
Building Secure Cryptographic Transforms, or How to

Encrypt and MAC

Tadayoshi Kohno∗ Adriana Palacio† John Black‡

August 28, 2003

Abstract

We describe several notions of “cryptographic transforms,” symmetric schemes designed to
meet a variety of privacy and authenticity goals. We consider goals, such as replay-avoidance
and in-order packet delivery, that have not been fully addressed in previous works in this area.
We then provide an analysis of possible ways to combine standard encryption and message
authentication schemes in order to provably meet these goals. Our results further narrow the
gap between the provable-security results from the theoretical community and the needs of
developers who implement real systems.

Keywords: Applied cryptography, cryptographic transforms, authenticated encryption, privacy,
authenticity, security proofs.

∗Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. E-mail: tkohno@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/tkohno. Supported
by a National Defense Science and Engineering Graduate Fellowship.

†Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA. E-mail: apalacio@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/apalacio.
Supported by a National Science Foundation Graduate Research Fellowship.

‡Computer Science 430 UCB, University of Colorado at Boulder, Boulder, Colorado 80309-0430, USA. E-mail:
jrblack@cs.colorado.edu. URL: http://www.cs.colorado.edu/~jrblack. Supported by NSF CAREER award
CCR-0133985 and start-up funds from the University of Colorado at Boulder.

1

1 Introduction

Symmetric cryptosystems are generally designed to protect both the privacy and the authenticity
of transmitted data. The traditional approach for constructing such cryptosystems has been ad
hoc, meaning without formal justification or proofs of security. Unfortunately, such ad hoc analyses
are highly error-prone, as evidenced by the fact that some natural ways of combining standard
(privacy-only) encryption schemes with standard message authentication schemes (MACs) are ac-
tually insecure (e.g., see [5, 18]). This raises the question: how can one construct symmetric
cryptosystems that provably provide some form of privacy and authenticity?

Katz and Yung [16], Bellare and Namprempre [5], and Krawczyk [18] were the first to consider
this question. They introduced formal notions of security for privacy- and authenticity-providing
symmetric constructs (aka unforgeable encryption or authenticated encryption schemes). They then
considered ways of constructing authenticated encryption schemes that provably met their notions
of security.

While these and subsequent works took important steps to address the needs of those imple-
menting cryptographic applications, there still remains a gap between what the theory community
has proven and what implementors need. For example, the formal notions of security considered
in these works do not capture security requirements that many developers have for the symmetric
cryptographic portions of their applications, including resistance to replay or out-of-order deliv-
ery attacks. Also, in the case of the works that consider ways of combining standard encryption
schemes with standard MACs [5, 18, 4, 20], there are a number of natural constructions that fall
outside of the proposed models. These observations suggest that developers wishing to design new
privacy- and authenticity-providing symmetric cryptosystems have to fall back on ad hoc analyses,
prove the security of their constructions themselves, or design within the constraints of previous
results.

We address these concerns as follows. First, we introduce new formal notions of security captur-
ing common implementation goals. Then we perform an analysis of many natural ways to combine
standard encryption schemes and MACs. Because of the generality of our results, we believe that
they will be useful to many developers, who will no longer have to argue the security of their
constructions themselves or work within the confines of previous provable-security results.

Modeling symmetric cryptosystems. We use the term cryptographic transform (CT) to refer
to the portion of a cryptographic application that takes application data and turns it into an
outgoing packet with the intent of protecting the privacy of a designated portion of the data, and
the authenticity of all of the data. The difference between a CT and a more traditional authenticated
encryption scheme is that the latter is essentially a low-level, application-independent cryptographic
primitive, whereas a CT can be application-dependent. For example, an application’s CT might
preprocess data in some data- or application-dependent way. And a CT might try to enforce some
security policies (e.g., replay detection) that are beyond the scope of authenticated encryption
schemes.

Focusing on common design goals, we identify five classes of CTs. For four of them, we formalize
new notions of security. The first type of CT is essentially an authenticated encryption scheme
designed to authenticate more data than it encrypts; for this type we adopt a variant of the security
notions in [20]. The second type is designed to protect against replay attacks. The third type is
designed to protect against replay and re-ordering attacks. For these three types, packets are
allowed to be dropped. The fourth and fifth types are designed to ensure that packets are accepted
in exactly the order in which they were generated. For the fourth type, no packet should be accepted
after detecting a forgery attempt. For the fifth type, acceptance of legitimate packets should not
be affected by forgery attempts. A variant of the fourth type was considered in [4]. We use the

2

labels Type 1–Type 5 to refer to these different types of CTs. Since we believe that the first four
types will be the most useful in applications, we defer discussion of Type 5 CTs to the appendices.

Building cryptographic transforms. After defining the five types of CTs, we consider the
problem of designing CTs that provably satisfy the corresponding notions of security. We focus
on constructing CTs that use as their underlying building blocks standard encryption schemes and
standard MACs.1

There are essentially three approaches (or paradigms) for constructing CTs from encryption
schemes and MACs. Each approach begins by preprocessing the input in some possibly application-
dependent way. Then the approach either (1) runs the encryption and MAC algorithms in parallel
on the preprocessed data, (2) runs the MAC algorithm on the preprocessed data, and then runs the
encryption algorithm on the preprocessed data and the output of the MAC, or (3) runs the encryp-
tion algorithm on the preprocessed data, and then runs the MAC algorithm on the preprocessed
data and the output of the encryption algorithm.

The security of the CT depends in part on the initial preprocessing step. In order to be as
general as possible, we adopt the approach of [6, 4] and view the preprocessing step as an encoding
scheme. We specify security properties for these encoding schemes that, if met, guarantee that a
transform built using them, in combination with secure encryption and MAC schemes, will provably
meet one of our notions of a secure CT. By presenting our results in terms of the security properties
of encoding schemes, and not for specific preprocessing algorithms, we give developers the freedom
to implement the preprocessing step any way they want, as long as the properties we specify are
satisfied.

Since we consider three approaches and five CT types, for a total of 15 combinations, it is
impractical to summarize all our results here. Instead, we informally discuss an example that
illustrates the generality of our provable-security results. Consider a CT that uses CBC mode as
its underlying encryption scheme and UMAC as its underlying MAC. Let M be the payload message
for the CT and let H be some fixed-length header or control information. The CT is designed to
protect the privacy of M and the integrity of both M and H. It first generates a random CBC
mode IV I and a UMAC nonce N . It MACs the message I‖H‖M , where ‖ denotes concatenation,
using the nonce N , to get some tag τ . Then it encrypts M‖τ in CBC mode, using the IV I, to
get some intermediate value σ (we assume that M‖τ is a multiple of the underlying block cipher’s
block length). Finally, the CT outputs N‖I‖H‖σ. This message is sent to the receiver, who can
recover M and H the natural way. The receiver rejects packets with MAC verification failures or
with repeated nonce values. Assuming that the block cipher used in CBC mode is secure and that
UMAC is secure, this CT will provably be a secure Type 2 CT. We remark that the provable-security
of this CT does not follow from previous results.

Helping developers. Since we address requirements and goals of real-world systems, and our
analyses are performed in a very general way, we believe that our results will be particularly valuable
to developers who want to design new (or analyze existing) CTs.

Related work. Katz and Yung [16] and Bellare and Namprempre [5] formalized the notion of an
authenticated encryption scheme. The latter and Krawczyk [18] explored the three basic paradigms
for creating such schemes: Encrypt-and-MAC (E&M), MAC-then-Encrypt (MtE), and Encrypt-
then-MAC (EtM). The paradigms we consider, called Encode-then-{E&M, MtE, EtM}, are natural

1We note that it is also possible to design a CT that uses as its underlying component an authenticated encryption
scheme. The main reason we do not consider CTs that are built this way is that, since currently all dedicated
authenticated encryption modes are either covered by patents or have comparable software speeds to the combination
of standard encryption schemes and standard MACs, and because of the flexibility gained with using standard
encryption schemes and MACs as black boxes, a significant population of developers will likely use such CTs in their
applications.

