowledge, we give the first discussion on these two notions.

Key words: threshold partially blind signature, identity-based partially blind signature, bilinear
pairings

1 Introduction

A blind signature scheme is a protocol for obtaining a signature from a signer, but the
signer can neither learn the messages he/she sign nor the signatures the recipients obtain
afterwards. Blind signatures scheme is one of the examples of cryptographic schemes that
have been employed extensively in privacy oriented e-services such as untraceable electronic
cash (e.g. [8]), unlinkable credentials (e.g. [7]), anonymous multiple choice electronic voting
(e.g. [16]), oblivious keyword search (e.g. [21]), anonymous fingerprinting (e.g. [34]) or even
in steganographic protocol (e.g. [18]).

The basic idea of most existing blind signature schemes is as follows. The requester (of
the signature) randomly chooses some random factors and embeds them to the message to be
signed. The random factors are kept in secret so the signer cannot recover the message. Using
the blinded signature returned by the signer, the requester can remove the random factors
introduced and get a valid signature. However, the property that requesters can ask the signer
to blindly sign any message is undesirable in some situations. Consider using blind signature
to design a e-cash scheme, expiry date information should be embedded in the e-cash issued, or
there may be unlimited growth of the bank’s database for double-spending checking. Besides,
the possibility of including embedded information may provide a more convenient way for
inscribing the face value of the e-cash to the blind signature. Hence it is more flexible if the
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message to be signed is not “completely blind” and is able to embed some agreed information,
which motivated the introduction of partially blind signature [1].

Recently, some pairing-based blind signature schemes were proposed, such as threshold
blind signature in [31] and partially blind signature in [41]. Compared with previous blind
signature schemes based on other difficult problems, their work have some nice properties like
short signature size. In this paper, we propose two improved partially blind signature schemes
from bilinear pairings.

1.1 Related Work

Blind signature schemes were classified into four main classes by [15], namely, hidden, weak
blind, interactive blind and strong blind. In another criterion [14], hidden signature was
further divided into message hidden signatures and parameter hidden signatures. Several
hidden and weak blind signature schemes had been discussed in [14, 15] as well. Pointcheval
and Stern presented the formal definition and the security notion for blind signature in
[23]. Unfortunately, [26] showed an inherent weakness in their result and presented a novel
parallel one-more signature forgery attack. A blind signature scheme using bilinear pairings
was proposed in [3].

Some schemes were devised to solve the perfect crime resulting from the unconditional
anonymity provided by the blind signature [32], such as fair blind signature in [30], indirect
discourse proofs in [12] and “magic ink” signature in [35]. Partially blind signature was
introduced in [1], together with a RSA-based scheme. This notion was formalized in [2],
a discrete-logarithm based scheme that is provably secure was also proposed.

Another line of research efforts were done in combining the properties of other classes
of cryptographic schemes into blind signatures. In proxy blind signature ([39] and [42]), the
signer delegates his/her signing power to a proxy, who blindly signs a message on behalf of
the original signer. In [10] and [11], forward-secure blind signature scheme were proposed to
address key exposure problem, in which all previously generated signatures are still considered
to be valid even the secret key is compromised. They give an extra level of security to normal
blind signature. Unfortunately, [11] was shown to be insecure by [19]. Group oriented blind
signatures have been studied as well. Blind threshold signature that enables any t out of n
legitimate signers to give a blind signature, was considered in [17] and [31]. Blind threshold-
ring signature providing signer-ambiguity was considered in [6]. Blind multisignature was
proposed in [9] and group blind signature was proposed in [20].

As an alternative to conventional public key infrastructure (PKI), Shamir introduced
identity-based (ID-based) signature schemes [29] and the design of ID-based schemes have
attracted a lot of attention recently (e.g. [9, 35–37]). The distinguishing property of ID-based
cryptography is that a user’s public key can be any string, such as an email address, that can
identify the user. This removes the need for users to look up the signer’s public key before the
verification of signature. Utilizing bilinear pairings, an ID-based blind signature scheme was
proposed by Zhang and Kim in [37] and ID-based blind signcryption was proposed in [36].

Apart from blind signature schemes, there are other primitives that provide anonymity
by cryptographic means. An example is blind auditable membership proofs [25], in which the
problem of achieving anonymity and audibility at the same time is addressed. In verifiably
encrypted signature (for examples, [4] and [41]), the signature is encrypted so that any
recipient cannot get the signature, yet the recipient is convinced that its decryption gives
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a valid signature on a given message and there exists a trusted third party that is able to
decrypt the encrypted signature.

1.2 Our Contribution

We propose two new partially blind signature schemes. The first one is a PKI-based partially
blind signature scheme from bilinear pairings, which is more efficient for the signature requesters’
side than the existing scheme [41]. Moreover, we discuss how to extend the scheme into
a threshold partially blind signature scheme. The second proposed scheme is an ID-based
partially blind signature scheme. To the best of authors’ knowledge, our schemes are the first
of their kind.

1.3 Organization

The rest of the paper is organized as follows. The next section contains some preliminaries
about the framework of (ID-based) partially blind signature schemes, bilinear pairing as well
as the Gap Diffie-Hellman group. Formal definitions of security describing the adversary’s
capabilities are presented in Section 3. In Section 4, a PKI-based partially blind signature
scheme and an ID-based partially blind signature scheme are proposed. The security and
efficiency analysis of our schemes are given in Section 5. Finally, Section 6 concludes our
paper.