3

extensions of these paradigms, appropriately modified to use encoding schemes. Unfortunately, the
research results in [5, 18] do not apply to many real-world CTs since many such CTs are not basic
E&M, MtE, or EtM constructions.

Bellare, Kohno and Namprempre [4], noting that the SSH protocol was not one of the basic
E&M, MtE, or EtM constructions, analyzed that protocol directly. They formalized a notion similar
to, but slightly less general than, our notion of a Type 4 CT. The main difference is that our Type 4
notion specifically addresses the “associated-data problem” (see the next paragraph). The authors
also analyzed a variant (again less general) of our Encode-then-E&M paradigm with respect to
meeting this Type 4-like notion.

Rogaway [20] introduced the notion of authenticated-encryption with associated-data (AEAD)
to address the problem that symmetric cryptosystems must often authenticate more data than they
encrypt. Our notion of a Type 1 cryptographic transform essentially corresponds to the AEAD
notion. Rogaway considered methods in which one can combine some privacy component with
some MAC component to create an AEAD scheme. However, he discussed only two of the three
basic approaches for combining these components, and only in the context of achieving the AEAD
goal. Furthermore, he made more restrictive requirements on the underlying components than we
do. For example, standard encryption schemes, which do not take nonces as input, cannot be used
as Rogaway’s underlying privacy component, and in some cases we (unlike Rogaway) allow the use
of MACs that are not pseudorandom functions (e.g., traditional Carter-Wegman MACs).

The idea of using encodings to capture and model the important properties of some sub-
component of a larger scheme comes from [6] and was also used in [4].

In [10] Dodis and An consider methods of constructing authenticated encryption schemes capa-
ble of encapsulating long messages from authenticated encryption schemes capable only of encap-
sulating short messages.

There is a parallel research program exploring the construction of authenticated encryption
schemes directly from block ciphers, rather than from existing encryption schemes and MACs
(e.g., [16, 12, 15, 21, 7, 17]). Another research program investigates the construction of authenti-
cated encryption primitives (e.g., [11, 13, 1]).

Overview. Our models of cryptographic transforms are presented in Section 2. We discuss the
underlying building blocks (encryption schemes and MACs) with which secure CTs can be built in
Section 3. Section 4 describes our approach for generalizing the three basic methods for creating
cryptographic transforms and, in particular, our use of encoding schemes. The three paradigms
(Encode-then-{E&M, MtE, EtM}) and our results for each of them are discussed in Sections 5, 6,
and 7, respectively. We present conclusions and discussion of future work in Section 8.

In order to conserve space, we defer some of our formal definitions and theorem statements to
the appendices. The details we defer are not critical to the understanding of the body of this paper.

2 Cryptographic Transforms

A cryptographic transform (CT) takes a user’s or application’s (privacy-critical) payload data and
some (non-private) associated data and transforms the input in such a way as to ensure the privacy
of the payload data and the integrity2 of both the payload data and the associated data. An
example cryptographic transform is shown in Figure 1. Note that the CT itself may load payload
data into packets, add sequence numbers, etc.

In order to ensure the correct interpretation of our results, we must first define what we mean
(from an API perspective) by a cryptographic transform. Then we describe our security notions.

2We use the terms integrity and authenticity interchangeably.

4

payloadpayloadpld lenad len pdl paddingctr associated data

payloadassociated data

PREPROCESS

ciphertext σ tag τ

ENCRYPT MAC

associated dataad len

encapsulated packet

Figure 1: An example cryptographic transform (similar to the SSH CT but with associated data). Note the
additional data added by the preprocessing step, the fact that the counter is not included in the encapsulated
packet, and the fact that some data is MACed but not encrypted.

Preliminaries. If x and y are strings, then |x| denotes the length of x in bits and x‖y denotes their
concatenation. The empty string is denoted ε. If a1, . . . , am are strings, then 〈a1, . . . , am〉 denotes
an injective encoding from those strings into another string such that a1, . . . , am are recoverable.

When we say an algorithm is stateful, we mean that it uses and updates its state and that the
entity executing it maintains the state between invocations. Let the initial state of any (stateful
or stateless) algorithm be ε. If f is a randomized (resp., deterministic) algorithm, then x

R← f(y)
(resp., x ← f(y)) denotes the process of running f on input y and assigning the result to x.

Cryptographic transforms. A cryptographic transform CT = (KG, Encap, Decap) consists of
three algorithms and is defined for some key space KeySpCT, associated-data space AdSpCT, and
message space MsgSpCT. The randomized key-generation algorithm KG returns a key K ∈ KeySpCT

(for example, KG might return a random 128- or 256-bit string); we write this as K
R← KG. The

possibly randomized and possibly stateful encapsulation algorithm Encap takes a key K ∈ KeySpCT,
associated data Ma ∈ AdSpCT, and a message Ms ∈ MsgSpCT, and outputs an encapsulated message
C ∈ {0, 1}∗; we write this as C

R← EncapK(Ma, Ms). We often refer to C as an encapsulated packet or
a ciphertext. The deterministic and possibly stateful decapsulation algorithm Decap takes a key K ∈
KeySpCT and a message C ∈ {0, 1}∗, and outputs a pair of messages (Ma, Ms) ∈ AdSpCT×MsgSpCT

or the pair (⊥,⊥) on error; we write this as (Ma,Ms) ← DecapK(C). We require that if one of Ma

or Ms is ⊥, then both are ⊥. We say that DecapK accepts C if DecapK(C) 6= (⊥,⊥); otherwise
DecapK rejects C. (We return (⊥,⊥) on error instead of a single element ⊥ because it makes our
definitions easier to manipulate.)

We consider five classes of CTs. These types of CTs are designed to provide and run on top of
different types of communication channels (e.g., reliable transport, unreliable transport). We shall
describe four of them in detail shortly. Type 5 is discussed in the appendices.

Separating functionality and security properties. As is tradition in modern cryptogra-
phy, we distinguish between the functionality/consistency requirements for CTs and their security
goals. In particular, we call any object CT = (KG, Encap, Decap) that satisfies our consistency
requirements a cryptographic transform. But we only call it a secure CT if it also satisfies our
security requirements. We state the security goals first since in some cases the consistency require-
ments need only be met if an adversary has not already succeeded in breaching the security of the

5

scheme.3

The five types of CTs have different integrity goals (and consistency requirements), but they
all share the same privacy goal.4 We first describe the notion of privacy for CTs. Then we make
some general comments about our integrity notions for the five CT types. We then briefly discuss
reaction and side-channel attacks. In the subsections that follow, we describe the first four types
of CTs and define their integrity properties and consistency requirements. The relevant formal
security definitions appear in Appendix B. Here we provide brief descriptions of the notions.

Chosen-plaintext privacy. Our notion of privacy for CTs is based on the notion of left-or-
right-indistinguishability under chosen-plaintext attacks [2]. Consider an adversary with access
to an encapsulation oracle that on input associated data Ma and messages M0, M1 returns the
encapsulation of Ma,Mb, where b is a hidden, randomly chosen bit. The adversary “wins” if it
guesses bit b, i.e., if it guesses which sequence of messages was encapsulated. A CT is ct-priv-cpa-
secure if the probability that an adversary with reasonable resources wins is close to 1/2 (i.e., if
such an adversary cannot do much better than randomly guess bit b).

Integrity of ciphertexts and chosen-cipher-text privacy. The integrity notion for a
Type n CT is called ct-int-ctxtn. These notions address the integrity of the ciphertexts generated
by the encapsulation algorithm. This is different from protecting the integrity of the original inputs
to the encapsulation method (cf. [5]). Indeed, the latter, in combination with the ct-priv-cpa notion,
is insufficient to guarantee privacy under chosen-ciphertext attacks, whereas ct-int-ctxtn-security
together with ct-priv-cpa-security imply a strong notion of privacy under chosen-ciphertext attacks
that we call ct-priv-ccan-security. (These results are straightforward extensions of results in [5] for
authenticated encryption schemes.) Since ct-priv-cpa and ct-int-ctxtn imply ct-priv-ccan, we focus
all our discussions on the former two notions.

Reaction and side-channel attacks. Vaudenay [22] identified a class of attacks against cryp-
tosystems whose decapsulation algorithms return different error codes, depending on how the de-
capsulation fails (e.g., the error code returned for bad padding is different than the error code
returned for a failed MAC verification). To avoid these attacks, a cryptographic transform should
always return the same error code upon failure, regardless of the reason for failure. Our construc-
tions are secure against this type of attack because they always return the same error message,
(⊥,⊥).

Furthermore, to avoid Canvel’s [9] timing-attack derivatives of [22], one should ensure that the
length of time taken by the decapsulation routine does not depend on whether the decapsulation
algorithm aborts prematurely. I.e., an adversary should not be able to learn the reason for a
decapsulation algorithm’s failure by observing the timing characteristics of the decapsulator.

2.1 Type 1 Cryptographic Transforms

For Type 1 CTs, a receiver (or decapsulator) will accept any encapsulated packet sent by the sender
(or encapsulator), in any order, and possibly multiple times. A Type 1 CT is essentially an AEAD
scheme [20].

Integrity. The integrity notion for Type 1 CTs considers an adversary with chosen-plaintext
access to an encapsulator and chosen-ciphertext access to the corresponding decapsulator. The
adversary “wins” or “forges” if it can make the decapsulator accept a ciphertext not returned

3If an adversary forges a message, it may place the decapsulator in a state that it cannot recover from. Therefore,
consistency can only be guaranteed in the absence of a successful adversary.

4We comment that this is natural since the differences between the various types of CTs become apparent only
when one considers the decapsulation algorithm.

6

by the encapsulator. Informally, a Type 1 CT is ct-int-ctxt1-secure if the probability that any
adversary with reasonable resources wins is small.

Consistency requirements. For a Type 1 CT, CT = (KG, Encap, Decap), we require that
DecapK(EncapK(Ma,Ms)) = (Ma,Ms) for all messages Ma, Ms in CT’s message spaces, all keys in
the key space, and all internal states of the encapsulator and decapsulator.

2.2 Type 2 Cryptographic Transforms

Type 2 CTs are designed to protect against replay attacks.

Integrity. Consider an adversary with chosen-plain-text access to an encapsulator and chosen-
ciphertext access to the corresponding decapsulator. The adversary “wins” or “forges” if it can
make the decapsulator accept a ciphertext that the encapsulator did not generate, or make it accept
the same ciphertext twice. Informally, a Type 2 CT is ct-int-ctxt2-secure if the probability that
any adversary with reasonable resources wins is small.

Consistency requirements. For a Type 2 CT, CT = (KG, Encap, Decap), we require that, for all
messages Ma, Ms in CT’s message spaces and all keys K in the key space, if C = EncapK(Ma,Ms)
for any internal state of the encapsulator, C has not already been submitted to DecapK , and an
adversary has not already succeeded in breaking the integrity of CT, then DecapK(C) = (Ma,Ms).

We also make the following requirement: for any two message pairs (M1
a ,M1

s), (M2
a ,M2

s), if the
encapsulator computes C1

R← EncapK(M1
a ,M1

s) at some point in time and C2
R← EncapK(M2

a ,M2
s)

at some other time, it is the case that C1 6= C2 (even if (M1
a ,M1

s) = (M2
a ,M2

s)). Otherwise, a
legitimately encapsulated message might incorrectly be rejected by the receiver.

2.3 Type 3 Cryptographic Transforms

Type 3 CTs are designed to protect against replay attacks and re-ordering attacks, but are not
intended to protect against packet loss.

Integrity. Consider an adversary with chosen-plain-text access to an encapsulator and chosen-
ciphertext access to the corresponding decapsulator. The adversary “wins” or “forges” if it can
make the decapsulator accept a ciphertext that the encapsulator did not generate, accept the same
ciphertext twice, or accept a ciphertext that was generated before the last accepted ciphertext. For
example, if Ci denotes the i-th ciphertext returned by the encapsulator, the adversary will win if
it queries the decapsulator with C5 followed by C1 and the decapsulator accepts C1. Informally,
a Type 3 CT is ct-int-ctxt3-secure if the probability that any adversary with reasonable resources
wins is small.

Consistency requirements. For a Type 3 CT, CT = (KG, Encap, Decap), we require that, for all
messages Ma, Ms in CT’s message spaces and all keys K, if C = EncapK(Ma,Ms) for any internal
state of the encapsulator, C or a ciphertext generated after C has not already been submitted to
DecapK , and an adversary has not already succeeded in forging, then DecapK(C) = (Ma,Ms).

We also make the following requirement: for any two message pairs (M1
a ,M1

s), (M2
a ,M2

s), if the
encapsulator computes C1

R← EncapK(M1
a ,M1

s) at some point in time and C2
R← EncapK(M2

a ,M2
s)

at some other point in time, it is the case that C1 6= C2 (even if (M1
a , M1

s) = (M2
a ,M2

s)).

2.4 Type 4 Cryptographic Transforms

Type 4 CTs are designed to ensure the in-order delivery of packets. If an adversary tries to forge,
the forgery attempt should be detected and all future packets (even if generated by the legitimate

7

encapsulator) should be rejected. Thus a Type 4 CT only has to work if all packets are delivered
in order (i.e., no bad packet is injected into the communications stream).5 This type of CT is
designed to run on top of a reliable transport protocol like TCP. The notion of a Type 4 CT is
closely related to the notion used in [4] to analyze the SSH cryptographic transform; the difference
is that a Type 4 CT’s encapsulation algorithm can take associated data as input.

Integrity. Consider an adversary with chosen-plain-text access to an encapsulator and chosen-
ciphertext access to the corresponding decapsulator. The integrity game for Type 4 CTs begins
with a flag phase set to 0. If at any point the sequence of queries to the decapsulation oracle fails to
be a prefix of the responses from the encapsulation oracle, phase is set to 1. An adversary wins if it
can force the decapsulation oracle to accept a message after phase becomes 1. Informally, a Type
4 CT is ct-int-ctxt4-secure if the probability that any adversary with reasonable resources wins is
small.

Consistency requirements. Consider some sequence of message pairs (M1
a ,M1

s), (M2
a ,M2

s), . . .
and, for i = 1, 2, . . ., let Ci = EncapK(M i

a,M
i
s), starting with EncapK in its initial state. Then if

DecapK is run on the sequence C1, C2, . . . in order and without the injection of additional packets,
we require that DecapK(Ci) = (M i

a,M
i
s).

3 Building Blocks

Composition-based cryptographic transforms are built using two base cryptographic components:
encryption schemes and MACs. We consider each of these components in turn.

3.1 Base encryption schemes

A symmetric encryption scheme SE = (K, E ,D) consists of three algorithms and is defined for some
key space KeySpSE , IV-space IVSpSE , and message space MsgSpSE . The randomized key-generation
algorithm K returns a key K ∈ KeySpSE ; we write this as K

R← K. The possibly randomized and
stateful encryption algorithm E takes a key K ∈ KeySpSE , an IV I ∈ IVSpSE , and a message
M ∈ MsgSpSE , and returns a ciphertext C ∈ {0, 1}∗; we write this as C

R← EI
K(M). Example values

for IVSpSE are {ε} (when SE takes no IV) and {0, 1}i for some positive integer i. The stateless and
deterministic decryption algorithm D takes a key K ∈ KeySpSE , an IV I ∈ IVSpSE , and a ciphertext
C ∈ {0, 1}∗, and returns a message M ∈ {0, 1}∗; we write this as M ← DI

K(C). Note that the
decrypted message M may be a string not in MsgSpSE . The following consistency requirement
must be met. DI

K(EI
K(M)) = M for all M ∈ MsgSpSE , I ∈ IVSpSE , K ∈ KeySpSE , and any internal

state of EK .
Deviating from tradition, we consider three types of base encryption schemes: nonced encryption

schemes, length-based IV encryption schemes, and random IVed encryption schemes. For a nonced
encryption scheme we require that the encryption algorithm is always invoked with a new and
distinct IV in IVSpSE . For a length-based IV encryption scheme, we require that the first IV is
randomly selected from IVSpSE , and each subsequent IV is a deterministic function of the initial
IV and the lengths of all previous plaintexts. We call this deterministic function the length-based
IV-deriving function for the encryption scheme. (Our results could easily be extended for use with
length-based encryption schemes where the first IV is some fixed constant, like the all zero block.)