2 Preliminaries

2.1 Framework of Partially Blind Signature

A partially blind signature scheme consists of four algorithms: Setup, KeyGen, Issue, and
Verify. Issue is an interactive protocol between the signer and the requester which consists
of four sub-algorithms: Agree, Blind, Sign and Unblind.

– Setup: On an unary string input 1k where k is a security parameter, it produces the public
parameters params, which include a description of a finite signature space, a description
of a finite message space together with a description of a finite agreed information space.

– KeyGen: On a random string input x, it outputs the signer’s secret signing key sk and its
corresponding public verification key pk.

– Issue: Suppose the requester wants a message m to be signed, after the execution of four
sub-algorithms, a signature σ will be produced. The agreed information c will be produced
too if it is not given.
• Agree: If the negotiated information c is not given as an input, the requester and the

signer interacts and finally come up with the agreed information c.
• Blind: On a random string r, a message m and agreed information c as the input, it

outputs a string h to be signed by the signer, h is sent to the signer by this algorithm.
• Sign: On a string h and the signer’s private signing key sk as the input, it outputs a

blind signature σ̄ to be unblinded by the requester, σ̄ is sent to the requester by this
algorithm.

• Unblind: On a signature σ̄ and the previous used random string r, it outputs the
unblinded signature σ.
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– Verify: On an unblinded signature σ, a message m, a negotiated information c and the
signer’s public verification key pk as the input, it outputs > for “true” or ⊥ for “false”,
depending on whether σ is a valid signature signed by the signer with the corresponding
private key pk on a message m and agreed information c.

These algorithms must satisfy the standard consistency constraint of the partially blind
signature, i.e. if (σ, c) = Issue(m, r, sk), Verify(pk, m, c, σ) = > must hold. Security
requirements will be described in Section 3.

2.2 Framework of ID-based Partially Blind Signature

The framework of ID-based partially blind signature schemes is similar to that of its PKI
counterpart. The differences are described below.

– Setup: This algorithm is usually executed by the private key generator (PKG). On an
unary string input 1k where k is a security parameter, it produces the public parameters
params, which include a description of a finite signature space, a description of a finite
message space together with a description of a finite agreed information space. The master
secret s is the output too, which is kept secret.

– KeyGen: On an arbitrary string input ID , it computes the private signing key SID with the
help of master secret s, and the corresponding public verification key QID , with respect
to params.

2.3 Bilinear Pairing and Gap Diffie-Hellman Groups

Bilinear pairing is an important cryptographic primitive (see [3, 4, 9, 10, 31, 35–41]). Let (G1,+)
and (G2, ·) be two cyclic groups of prime order q. The bilinear pairing is given as ê : G1×G1 →
G2, which satisfies the following properties:

1. Bilinearity: For all P,Q,R ∈ G1, ê(P + Q,R) = ê(P,R)ê(Q,R), and ê(P,Q + R) =
ê(P,Q)ê(P,R).

2. Non-degeneracy: There exists P,Q ∈ G1 such that ê(P,Q) 6= 1.
3. Computability: There exists an efficient algorithm to compute ê(P,Q) ∀P,Q ∈ G1.

Definition 1. Given a generator P of a group G1 and a 3-tuple (aP, bP, cP ), the Decisional
Diffie-Hellman (DDH) problem is to decide if c = ab.

Definition 2. Given a generator P of a group G1, (P, aP, bP, cP ) is defined as a valid Diffie-
Hellman tuple if c = ab.

Definition 3. Given a generator P of a group G1 and a 2-tuple (aP, bP ), the Computational
Diffie-Hellman (CDH) problem is to compute abP .

Definition 4. If G1 is a group such that DDH problem can be solved in polynomial time
but no probabilistic algorithm can solve CDH problem with non-negligible advantage within
polynomial time, then we call G1 a Gap Diffie-Hellman (GDH) group.

We assume the existence of a bilinear map ê : G1 × G1 → G2 that one can solve DDH
problem in polynomial time.
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2.4 Notations

The definitions of G1, G2 and ê(·, ·) will be used throughout the rest of the paper. Besides,
we let H(·) and H0(·) be two cryptographic hash functions where H0 : {0, 1}∗ → Z∗

q and
H : {0, 1}∗ → G1.

3 Formal Security Model

3.1 Unforgeability of PKI-based Partially Blind Signature

Signature non-repudiation of partially blind signature is formally defined in terms of the
existential unforgeability of partially blind signature under adaptive chosen-message attack
(EUF-PB-CMA2) game played between a challenger C and an adversary A. We adopt a
similar notion as [2].

EUF-PB-CMA2 Game:
Setup: The challenger C takes a security parameter k and runs the Setup to generate

public parameters param. C sends param to A.
Attack: The adversary A can perform a polynomially bounded number of the following

types of queries in an adaptive manner (i.e. each query may depend on the responses to the
previous queries).

– Hash functions queries: A can ask for the value of the hash functions H(·) and H0(·) in
our schemes) for the requested input.

– Issue: A chooses a public key pk, a plaintext m and the negotiated information c. C issues
the signature by computing σ = Issue (m, c, sk) and sends σ to A.