5We remark that a Type 4 CT may be vulnerable to a DoS attack in which an adversary simply modifies one
of the encapsulated packets. Type 5 CTs are similar to Type 4 CTs but are not vulnerable to such a DoS attack.
Despite the DoS attack against Type 4 CTs, these CTs more closely match the design goals of a CT for use with a
reliable transport protocol (as evidenced, for example, by the SSH protocol’s use of a Type 4 CT).

8

For a random IVed encryption scheme we require that the encryption algorithm is always invoked
with a randomly selected IV in IVSpSE . If IVSpSE = {ε}, then the random IV is always ε, and this
is how we model standard encryption schemes, which do not take IVs as input.

Looking ahead, we note that we can enforce these requirements on the IVs through our use
of encodings. The main reason we do not simply have the underlying encryption scheme in a CT
generate its own IVs is that we want to be able to manipulate the IVs before invoking the encryption
scheme (e.g., we want to be able to MAC the IV in a MAC-then-Encrypt-style CT).

Privacy. Our notion of privacy for symmetric encryption schemes is based on the notion of left-or-
right-indistinguishability from [2] and is closely related to the ct-priv-cpa notion for CTs. Consider
an adversary with access to an encryption oracle that on input an IV and a pair of messages, returns
the encryption of either the first message or the second message, depending on a hidden random
bit. The adversary “wins” if it guesses this bit, i.e., if it guesses which sequence of messages was
encrypted. Informally, an encryption scheme is ind-cpa-secure if the probability that an adversary,
using reasonable resources and respecting the IV properties of the scheme, wins is not much greater
than 1/2. The formalization of this notion appears in Appendix B.

Example schemes. There are numerous examples of ind-cpa-secure encryption schemes. An
example of a nonced encryption scheme is a CTR mode scheme which allocates part of the block
cipher input to a nonce and the remainder to a block counter. An example of a length-based IV
encryption scheme is a CTR mode variant that uses a random b-bit unsigned integer C as its initial
counter (where b is the underlying block cipher’s block size) and, after encrypting l blocks, uses
the integer C + l mod 2b as the IV for the next message. An example of a random IVed encryption
scheme is a CBC mode scheme that receives a random b-bit IV. Of course, a more traditional
encryption scheme is a CBC mode instance that generates its own random b-bit IV (according to
our notation, such a scheme would have IV space {ε}).

3.2 Message-authentication schemes

A message-authentication scheme or MAC MA = (K, T ,V) consists of three algorithms and is
defined for some key space KeySpMA, IV-space IVSpMA, message space MsgSpMA, and tag space
TagSpMA. The randomized key-generation algorithm returns a key K ∈ KeySpMA; we write
this as K

R← K. The tagging algorithm, which may be randomized and stateful, takes a key
K ∈ KeySpMA, an IV I ∈ IVSpMA, and a message M ∈ MsgSpMA, and returns a tag τ ∈ TagSpMA;
we write this as τ

R← T I
K(M). The deterministic and stateless verification algorithm takes a key

K ∈ KeySpMA, an IV I ∈ IVSpMA, a message M ∈ MsgSpMA, and a candidate tag τ ∈ {0, 1}∗,
and returns a bit; we write this as b ← VI

K(M, τ). The following consistency requirement must be
met. VI

K(M, T I
K(M)) = 1 for all M ∈ MsgSpMA, I ∈ IVSpMA, K ∈ KeySpMA, and any internal

state of TK .
As with base encryption schemes, we consider different types of MACs: nonced MACs and con-

ventional MACs (i.e., MACs that do not take nonces as input). For a nonced MAC we require that
the tagging algorithm is always invoked with a new and distinct IV in IVSpMA. For a conventional
MAC, IVSpMA = {ε}. Explicitly taking a nonce as input is nice because it allows one to share
the nonce between, for example, a Carter-Wegman MAC and CTR mode encryption. (Although
we could also consider random IV or length-based IV MACs, we do not do so because, unlike with
encryption schemes, we have no reason to manipulate such MAC IVs separately, and therefore
allowing the caller to supply the random IV or length-based IV provides no clear advantage; the
MAC can generate such IVs itself.)

Unforgeability of MACs. The main notion of security for MACs that we consider is strong

9

unforgeability under chosen-message attacks [5]. This notion is described formally in Appendix B.
Intuitively, we say that a MAC is uf-secure (or unforgeable) if the probability is small that any
adversary using reasonable resources and respecting the IV properties of the MAC makes the
verification algorithm accept some 3-tuple (I, M, τ) such that the tagging algorithm was never run
on (I, M) or, if run on (I, M), never generated τ as the tag.

Pseudorandomness of MACs. Another notion of security for MACs is pseudorandomness.
This notion only applies when IVSpMA = {ε} (or, phrased more appropriately, when the tagging
algorithm is a function from KeySpMA × MsgSpMA to TagSpMA). Essentially, a MAC is a se-
cure pseudorandom function (PRF) if an adversary with chosen-plaintext access to a function f ,
mapping MsgSpMA to TagSpMA, cannot tell whether the function is an instance of the MAC de-
termined by a randomly selected key, or a randomly selected function from MsgSpMA to TagSpMA.
See Appendix B. As shown in [3], if a MAC is a secure PRF, then it is also uf-secure.

Privacy of MACs. The ind-cpa notion of privacy for symmetric encryption schemes can also be
applied to MACs (see Appendix B). Although most popular MACs are not ind-cpa-secure, some
are (the notable example is Carter-Wegman MACs).

Example schemes. Popular examples of MACs include HMAC [19], OMAC [14], and UMAC [8].
The first two have IV-space {ε} and the third takes a nonce as input. All these examples are uf-
secure assuming the IV properties are respected. OMAC (and a number of other MACs) are also
provably-secure PRFs, assuming that the underlying block cipher is secure. UMAC is ind-cpa-secure
against nonce-respecting adversaries.

4 The Three Paradigms

We recall the three basic methods to combine encryption schemes with MACs [5, 18]: Encrypt-and-
MAC (E&M), MAC-then-Encrypt (MtE), and Encrypt-then-MAC (EtM). Let EKe be an encryption
algorithm with key Ke, and TKt a MAC tagging algorithm with key Kt. The E&M encryption
algorithm is defined as E〈Ke,Kt〉(M) def= EKe(M)‖TKt(M). The MtE encryption algorithm is defined

as E〈Ke,Kt〉(M) def= EKe(M‖TKt(M)). The EtM encryption algorithm is defined as E〈Ke,Kt〉(M) def=
σ‖TKt(σ), where σ = EKe(M).

In this work we consider generalizations of the three paradigms, which we call Encode-then-
E&M, Encode-then-MtE, and Encode-then-EtM. For each of these paradigms, we consider the five
types of cryptographic transforms. The encodings play a critical role in the Encode-then-{E&M,
MtE, EtM} constructions. In particular, encodings allow us to formally model CTs that preprocess
payload data without having to specify exactly how applications should do the preprocessing. Also,
the encoding schemes are what provide the logic to, for example, detect replay attacks.

4.1 Encodings

An encoding scheme EC is an un-keyed public transformation that consists of four algorithms:
Encode, DecodeA, DecodeB, and DecodeC. All algorithms may be stateful and Encode may be
randomized. The decoding algorithms DecodeA, DecodeB, and DecodeC may all share the same
state. The specific properties of the algorithms depend on the paradigm in question and the type
of CT that is being constructed. We describe them in detail in the following sections. Here we
discuss some commonalities between the algorithms of encoding schemes for different paradigms
and CT types.

10

Encoding and encapsulating. Algorithm Encode pre-processes a CT encapsulation algorithm’s
input messages Ma, Ms. Specifically, on input Ma, Ms, Encode outputs a 5-tuple (Mp,Mo,Mn,Me,
Mt). Intuitively, Mp is cleartext data communicated with the ciphertext, Mo is the IV/nonce for
use with the base encryption scheme, Me is the input for the base encryption scheme, Mn is the
IV/nonce for use with the base MAC, and Mt is the input for the base MAC.

The different paradigms then use these five strings in slightly different ways and slightly different
orders. For Encode-then-E&M CTs, the encapsulation algorithm encrypts Me with IV Mo to get a
string σ, MACs Mt with IV Mn to get a tag τ , and outputs 〈Mp, σ, τ〉. For Encode-then-MtE CTs,
the encapsulation algorithm MACs Mt with IV Mn to get a tag τ , encrypts 〈Me, τ〉 with IV Mo

to get a string σ, and outputs 〈Mp, σ〉. For Encode-then-EtM CTs, the encapsulation algorithm
encrypts Me with IV Mo to get a string σ, MACs 〈Mt, σ〉 with IV Mn to get a tag τ , and outputs
〈Mp, σ, τ〉.
Decoding and decapsulating. The decoding algorithms DecodeA, DecodeB, and DecodeC are
used in reversing the process. The decapsulation process typically involves first invoking DecodeA
on Mp to get back (at least) Mo, the IV used with the underlying encryption scheme. In the case
of Encode-then-EtM constructions, DecodeA returns the MAC IV Mn and Mt in order to allow for
tag verification before decryption. After the underlying encryption scheme recovers the message
Me, the transforms invoke DecodeB(Mp, Me) to recover (at least) Ma and Ms. If all goes well, then
the transform’s decapsulation algorithm returns Ma and Ms to the user or higher-level application.

However, all may not go well in the decapsulation process. For example, DecodeA or DecodeB
may return the symbol ⊥, indicating that there was a decoding failure. This can happen, for
instance, in Type 2 decoding algorithms if the decoding algorithms detect a replayed message.
When DecodeA or DecodeB return ⊥, the decapsulation algorithm does not accept the packet.

It may also be the case that DecodeA and DecodeB do not detect any problems (and return
strings instead of ⊥) but the MAC tag verification fails. When this occurs, the decapsulation al-
gorithm invokes DecodeC(⊥). If the tag verification succeeds, the decapsulation algorithm invokes
DecodeC(>). By calling DecodeC in this way, the decapsulation algorithm tells the decoding al-
gorithms whether the packet was accepted. The decoding algorithms can then update their state.
For example, for CTs designed to protect against out-of-order delivery attacks, it is prudent to
increment the number of packets received only if the packet actually decapsulated correctly and
passed the tag verification process.

Respecting the IV properties of SE and MA. Consider the underlying encryption scheme
SE and the underlying MAC MA that the Encode algorithm is combined with in an Encode-
then-{E&M,MtE,EtM} construction. Note that these underlying schemes may have certain IV
requirements in order for them to be secure. For example, SE might require that the IV is a nonce;
i.e., that the IV never repeats, or that the IVs be random (or always the empty string ε). Consider
any sequence of messages (M1

a ,M1
s), (M2

a ,M2
s), . . ., let Encode begin in its initial state, and for

i = 1, 2, . . . let (M i
p,M

i
o,M

i
n,M i

e, M
i
t) = Encode(M i

a, M
i
s). We call an encoding scheme nonce-

respecting for encryption if it is the case that M i
o 6= M j

o for all distinct i, j. We call an encoding
scheme nonce-respecting for MACing if M i

n 6= M j
n for all distinct i, j. An encoding scheme is length-

based IV-respecting for encryption with respect to some length-based IV-deriving function if the
first Mo value the encoding scheme generates is chosen uniformly at random from IVSpSE , and all
subsequent Mo values are generated according to the length-based IV-deriving function, the initial
Mo value, and the lengths of all previous Me values. An encoding scheme is random-IV-respecting
for encryption if the encoding algorithm always picks the value Mo uniformly at random from
IVSpSE .

Note that if the IV spaces are finite, then it is impossible to run a nonce-respecting encoding

11

payload Mspayload Msassociated data Ma

ENCODE

ciphertext σ tag τ

ENCRYPT MAC

Mp

Mo Me Mn MtMp

encapsulated packet

Figure 2: The Encode-then-E&M encapsulation method.

scheme on an infinite number of inputs. Therefore, we associate to any encoding scheme EC a pa-
rameter MaxNumEC , and we assume that the encoding scheme is not invoked more than MaxNumEC
times per application (i.e., beginning in its initial state, the encoding algorithm will not be asked
to encode more than MaxNumEC pairs of messages). In the above discussion and in the following
sections, whenever we write “for i = 1, 2, . . ., run Encode,” we assume that the iterations stop before
i gets larger than MaxNumEC . (We use the same convention when discussing CTs built from EC.)

5 Encode-then-E&M

We first focus on Encode-then-E&M cryptographic transforms. The encapsulation algorithm of
such a CT works as shown in Figure 2. An E&M encoding scheme is used to “glue” together
the encryption and MAC components of an Encode-then-E&M CT. For an E&M encoding sch-
eme ECE&M = (Encode, DecodeA, DecodeB,DecodeC), Encode behaves as described in Section 4.1.
DecodeA, on input a string Mp, outputs a string Mo, or ⊥ on error. DecodeB, on input two mes-
sages Mp, Me, returns a 4-tuple of messages (Ma,Ms,Mn,Mt), or (⊥,⊥,⊥,⊥) on error (if any one
of Ma, Ms, Mn, or Mt is ⊥, then all of them are ⊥). DecodeC takes as input the symbol > or the
symbol ⊥ and returns nothing.

An encryption scheme, a MAC, and an appropriate E&M encoding scheme can be combined to
obtain an Encode-then-E&M CT as follows.

Construction 5.1 (Encode-then-E&M) Let ECE&M = (Encode, DecodeA, DecodeB,DecodeC),
SE = (Ke, E ,D), and MA = (Kt, T ,V) be E&M encoding, encryption, and message-authentication
schemes, respectively, with compatible message spaces (e.g., the outputs from Encode are suitable
inputs to E and T). Let all states initially be ε. We associate to these schemes an Encode-then-
E&M cryptographic transform CT = (KG,Encap, Decap) whose constituent algorithms are defined
as follows:

12

Algorithm KG

Ke
R← Ke ; Kt

R← Kt

Return 〈Ke,Kt〉

Algorithm Encap〈Ke,Kt〉(Ma,Ms)
(Mp,Mo,Mn,Me,Mt)

R← Encode(Ma,Ms)
σ

R← EMo

Ke
(Me) ; τ

R← T Mn

Kt
(Mt)

Return 〈Mp, σ, τ〉

Algorithm Decap〈Ke,Kt〉(C)
If st =⊥ then return (⊥,⊥)
If there does not exist Mp, σ, τ s.t. C = 〈Mp, σ, τ〉 then

st ← Box ; return (⊥,⊥)
Parse C as 〈Mp, σ, τ〉 ; Mo ← DecodeA(Mp)
If Mo = ⊥ then st ← Box ; return (⊥,⊥)
Me ← DMo

Ke
(σ)

(Ma,Ms, Mn, Mt) ← DecodeB(Mp,Me)
If Ms = ⊥ then st ← Box ; return (⊥,⊥)
v ← VMn

Kt
(Mt, τ)

If v = 0 then st ← Box ; DecodeC(⊥) ; return (⊥,⊥)
DecodeC(>)
Return (Ma,Ms)

For a Type 4 CT, each boxed portion of the decapsulator should be ⊥. For all other types, the
boxed portion should be st. Recall that 〈a1, . . . , am〉 denotes an encoding of the strings a1, . . . , am

such that a1, . . . , am are recoverable. For the call to DecodeB(Mp,Me), recall that if any one of Ma,
Ms,Mn,Mt is ⊥, then they are all ⊥. Although only Decap explicitly maintains state in the above
pseudocode, the underlying encoding, encryption, and MAC schemes may also maintain state. E.g.,
the underlying encoding and decoding algorithms may maintain state in order to protect against
replay attacks.