Forgery: The adversary A outputs (σ, pk, m, c) where (pk, m, c) did not appear in any
Issue query in the Attack phase. It wins the game if the response of the Verify on (pk, m, c, σ)
is not equal to ⊥.

The advantage of A is defined as the probability that it wins.

Definition 5. An partially blind scheme is said to be existential unforgeable against adaptive
chosen-message attacks property if no adversary has a non-negligible advantage in the EUF-
PB-CMA2 game.

3.2 Unforgeability of ID-based Partially Blind Signature

Signature non-repudiation of an ID-based partially blind signature scheme is formally defined
in terms of the existential unforgeability of ID-based partially blind signature under adaptive
chosen-message-and-identity attack (EUF-IDPB-CMIA2) game played between a challenger C
and an adversary A. We extend the notion in [2] to the ID-based settings.

EUF-IDPB-CMIA2 Game:
Setup: The challenger C takes a security parameter k and runs the Setup to generate

public parameters param and also the master secret key s. C sends param to A.
Attack: The adversary A can perform a polynomially bounded number of the following

types of queries in an adaptive manner (i.e. each query may depend on the responses to the
previous queries).
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– Hash functions queries: A can ask for the value of the hash functions (H(·) and H0(·) in
our schemes) for the requested input.

– KeyGen: A chooses an identity ID . C computes Extract(ID) = SID and sends the result
to A. The corresponding public verification key QID can be calculated by using the hash
function H(·).

– Issue: A chooses an identity ID , a plaintext m and the negotiated information c. C issues
the signature by computing σ = Issue (m, c, SID) and sends σ to A.

Forgery: The adversary A outputs (σ, ID ,m, c) where (ID ,m, c) and ID were not used in
any of the Issue and Extract queries, respectively, in the Attack phase. The adversary wins
the game if the response of the Verify on (ID ,m, c, σ) is not equal to ⊥.

The advantage of A is defined as the probability that it wins.

Definition 6. An ID-based partially blind scheme is said to be existential unforgeable against
adaptive chosen-message-and-identity attacks if no adversary has a non-negligible advantage
in the EUF-IDPB-CMIA2 game.

3.3 Partial Blindness

In the normal sense of blindness, the signer can learn no information on the message to be
signed. If the signer can link the signature to the instance of the signing protocol, then the
blindness is lost.

In partially blind signature, a piece of information must be agreed by both the signer and
the requester. If the signer embed an unique piece of the agreed information c in each message
to be signed, it is easy to see that the signer can link the signature to the instance of the
signing protocol by using the agreed information as an index, and hence the blindness property
will be lost. For the scheme to be practical, the cardinality of the finite agreed information
space should be small compared with the anticipated number of total Issue requests. This
weakness is inherent to any partial blind signature schemes as it is the price for embedding
agreed information to the message to be signed.

So the normal sense of blindness is not applicable in our situation. The extended notion
of partial blindness is defined in terms of the Unlinkability Game (UL) played between a
challenger C and an adversary A. Again, we adopt a similar notion as [2].

Unlinkability Game:
Setup: The challenger C takes a security parameter k and runs the Setup to generate

public parameters param (and also the master secret key s in ID-based case). C sends param
to A.

Preparation: The adversary A chooses two distinct messages m0 and m1, together with
the agreed information c. For the ID-based case, the adversary A also chooses an identity ID
and sends them to C.

Challenge: The challenger C chooses a random bit b secretly, and then ask the adversary
A to partially sign on the message mb with agreed information c and m1−b with the same
piece of agreed information c. After C unblinds both signatures, it presents the signature of
mb to A.

Response: The adversary A returns the guess b′ and wins if b′ = b.
The advantage of A is defined as Adv(A) = |2P [b′ = b] − 1| where P [b′ = b] denotes the

probability that b′ = b.
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Definition 7. An (ID-based) partially blind scheme is said to have the perfect partial blindness
property if any adversary has zero advantage in the UL game.

4 Our Proposed Schemes

4.1 PKI-based Partially Blind Signature

Setup: The system parameters are params = {G1, G2, ê(·, ·), q, P,H(·),H0(·)}.

KeyGen: The signer randomly selects s ∈R Z∗
q and computes Ppub = sP as his/her public

verification key. The signing key is s and is kept in secret.

Issue: Suppose the requester now wants to get the signature of message m and the requester
has already negotiated with the signer with public key Ppub on the agreed information c to be
attached to the message. The interaction between the requester and the signer is as follows:

– Sign (Part 1): The signer randomly chooses r ∈R Z∗
q , computes Z = H(c), Y = rZ and

sends Y to the requester. Notice that the Sign algorithm has not finished yet.
– Blind: The requester randomly picks α ∈R Z∗

q and β ∈R Z∗
q , sends h = α−1H0(m,Y ′) + β

to the signer and computes Y ′ = αY + αβH(c).
– Sign (Part 2): The signer computes S = (r +h)sZ and sends it to the requester. Now the

Sign algorithm has been finished.
– Unblind: The requester unblinds the received S by S′ = αS.

Finally (Y ′, S′,m, c) is the partially blind signature of message m and agreed information c.

Verify: Any verifier (including the signature requester) can verify the validity of the partially
blind signature by checking whether ê(S′, P ) = ê(Y ′ +H0(m,Y ′)H(c), Ppub) is true. If so, the
partially blind signature is accepted as valid.

4.2 Threshold Partially Blind Signature

To extend our proposed partially blind signature scheme into the threshold version, we need
the help of the following techniques in threshold cryptography.

Polynomial Interpolation Secret Sharing [28]: Many threshold schemes are based on Shamir’s
secret sharing, which is derived from the concept of Lagrange polynomial interpolation.

For a (t, n) instantiation (i.e. any t out of n pieces of share can be used to reconstruct
the secret, but no one can get the secret with the knowledge of only t− 1 of them), a trusted
dealer first selects t random coefficients a0, a1, · · · , at−1 from Zq where a0 is the master secret
to be shared. Then n different public points xij ∈ Z∗

q are chosen (where 1 ≤ j ≤ n), one for
each participant. Let f be a polynomial of degree t− 1 and f(x) = a0 + a1x + · · ·+ at−1x

t−1,
the share to be distributed to the participant with public point xij assigned is f(xij ).

When t participants decided to reconstruct the secret, they can do so by recovering the
polynomial. With the knowledge of t points (xij , f(xij ) = sij ) on the curve, the coefficients
(a0, · · · , at) of f are uniquely determined and can be computed by the Lagrange interpolation
of these t points by using the below formula.

f(x) =
t∑

j=1

sij

∏
1≤l≤t,l 6=j

x− xil

xij − xil

.
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Thus the secret a0 = f(0) can be obtained by
∑t

j=1 bjsij where bj =
∏

1≤l≤t,l 6=j
xil

xil
−xij

.

Joint Random Secret Sharing (JRSS) [22]: In this protocol, each player can collectively
generate a random secret and each of them can receive a (t, n)-secret sharing of this random
value. Basically, this can be achieved by asking each participant to share his/her own random
secret with the remaining participants by a (t, n)-secret sharing, and the final random secret
shared by all these players is the sum of the random value selected by each participant.

Multiplication of Two Shared Secrets [13]: Two values shared by the (t, n)-secret sharing can
be multiplied without revealing any information about the shares (except the wanted result
of their products). The principle behind is as follows. Suppose there are two polynomials of
degree t−1 for the (t, n)-secret sharing of value r and s respectively, their multiplications gives
another polynomial of degree 2t− 2, which can be used for a (2t− 1, n)-secret sharing of the
products of r and s. However, this “newly generated” polynomial is not randomly generated
anymore. To avoid leaking any information about r and s, we need to “re-randomize” it by
using joint random secret sharing of a zero-value (such that the polynomial is randomized
but the value to be shared remains unchanged).

Now we describe the (2t − 1, n) threshold extension of our scheme. Firstly, the shares si of
the secret key s is generated by a (t, n)-JRSS. For signing, any 2t− 1 of the n signers jointly
execute a (t, 2t− 1)-JRSS to generate the random value r, and compute the value of Y = rZ
where Z = H(c). The shares ri of r are distributed to the participating 2t− 1 signers. Each
of them executes a (2t − 1, 2t − 1)-JRSS of a zero-value to get the shares ci. After received
the value of h from the requester, each signer increments his/her share ri by r′i = ri + h, the
value of (r+h)s can be recovered by these 2t−1 signers, by interpolating the value of r′isi +ci

from each of them. Hence these signers can compute the blinded signature S = (r + h)sZ to
be sent to the requester, by the point scalar multiplication of their shares with Z.

4.3 ID-based Partially Blind Signature

Setup: The PKG randomly chooses s ∈R Z∗
q . The master secret key is s and the system

parameters are params = {G1, G2, ê(·, ·), q, P, Ppub,H(·),H0(·)}.
KeyGen: The signer with identity ID ∈ {0, 1}∗ submits ID to PKG. PKG sets the signer’s
public key QID to be H(ID) ∈ G1, computes the signer’s private signing key SID by SID =
sQID Then PKG sends the private signing key to the signer.

Issue: Suppose the requester now wants to get the signature of message m and the requester
has already negotiated with the signer of identity ID on the negotiated information c to be
attached to the message. The interaction between the requester and the signer is as follows:

– Sign (Part 1): The signer randomly chooses r ∈R Z∗
q , computes C = rP , Y = rQID and

sends (Y, C) to the requester. Notice that the Sign algorithm has not finished yet.
– Blind: The requester randomly picks α, β and γ ∈R Z∗

q , computes Y ′ = αY + αβQID −
γH(c), C ′ = αC + γPpub, h = α−1H0(m,Y ′) + β and sends h to the signer.

– Sign (Part 2): The signer computes S = (r +h)SID + rH(c) and sends it to the requester.
Now the Sign algorithm has been finished.

– Unblind: The requester unblinds the received S by S′ = αS.

Finally (Y ′, C ′, S′,m, c) is the partially blind signature of the message m and the agreed
information c.
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Verify: Any verifier (including the signature requester) can verify the validity of the ID-based
partially blind signature by verifying if ê(S′, P ) = ê(Y ′ + H0(m,Y ′)QID , Ppub)ê(H(c), C ′)
holds. If so, the partially blind signature is accepted as valid.