Consistency requirements for E&M encoding schemes. Consider any two pairs of messages
(Ma,Ms), (Ma, M

′
s) with |Ms| = |M ′

s|. Let (Mp,Mo,Mn,Me,Mt)
R← Encode(Ma,Ms) for Encode in

some state, and (M ′
p,M

′
o,M

′
n,M ′

e, M
′
t)

R← Encode(Ma,M
′
s) for Encode in some (possibly different)

state. We require that |Me| = |M ′
e| and |Mt| = |M ′

t |. If this were not the case, Construction 5.1
might not preserve privacy.

Consider also any two sequences of message pairs (M1
a ,M1

s), (M2
a ,M2

s), . . . and (N1
a , N1

s), (N2
a ,

N2
s), Let Encode begin in its initial state and for i = 1, 2, . . . let (M i

p,M
i
o,M

i
n,M i

e,M
i
t) =

Encode(M i
a,M

i
s). Similarly, let Encode begin in its initial state and for i = 1, 2, . . . let (N i

p, N
i
o, N

i
n,

N i
e, N

i
t) = Encode(N i

a, N
i
s). If Encode is randomized, assume that both sequences are generated

using the same random tape. Further assume that the randomness used in each invocation is
recoverable from the output and that the amount of randomness used per invocation depends only
on the lengths of the inputs. Consider any index i. If |M j

s | = |N j
s | and M j

a = N j
a for all j ≤ i, then

we require that M i
p = N i

p, M i
o = N i

o, and M i
n = N i

n.
Let (M1

a ,M1
s), (M2

a ,M2
s), . . . be a sequence of message pairs and, beginning with Encode in its

initial state, let (M i
p,M

i
o,M

i
n,M i

e,M
i
t) = Encode(M i

a,M
i
s) for i = 1, 2, . . . up to MaxNumECE&M . We

make the following additional consistency requirements on ECE&M, depending on the type of CT
in question. In what follows we use the notation Decode[ABC] to denote any one of the decoding
algorithms.

Type 1. For any i and for any state of the decoder, we require that DecodeA(M i
p) = M i

o and
DecodeB(M i

p,M
i
e) = (M i

a,M
i
s, M

i
n,M i

t).

Type 2. For any distinct indices i, j, we require that (M i
p,M

i
e) 6= (M j

p ,M j
e).

For any i, we require that for any state of the decoder, DecodeA(M i
p) = M i

o. Furthermore, if
DecodeB has not been invoked with (M i

p,M
i
e) or if DecodeB has been invoked with (M i

p,M
i
e) but

for each such invocation the next call to Decode[ABC] was DecodeC(⊥), then it must be the case
that DecodeB(M i

p,M
i
e) = (M i

a,M
i
s,M

i
n,M i

t).

Type 3. For any distinct indices i, j, we require that (M i
p,M

i
e) 6= (M j

p ,M j
e).

13

For any i, we require that for any state of the decoder, DecodeA(M i
p) = M i

o. Furthermore,
if DecodeB has not been invoked with (M j

p ,M j
e) for any j ≥ i, or if DecodeB has been invoked

with (M j
p ,M j

e), for some j ≥ i, but for each such invocation the next call to Decode[ABC] was
DecodeC(⊥), then DecodeB(M i

p,M
i
e) = (M i

a, M
i
s,M

i
n, M i

t).

Type 4. For i = 1, 2, . . . and the decoder beginning in its initial state, let mi
o = DecodeA(M i

p) and
(mi

a,m
i
s,m

i
n, mi

t) = DecodeB(M i
p,M

i
e). We require that M i

a = mi
a, M i

s = mi
s, M i

o = mi
o, M i

n = mi
n,

and M i
t = mi

t for all i.

Security requirements for E&M encoding schemes. The security requirements for E&M
encoding schemes are formalized in Appendix C. For all types of CTs we define a property, called
e&m-coll-security, that measures the probability of a collision in the Mn, Mt outputs of the encoding
scheme. Consider a sequence of inputs (M1

a ,M1
s), (M2

a ,M2
s), . . . to Encode and, beginning with

Encode in its initial state, for i = 1, 2, . . . let (M i
p,M

i
o,M

i
n,M i

e,M
i
t) = Encode(M i

a,M
i
s). Intuitively,

we say that the encoding scheme is e&m-coll-secure if the probability that (M i
n,M i

t) = (M j
n,M j

t)
for distinct indices i, j is small. We note that it is very easy to design an E&M encoding scheme
that is e&m-coll-secure: simply include a counter or some random string in one or both of Mn or
Mt.

For Type n E&M encoding schemes (i.e., E&M encoding schemes used to construct Type n CTs)
we also define a security property called e&m-secn. We distill the important aspects of these security
properties here. Essentially, in order for Type 1–Type 3 E&M encoding schemes to be e&m-sec1–
e&m-sec3-secure, it should be the case that if (Mp,Me) and (M ′

p,M
′
e) are distinct pairs of strings,

then they do not decode (via DecodeB) to identical Mn,Mt strings. For Type 2 E&M encoding
schemes it should also be the case that if DecodeB(Mp,Me) is called followed by a call DecodeC(>),
then the next time DecodeB(Mp,Me) is called, DecodeB returns (⊥,⊥,⊥,⊥). For Type 3 E&M
encoding schemes it should also be the case that if Mp,Me were in the output of one invocation
of Encode, M ′

p,M
′
e were in the output of some later Encode invocation, and DecodeB(M ′

p,M
′
e) is

called followed by a call DecodeC(>), then a later call DecodeB(Mp,Me) returns (⊥,⊥,⊥,⊥).
Consider some interaction with the encoding and decoding algorithms. Let (M i

p, M
i
o,M

i
n, M i

e,

M i
t) denote the 5-tuple returned by Encode after its i-th invocation. Let (mj

p,m
j
e) denote the

parameters to the j-th call to DecodeB and let (mj
a,m

j
s, m

j
n,mj

t) denote the response. Then for
Type 4 encoding schemes it should be the case that (M i

n, M i
t) 6= (mj

n,mj
t) for all i 6= j. And, if

(M j
p ,M j

e) 6= (mj
p,m

j
e), then it should be the case that (M j

n, M j
t) 6= (mj

n,mj
t).

5.1 Summary of results

Chosen-plaintext privacy. We are now in a position to describe how to combine a standard
encryption scheme with a MAC in an Encrypt-and-MAC fashion in order to yield a CT that
preserves privacy under chosen-plaintext attacks. The following summary distills the important
properties from Theorem D.1.

Result 5.2 (Privacy of Encode-then-E&M) To construct a Type n Encode-then-E&M scheme
CT from an encryption scheme SE and a MAC MA, one should use a Type n E&M encoding
scheme EC that is e&m-coll-secure and that respects the IV requirements of SE and MA. If SE is
a secure encryption scheme (ind-cpa-secure), MA is a secure PRF or privacy preserving (ind-cpa-
secure), and all the components satisfy their respective consistency requirements, then CT will be
a cryptographic transform that provably provides privacy under chosen-plaintext attacks (i.e., CT
will be ct-priv-cpa-secure).

14

The statement in Theorem D.1 is actually more general than Result 5.2. In particular, the theorem
implies that if MA is ind-cpa-secure, then the encoding scheme need not be e&m-coll-secure. We
have chosen to formulate the result as we did because most popular MACs are not ind-cpa-secure,
and those that are require a nonce and hence any encoding scheme that respects the IV requirements
of the MAC is trivially e&m-coll-secure.

We point out that developers should have no trouble finding secure building blocks. For example,
many popular MACs are either proven to be or believed to be secure PRFs. And there are well-
known encryption schemes that are provably ind-cpa-secure. (For further discussions of the building
blocks, see Section 3.)