5 Analysis of the Proposed Schemes

5.1 Correctness Analysis

For any valid signature produced by our PKI-based scheme:

ê(S′, P ) = ê(αS, P )
= ê((α(r + h)sZ, P )
= ê((αr + αh)Z,Ppub)
= ê((αr + H0(m,Y ′) + αβ)Z,Ppub)
= ê((αr + αβ)Z + H0(m, Y ′)Z,Ppub)
= ê(αY + αβH(c) + H0(m,Y ′)H(c), Ppub)
= ê(Y ′ + H0(m,Y ′)H(c), Ppub)

Similarly, for our PKI-based partially blind signature scheme:

ê(S′, P ) = ê(αS, P )
= ê((αr + αh)SID + αrH(c), P )
= ê((αr + H0(m,Y ′) + αβ)SID , P )ê(H(c), αrP )
= ê((αr + H0(m,Y ′) + αβ)QID , Ppub)ê(H(c), C ′ − γPpub)
= ê((αr + αβ)QID + H0(m,Y ′)QID , Ppub)ê(−γH(c), Ppub)ê(H(c), C ′)
= ê(αY + αβQID − γH(c) + H0(m,Y ′)QID , Ppub)ê(H(c), C ′)
= ê(Y ′ + H0(m,Y ′)QID , Ppub)ê(H(c), C ′)

5.2 Efficiency Analysis

We consider the costly operations which include point addition on G1 (G1 Add), point scalar
multiplication on G1 (G1 Mul), multiplication in Zq (Zq Mul), division in Zq (Zq Div), hashing
into the group (MapToPoint, the hash operation in BLS short signature scheme [5]) and
pairing operation (Pairing). Table 1 shows a summary of the efficiency of our proposed schemes
and also the revised scheme in [41].

The signature requesters usually posses less computational power than the signature issuer.
Comparing our proposed schemes with the scheme in [41] (PKI-based but not ID-based), our
PKI-based scheme is more efficient on the requesters’ side, while our ID-based scheme only
requires three more point scalar multiplications and one more inversion in Zq.

5.3 Security Analysis

Theorem 1 In the random oracle model (the hash functions are modeled as random oracles),
if there is an algorithm A for an adaptively chosen message attack to our scheme, with an
advantage ≥ ε = 10qI(qS + 1)(qS + qH)/2k within a time span t for a security parameter k;
and asking at most qI H queries, at most qH H0 queries, qS Issue queries and qV Verify
queries. Then, there exists an algorithm C that can solve the CDH problem in expected time
≤ 120686qHqI2kt/ε(2k − 1).
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Efficiency

Algorithms G1 Add G1 Mul Zq Mul Zq Div MapToPoint Pairing

Existing Partially Blind Signature [41]

Issue(Signer) 0 1 0 1 0 0

Issue(Requester) 3 3 0 0 1 0

Verify 1 1 0 0 1 2

Proposed PKI-based Partially Blind Signature

Issue(Signer) 0 2 1 0 1 0

Issue(Requester) 1 3 0 1 1 0

Verify 1 1 0 0 1 2

Proposed ID-based Partially Blind Signature

Issue(Signer) 1 4 0 0 1 0

Issue(Requester) 3 6 0 1 1 0

Verify 1 1 0 0 1 3
Table 1. Efficiency of our Proposed Schemes

Proof. See Appendix A. ut

Theorem 2 Our partially PKI-based blind signature scheme satisfies the partial blindness
property in information theoretic sense.

Proof. See Appendix A. ut

Theorem 3 In the random oracle model (the hash functions are modeled as random oracles),
if there is an algorithm A for an adaptively chosen message and ID attack to our scheme, with
an advantage ≥ ε = 10qI(qS + 1)(qS + qH)/2k within a time span t for a security parameter
k; and asking at most qI identity hashing queries, at most qE key extraction queries, at most
qH H0 queries, qS Issue queries and qV Verify queries. Then, there exists an algorithm C
that can solve the CDH problem in expected time ≤ 120686qHqI2kt/ε(2k − 1).

Proof. The proof is similar to that of Theorem 1. See Appendix A. ut

Theorem 4 Our ID-based partially blind signature scheme satisfies the partial blindness
property in information theoretic sense.

Proof. The proof is similar to that of Theorem 2. See Appendix A. ut

5.4 Changing Agreed Information Attack

Changing agreed information attack is the attack in which the requester, after obtained the
signature issued by the signer, can subsequently change the agreed information c to another
one c′ on his/her wish, yet the signature remains valid. In both of our schemes, since r (in
ID-based scheme) and s (in PKI-based scheme) are unknown to the requester, changing H(c)
to H(c′) involves solving the CDH problem, which is computationally infeasible.
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6 Conclusion

In this paper, we propose two improved partially blind signature schemes. One is a PKI-
based threshold partially blind signature scheme while another one is an ID-based partially
blind signature scheme. To the best of authors’ knowledge, our schemes are the first of their
kind. The proposed schemes are provably secure in the random oracle model. Future research
directions include finding a formal proof of security against the parallel one-more signature
forgery attack.
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Appendix A

Proof of Theorem 1
We assume that the challenger C receives a random instance (P, aP, bP ) of the CDH problem
and has to compute the value of abP . C will run A as a subroutine and act as A’s challenger
in the EUF-PB-CMA2 game. C simulates the role of challenger as described below.

Public key and private key of the signer: C gives A the system parameters with its public key
Ppub = aP . Note that a is unknown to C. This value simulates the private key value in the
game.

H0 requests: C will answer each H0 requests randomly. Similar to the proof in Theorem 1, C
keeps a list L1 of the answers with the corresponding queries to maintain the consistency and
to avoid collision.

H requests: Similarly, A keeps a list L2 for answering H request. The only exception is that
C has to randomly choose one of the H queries from A, say the i-th query, and answers
H(ci) = bP for this query. Since bP is a value in a random instance of the CDH problem, it
does not affect the randomness of the hash function H.

Issue requests: For an Issue request on (m, c), C first randomly generates a value yj , then
simulates the value of H0(m, Y ′) and H(c) in the way as mentioned above. (Y ′, S′,m, c) will
be used as the answer, where Y ′ = yjP −H0(m,Y ′)H(c) and S′ = yj(aP ).

Verify requests: For Verify request on (Ppub,m, c), C first checks the list L1 and rejects the
signature if at least one of the tuple (m,Y ′) and (c) is missing. Then C just checks whether
ê(S′, P ) = ê(Y ′ + H0(m,Y ′)H(c), aP ) and returns > or ⊥ accordingly.

It follows from the forking lemma [24] that if A is a sufficiently efficient forger in the above
interaction, then we can construct a Las Vegas machine A′ that outputs two signed messages
(h, Y, S, m, c) and (h′, Y ′, S′,m, c) with h 6= h′.

Finally, to solve the CDHP given the machine A′, we construct a machine C′ as follows.

1. C′ runsA′ to obtain two distinct forgeries, suppose they are (h, Y, S, m, c) and (h′, Y ′, S′,m, c).
2. C′ derives the value of abP by (h − h′)−1(S − S′), as both of (P, aP, Y + hbP, S) and

(P, aP, Y ′ + h′bP, S′) are valid Diffie-Hellman tuples.

Now we consider the probability for C to successfully solve the given CDH problem. Since
H is a random oracle, given that A have forged a valid signature of a certain message with
agreed information ci attached, the probability that A knows the value of H(c) without
making any H query of c is (2k − 1)/2k. Moreover, since the index i of ci is independently
and randomly chosen, the probability of A to forge the signature of a certain message with
negotiated information ci attached is at least 1/qI . Take both probabilities into account, C’s
probability of success is (2k − 1)/qI2k.

Based on the bound from the forking lemma [24] and the above probability of success, if
A succeeds in time ≤ t with probability ≥ ε = 10qI(qS +1)(qS + qH)/2k, then C can solve the
CDH problem in expected time ≤ 120686qHqI2kt/ε(2k − 1). ut

Proof of Theorem 2
Considering the Issue algorithm of our scheme, we can prove that the signer can learn no
information on the message to be signed similar to the proof of theorem 2.
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Given a valid signature (Y ′, S′,m, c) and any view (Y, h, S), consider the following equations:

S′ = αS (1)
h = (α−1H0(m,Y ′) + β) (mod q) (2)

Y ′ = αY + αβH(c) (3)

We know that we must be able to find an unique α′ ∈ Z∗
q such that Eq (1) holds.

Moreover, we can get an unique β′ ∈ Z∗
q while the value is determined by the equation

β′ = h − (α′) −1 H0(m,Y ′).
Since (Y ′, S′,m, c) is a valid signature, we have ê(S′, P ) = ê(Y ′ + H0(m,Y ′)H(c), Ppub),

i.e. ê(S′, P ) = ê(Y ′, Ppub)ê(H0(m,Y ′)H(c), Ppub), this result will be useful shortly afterward.
Besides, notice that we can always find r such that rH(c) = Y and we must have S =
(r + h)sH(c) for any valid view of the protocol signing on a certain message with agreed
information c.

Now we consider whether Eq (3) holds for α′ and β′ we have found:

ê(α′Y + α′β′H(c), Ppub)
= ê(α′Y + α′(h− (α′)−1H0(m,Y ′))H(c), Ppub)
= ê(α′rH(c) + α′hH(c), Ppub)ê(H0(m, Y ′)H(c), Ppub)−1

= ê(α′(r + h)H(c), Ppub)ê(H0(m,Y ′)H(c), Ppub)−1

= ê(α′(r + h)H(c), Ppub)ê(S′, P )−1ê(Y ′, Ppub)
= ê(α′(r + h)sH(c), P )ê(S′, P )−1ê(Y ′, Ppub)
= ê(α′S, P )ê(S′, P )−1ê(Y ′, Ppub)
= ê(S′, P )ê(S′, P )−1ê(Y ′, Ppub)
= ê(Y ′, Ppub)

By the non-degeneracy of bilinear pairing, we know that

ê(Y ′, Ppub) = ê(α′Y + α′β′H(c), Ppub) ⇔ Y ′ = α′Y + α′β′H(c)

Hence the blind factors α, β always exist which lead to the same relation defined in Issue,
so any view of the Issue protocol is unlinkable to any valid signature.