As noted above, it is very easy to create encoding schemes that are e&m-coll-secure (for example,
the encoding scheme can simply append a counter to the input to the MAC). Looking ahead, we
comment that in order to achieve some of our other goals (like resistance to replay attacks), we
will have to include counters in the input to the MAC anyway, so requiring such counters for the
e&m-coll property does not introduce additional overhead or costs for the CT.

Integrity. We now consider how to design Encode-then-E&M CTs that provably meet the CT
integrity goals. The following interprets the results in Theorem D.4.

Result 5.3 (Integrity of Encode-then-E&M) To construct a Type n Encode-then-E&M sch-
eme CT from an encryption scheme SE and a MAC MA, one should use a Type n E&M encoding
scheme EC that is e&m-secn-secure and that respects the IV requirements of MA. If the SE en-
cryption algorithm is length-preserving, MA is unforgeable (uf-secure), and all the components
satisfy their respective consistency requirements, then CT will be a cryptographic transform that
provably meets the ct-int-ctxtn integrity notion.

It is not hard to find underlying components that satisfy the properties described in Result 5.3.
As with Result 5.2, we comment that the results in Theorem D.4 are more general than Result

5.3. In particular, it is possible for a Type n CT to be ct-int-ctxtn-secure even if the underlying
encryption algorithm is not length-preserving (see Appendix D for details). However, unless one
formally verifies that it is safe to use a specific non-length preserving base encryption scheme,
one should closely follow the recommendation for using length-preserving encryption schemes. To
see the importance of this, we note that [4] shows that, in the context of SSH, if the underlying
encryption scheme is standard CBC mode (which generates the random IV itself and is therefore not
length-preserving), then there is an attack on the integrity of the transform. Also, if the underlying
encryption scheme is a CTR mode variant that maintains the counter itself (i.e., that doesn’t take
an IV as input) and includes that counter in the ciphertext, then an attacker with known-plaintext
access to the encapsulator can learn the keystream value generated by each initial counter and,
since the counter is not included in the input to the MAC, attack the integrity of the ciphertexts.

We believe that our length-preserving restriction on the encryption algorithm will not be a major
concern for many developers since many of them will want to avoid the extra packet expansion that
comes with using non-length-preserving encryption schemes anyway.

6 Encode-then-MtE

We now turn our attention to the Encode-then-MtE paradigm for CTs. The algorithms that
constitute an MtE encoding scheme ECMtE = (Encode,DecodeA, DecodeB, DecodeC), have the same
APIs as those in an E&M encoding scheme.

An encryption scheme, a MAC, and an appropriate MtE encoding scheme can be combined to
obtain an Encode-then-MtE CT as follows (see also Figure 3).

15

payload Mspayload Msassociated data Ma

ENCODE

ciphertext σ

ENCRYPT MAC

Mp

τ

Mo Me Mn MtMp

encapsulated packet

Figure 3: The Encode-then-MtE encapsulation method.

Construction 6.1 (Encode-then-MtE) Let ECMtE = (Encode,DecodeA, DecodeB, DecodeC), let
SE = (Ke, E ,D), and let MA = (Kt, T ,V) respectively be MtE encoding, encryption, and message-
authentication schemes with compatible message spaces (e.g., the outputs from Encode are suitable
inputs to E and T). Assume that T always produces tags of the same length. Let all states initially
be ε. We associate to these schemes an Encode-then-MtE cryptographic transform CT = (KG,
Encap, Decap) whose constituent algorithms are defined as follows:

Algorithm KG

Ke
R← Ke ; Kt

R← Kt

Return 〈Ke,Kt〉

Algorithm Encap〈Ke,Kt〉(Ma,Ms)
(Mp,Mo,Mn,Me,Mt)

R← Encode(Ma,Ms)
τ

R← T Mn

Kt
(Mt) ; σ

R← EMo

Ke
(〈Me, τ〉)

Return 〈Mp, σ〉

Algorithm Decap〈Ke,Kt〉(C)
If st =⊥ then return (⊥,⊥)
If there does not exist Mp, σ s.t. C = 〈Mp, σ〉 then

st ← Box ; return (⊥,⊥)
Parse C as 〈Mp, σ〉 ; Mo ← DecodeA(Mp)
If Mo = ⊥ then st ← Box ; return (⊥,⊥)
M ← DMo

Ke
(σ)

If there does not exist Me, τ s.t. M = 〈Me, τ〉 then
st ← Box ; DecodeC(⊥) ; return (⊥,⊥)

Parse M as 〈Me, τ〉
(Ma,Ms,Mn,Mt) ← DecodeB(Mp,Me)
If Ms = ⊥ then st ← Box ; return (⊥,⊥)
v ← VMn

Kt
(Mt, τ)

If v = 0 then st ← Box ; DecodeC(⊥) ; return (⊥,⊥)
DecodeC(>)
Return (Ma,Ms)

For a Type 4 CT, each boxed portion of the decapsulator should be ⊥. For all other types, the
boxed portion should be st. For the call to DecodeB(Mp,Me), recall that if any one of Ma,Ms,
Mn,Mt is ⊥, then they are all ⊥. Although only Decap explicitly maintains state in the above
pseudocode, the underlying encoding, encryption, and MAC schemes may also maintain state. We
require that the length of the combined string 〈Me, τ〉 depend only on the lengths of Me and τ .

Consistency requirements for MtE encoding schemes. Consider any two pairs of mes-
sages (Ma,Ms), (Ma,M

′
s), where |Ms| = |M ′

s|. Let (Mp,Mo,Mn,Me,Mt)
R← Encode(Ma,Ms) for

Encode in some state, and (M ′
p,M

′
o,M

′
n,M ′

e,M
′
t)

R← Encode(Ma,M
′
s) for Encode is in some (possibly

different) state. We require that |Me| = |M ′
e|. Consider also any two sequences of message pairs

(M1
a ,M1

s), (M2
a ,M2

s), . . . and (N1
a , N1

s), (N2
a , N2

s), Let Encode begin in its initial state and for

16

i = 1, 2, . . . let (M i
p,M

i
o,M

i
n,M i

e,M
i
t) = Encode(M i

a, M
i
s). Similarly, let Encode begin in its initial

state and for i = 1, 2, . . . let (N i
p, N

i
o, N

i
n, N i

e, N
i
t) = Encode(N i

a, N
i
s). If Encode is randomized, as-

sume that both sequences are generated using the same random tape. Unlike with E&M encoding
schemes, we do not require that the randomness used in each invocation be recoverable from the
output. Consider any index i. If |M j

s | = |N j
s | and M j

a = N j
a for all j ≤ i, then we require that

M i
p = N i

p and M i
o = N i

o.
The remainder of the consistency requirements for Type 1–Type 4 MtE encoding schemes are

the same as those for the corresponding E&M encoding schemes.

Security requirements for MtE encoding schemes. For Type n MtE encoding schemes
we consider a security notion, called mte-secn, that is identical to the e&m-secn notion defined for
Type n E&M encoding schemes. The formal descriptions are in Appendix C.

6.1 Summary of results

Chosen-plaintext privacy. The following shows how to ensure that an Encode-then-MtE
CT will provably preserve privacy under chosen-plaintext attacks. It interprets the result in
Theorem E.1. This result essentially says that an Encode-then-MtE CT should use an under-
lying encryption scheme that preserves privacy under chosen-plaintext attacks. As discussed in
Section 3, many such encryption schemes exist.

Result 6.2 (Privacy of Encode-then-MtE) To construct a Type n Encode-then-E&M scheme
CT from an encryption scheme SE and a MAC MA (that always produces tags of the same length),
one should use an MtE encoding scheme EC that respects the IV properties of SE . If SE is ind-cpa-
secure and all the components satisfy their respective consistency requirements, then CT will be
a cryptographic transform that provably provides privacy under chosen-plaintext attacks (i.e., CT
will be ct-priv-cpa-secure).

Integrity. The following distills the integrity results from Theorem E.4.