Consider again the Unlinkability Game, the signature of mb is associated with the instance
of the signing protocol that produces the signature of mb and that of m1−b with equal
probability since we can always find the corresponding blind factors α and β, we therefore
claim that the advantage of A in the game is 0. ut
Proof of Theorem 3
We assume that the challenger C receives a random instance (P, aP, bP ) of the CDH problem
and has to compute abP . C will run A as a subroutine and act as A’s challenger in the
EUF-IDPB-CMA2 game. We will describe how C simulates the role of the challenger below,
with the assumptions that A will ask for H(ID) before ID is used in any Issue, Verify and
Extract queries; and A will not ask for Extract(ID) again if the query Extract(ID) has
been already issued before.

Public key and private key request: C gives A the system parameters Ppub = aP . Note that a
is unknown to C. This value simulates the master key value for the PKG in the game.
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H0 requests: C will answer H0 requests randomly, but to maintain the consistency and to
avoid collision, C keeps a list L1 to store the answers used. The same answer from the list
L1 will be given if the request has been asked before. Otherwise, a new value that does not
appear in the list will be generated as the answer to A, this new value and the corresponding
request will then be stored in the list L1 for later queries of the same request.

H requests and Extract requests: Similarly, when A asks queries on the hash values of
identities, C checks another list L2, If an entry for the query is found, the same answer will be
given to A; otherwise, a value ci from F∗q will be randomly generated and ciP will be used as
the answer, the query and the answer will then be stored in the list. Note that the associated
private key is ciaP which C knows how to compute.

The only exception is that C has to randomly choose one of the H queries from A, say the
i-th query, and answers H(ID i) = bP for this query. Since bP is a value in a random instance
of the CDH problem, it does not affect the randomness of the hash function H. Since both a
and b are unknown to C, an Extact request on this identity will make C fails.

Issue requests: For an Issue request on (IDj ,m, c), C first randomly generates two values
yj and zj , then simulates the value of H0(m,Y ′) and H(c) in the way as mentioned above.
(Y ′, C ′, S′,m, c) will be used as the answer, where Y ′ = yjP −H0(m, Y ′)H0(c)H(IDj), C ′ =
zjP and S′ = yj(aP ) + zjH(c).

Verify requests: For Verify request on (IDj ,m, c), C first checks the lists L1, L2 and rejects
the signature if at least one of the tuple (m,Y ′) and (c) is not found in the corresponding
list. Assume the answer of the H0 query of (m, Y ′) is hm and that of (c) is Hc, C just checks
whether ê(S′, P ) = ê(Y ′ + hmH(IDj), aP )ê(Hc, C

′) and returns > or ⊥ accordingly.
We coalesce the signing identity ID i and message m into a “generalized” forged message

(ID i,m) so as to hide the ID-based aspect of the EUF-IDPB-CMA2 attacks, and simulate
the setting of an identity-less adaptive-CMA existential forgery for which the forking lemma
is proven. Assume the adversary A make a forged signature ((ID i,m), c, h, Y, C, S), it follows
from the forking lemma [24] that if A is a sufficiently efficient forger in the above interaction,
then we can construct a Las Vegas machineA′ that outputs two forgeries ((ID i,m), c, h, Y, C, S)
and ((ID i,m), c, h′, Y ′, C ′, S′) with h 6= h′.

Finally, to solve the CDH problem given the machine A′, we construct a machine C’ as
follows.

1. C′ runs A′ to obtain two distinct and valid forgeries:
((ID i,m), c, h, Y, C, S) and ((ID i,m), c, h′, Y ′, C ′, S′).

2. C′ derives the value of abP by (h− h′)−1(S − S′), as both of (P, aP, Y + hbP, S − rH(c))
and (P, aP, Y ′ + h′bP, S′ − rH(c)) are valid Diffie-Hellman tuples.

Now we consider the probability for C to successfully solve the given CDH problem. Since
H is a random oracle, given that A have forged a valid signature of ID i, the probability that
A knows the value of H(ID i) without making any H query of ID i is (2k − 1)/2k. Moreover,
since the index i of ID i is independently and randomly chosen, the probability of A to forge
the signature of ID i is at least 1/qI . Take both probabilities into account, C’s probability of
success is (2k − 1)/qI2k.

Based on the bound from the forking lemma [24] and the above probability of success, if
A succeeds in time ≤ t with probability ≥ ε = 10qI(qS +1)(qS + qH)/2k, then C can solve the
CDH problem in expected time ≤ 120686qHqI2kt/ε(2k − 1). ut
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Proof of Theorem 4
Considering the Issue algorithm of our scheme, we can prove that the signer can learn no
information on the message to be signed similar to the proof of blindness property in [37].

Given a signature (Y ′, C ′, S′,m, c) and any view (Y, C, S, h), consider the following equations:

S′ = αS (4)
C ′ = αC + γPpub (5)

h = (α−1H0(m,Y ′) + β) (mod q) (6)
Y ′ = αY + αβQID − γH(c) (7)

For any valid signature and any view, we know that we must be able to find an unique
α′ ∈ Z∗

q such that Eq (4) holds. Moreover, we can get an unique β′ ∈ Z∗
q and an unique

γ′ ∈ Z∗
q while the values are determined by the equations β′ = h − (α′) −1 H0(m,Y ′) and

γ′ Ppub = C ′ − α C.
Since (Y ′, C ′, S′,m, c) is a valid signature, ê(S′, P ) = ê(Y ′+H0(m,Y ′)QID , Ppub)ê(H(c), C ′)

holds, which gives us an useful result ê(S′, P ) = ê(Y ′, Ppub)ê(H0(m,Y ′)QID , Ppub)ê(H(c), C ′)
that will be used below. Besides, notice that we can always find r such that rQID = Y and
we must have S = (r + h)SID + rH(c) for any valid view of the protocol signing on a certain
message with agreed information c.

Now we consider whether Eq (7) holds for α′ and β′ we have found:

ê(α′Y + α′β′QID − γ′H(c), Ppub)
= ê(α′Y + α′(h− (α′)−1H0(m,Y ′))QID − γ′H(c), Ppub)
= ê(α′rQID + α′hQID − γ′H(c), Ppub)ê(H0(m,Y ′)QID , Ppub)−1

= ê(α′(r + h)QID , Ppub)ê(H0(m,Y ′)QID , Ppub)−1ê(−γ′H(c), Ppub)
= ê(α′(r + h)QID , Ppub)ê(S′, P )−1ê(Y ′, Ppub)ê(H(c), C ′)ê(H(c),−γ′Ppub)
= ê(α′(r + h)SID , P )ê(S′, P )−1ê(Y ′, Ppub)ê(H(c), α′C)
= ê(α′(r + h)SID , P )ê(α′rH(c), P )ê(S′, P )−1ê(Y ′, Ppub)
= ê(α′S, P )ê(S′, P )−1ê(Y ′, Ppub)
= ê(S′, P )ê(S′, P )−1ê(Y ′, Ppub)
= ê(Y ′, Ppub)

By the non-degeneracy of bilinear pairing, we know that

ê(Y ′, Ppub) = ê(α′Y + α′β′H(c), Ppub) ⇔ Y ′ = α′Y + α′β′H(c)

Hence the blind factors α, β and γ always exist which lead to the same relation defined in
Issue, so any view of the Issue protocol is unlinkable to any valid signature.

Consider again the Unlinkability Game, the signature of mb is associated with the instance
of the signing protocol that produces the signature of mb and that of m1−b with equal
probability since we can always find the corresponding blind factors α and β, we therefore
claim that the advantage of A in the game is negligible. ut

Appendix B

We remark that the security of our schemes also depends on the intractability of the ROS (find
an Overdetermined, Solvable system of linear equations modulo q with Random inhomogeneities)
problem.
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Definition 8. Given an oracle random function F : Zq
l → Zq, the ROS problem is to find

coefficients ak,i ∈ Zq and a solvable system of l + 1 distinct equations (1) in the unknown
c1, c2, · · · , cl over Zq:

ak,1c1 + · · ·+ ak,lcl = F (ak,1, · · · , ak,1) for k = 1, 2, · · · , t. (1)

Now we describe how an adversary A that is able to solve ROS problem efficiently can get
l + 1 valid ID-based partially blind signature associated with the same agreed information c
by requesting only l signatures from the same signature issuer S of identity ID.

1. S sends commitments C1 = r1P , C2 = r2P , · · · , Cl = rlP and Y1 = r1QID, Y2 = r2QID,
· · · , Yl = rlQID to A.

2. A chooses randomly ak,1, ak,2, · · · ak,l from Zq and messages m1,m2, · · · ,mt and computes
fk =

∑l
i=1 (ak,iYi) and H0(mk, fk) for k = 1, 2, · · · , t where l+1 ≤ t < qH0 , the maximum

number of queries of H0 issued by A.
3. A solves the ROS-problem: l + 1 of equations (2) in the unknowns c1, c2, · · · , cl over Zq:

l∑
j=1

(ak,jcj) = H0(mk, fk) for k = 1, 2, · · · , t. (2)

4. A sends the solutions c1, c2, · · · , cl as the challenge (value to be signed) to S.
5. S sends back Si = (ri + ci)SID + riH(c) for i = 1, 2, · · · , l.
6. For each solved equation (2), A gets a valid signature (Yk

′, Ck
′, Sk

′) on message mk by
setting Yk

′ = fk, Ck
′ =

∑l
j=1 ak,jCj and Sk

′ =
∑l

j=1 ak,jSj .

Now we show these l + 1 signatures are valid.

ê(Sk
′, P ) = ê(

l∑
j=1

ak,jSj , P )

= ê(
l∑

j=1

ak,j [(rj + cj)SID + rjH(c)], P )

= ê(SID, P )
Pl

j=1 ak,jrj ê(SID, P )
Pl

j=1 ak,jcj ê(H(c),
l∑

j=1

ak,jrjP )

= ê(
l∑

j=1

ak,jrjQID, Ppub)ê(QID, Ppub)H0(mk,fk)ê(H(c),
l∑

j=1

ak,jrjP )

= ê(
l∑

j=1

ak,jYj , Ppub)ê(H0(mk, fk)QID, Ppub)ê(H(c),
l∑

j=1

ak,jCj)

= ê(Yk
′ + H0(mk, Yk

′), Ppub)ê(H(c), Ck
′)

A similar attack can be applied on our PKI-based partially blind signature if an adversary can
solve ROS problem efficiently. However, ROS problem is “a plausible but novel complexity
assumption” [26]. We refer interested reader to [27] and [33] for more discussions on the
relationship between ROS problem and blind signature schemes.