Result 6.3 (Integrity of Encode-then-MtE) To construct a Type n Encode-then-E&M scheme
CT from an encryption scheme SE and a MACMA, one should use a Type n MtE encoding scheme
EC that is mte-secn-secure and that respects the IV requirements of MA. If the SE encryption
algorithm is length-preserving, MA is unforgeable (uf-secure) and always outputs tags of the same
length, and all the components satisfy their respective consistency requirements, then CT will be a
cryptographic transform that provably meets the ct-int-ctxtn integrity notion.

We again comment that it is not hard to find base components that satisfy the requirements in
Result 6.3.

As with our Encode-then-E&M discussions, we note that the length-preserving requirements on
the base encryption scheme are not overly restrictive since developers will likely try to avoid the
extra packet expansion associated with non-length-preserving encryption algorithms anyway. In
some situations, it seems possible to prove that the use of some non-length-preserving encryption
schemes is safe (such proofs will likely make use of the fact that if the MAC is a secure PRF, then
part of the plaintext for the base encryption scheme will not be known to an attacker). Exploring
this specific scenario would take us afield from our current goal of modeling generic composition-
based CTs, and (if there is suitable interest from developers) may be a topic of future work.

7 Encode-then-EtM

We now consider the Encode-then-EtM paradigm. See Figure 4. For an EtM encoding scheme
ECEtM = (Encode, DecodeA,DecodeB, DecodeC), the encoding algorithm Encode, which may be

17

payload Mspayload Msassociated data Ma

ENCODE

ciphertext σ tag τ

ENCRYPT MAC

Mp

σ

σ
Mo Me Mn MtMp

encapsulated packet

Figure 4: The Encode-then-EtM encapsulation method.

both randomized and stateful, takes as input two messages Ma,Ms and returns a 5-tuple of mes-
sages (Mp,Mo,Mn,Me,Mt). These messages have essentially the same roles as in E&M and MtE
encoding schemes. An important difference is that Mt is combined with the output of the encryp-
tion algorithm before MACing. The decoding algorithms may also be stateful, but not randomized.
They may share state. DecodeA, on input a string Mp, outputs a 3-tuple (Mo,Mn,Mt), or (⊥,⊥,
⊥) on error (if one is ⊥ then all are ⊥). DecodeB, on input two messages Mp,Me, returns a pair
(Ma,Ms), or (⊥,⊥) on error (if either Ma or Ms is ⊥, then both are ⊥). The signature of DecodeC
is as before.

An encryption scheme, a MAC, and an appropriate EtM encoding scheme can be combined to
obtain an Encode-then-EtM CT as follows.

Construction 7.1 (Encode-then-EtM) Let ECEtM = (Encode,DecodeA, DecodeB, DecodeC), let
SE = (Ke, E ,D), and let MA = (Kt, T ,V) respectively be EtM encoding, encryption, and message-
authentication schemes with compatible message spaces (e.g., the outputs from Encode are suitable
inputs to E and T). Let all states initially be ε. We associate to these schemes an Encode-then-
EtM cryptographic transform CT = (KG,Encap, Decap) whose constituent algorithms are defined
as follows:

Algorithm KG

Ke
R← Ke ; Kt

R← Kt

Return 〈Ke,Kt〉

Algorithm Encap〈Ke,Kt〉(Ma,Ms)
(Mp,Mo,Mn,Me,Mt)

R← Encode(Ma,Ms)
σ

R← EMo

Ke
(Me) ; τ

R← T Mn

Kt
(〈Mt, σ〉)

C ← 〈Mp, σ, τ〉
Return C

Algorithm Decap〈Ke,Kt〉(C)
If st =⊥ then return (⊥,⊥)
If there does not exist Mp, σ, τ s.t. C = 〈Mp, σ, τ〉 then

st ← Box ; return (⊥,⊥)
Parse C as 〈Mp, σ, τ〉 ; (Mo,Mn,Mt) ← DecodeA(Mp)
If Mo = ⊥ then st ← Box ; return (⊥,⊥)
v ← VMn

Kt
(〈Mt, σ〉, τ)

If v = 0 then st ← Box ; DecodeC(⊥) ;
return (⊥,⊥)

Me ← DMo

Ke
(σ)

If Me = ⊥ then st ← Box ; DecodeC(⊥) ;
return (⊥,⊥)

(Ma,Ms) ← DecodeB(Mp,Me)
If Ms = ⊥ then st ← Box ; return (⊥,⊥)
DecodeC(>)
Return (Ma,Ms)

18

For a Type 4 CT, each boxed portion of the decapsulator should be ⊥. For all other types, the
boxed portion should be st. For the call to DecodeA(Mp), recall that if any one of Mo,Mn,Mt is
⊥, then they are all ⊥. For the call to DecodeB(Mp,Me), recall that if any one of Ma, Ms is ⊥,
then they are both ⊥. Although only Decap explicitly maintains state in the above pseudocode,
the underlying encoding, encryption, and MAC schemes may also maintain state.

Consistency requirements for EtM encoding schemes. Consider any two pairs of mes-
sages (Ma, Ms), (Ma,M

′
s) with |Ms| = |M ′

s|. Let (Mp,Mo, Mn,Me,Mt)
R← Encode(Ma,Ms) for

Encode in some state, and (M ′
p,M

′
o,M

′
n,M ′

e,M
′
t)

R← Encode(Ma,M
′
s) for Encode in some (possibly

different) state. We require that |Me| = |M ′
e|. Consider also any two sequences of message pairs

(M1
a ,M1

s), (M2
a ,M2

s), . . . and (N1
a , N1

s), (N2
a , N2

s), For i = 1, 2, . . . let (M i
p,M

i
o, M

i
n,M i

e, M
i
t) =

Encode(M i
a,M

i
s) and (N i

p, N
i
o, N

i
n, N i

e, N
i
t) = Encode(N i

a, N
i
s). Assume that each sequence is gener-

ated with Encode starting in its initial state. If Encode is randomized, assume that both sequences
are generated using the same random tape. Consider any index i. If |M j

s | = |N j
s | and M j

a = N j
a

for all j ≤ i, then we require that M i
p = N i

p, M i
o = N i

o, M i
n = N i

n, and M i
t = N i

t .
We make the following additional consistency requirements on ECEtM, depending on the type of

CT in question. Let (M1
a , M1

s), (M2
a ,M2

s), . . . be a sequence of messages and, beginning with Encode
in its initial state, let (M i

p,M
i
o,M

i
n,M i

e,M
i
t) = Encode(M i

a,M
i
s) for i = 1, 2, . . . up to MaxNumECEtM .

In what follows we use the notation Decode[ABC] to denote any one of the decoding algorithms.

Type 1. For any i and for any state of the decoder, we require that DecodeA(M i
p) = (M i

o,M
i
n,M i

t)
and DecodeB(M i

p,M
i
e) = (M i

a,M
i
s).

Type 2. For any distinct indices i, j, we require that (M i
p,M

i
e) 6= (M j

p ,M j
e).

For any i, we require that for any state of the decoder, DecodeA(M i
p) = (M i

o,M
i
n,M i

t). If
DecodeB has not been invoked with (M i

p,M
i
e) or if DecodeB has been invoked with (M i

p,M
i
e) but

for each such invocation the next call to Decode[ABC] was DecodeC(⊥), then DecodeB(M i
p,M

i
e) =

(M i
a,M

i
s).

Type 3. For any distinct indices i, j, we require that (M i
p,M

i
e) 6= (M j

p ,M j
e).

For any i, we require that for any state of the decoder, DecodeA(M i
p) = (M i

o,M
i
n,M i

t). Fur-
thermore, if DecodeB has not been invoked with (M j

p ,M j
e) for any j ≥ i, or if DecodeB has been

invoked with (M j
p ,M j

e), for some j ≥ i, but for each such invocation the next call to Decode[ABC]
was DecodeC(⊥), then DecodeB(M i

p,M
i
e) = (M i

a,M
i
s).

Type 4. For i = 1, 2, . . . and the decoder beginning in its initial state, let (mi
o,m

i
n,mi

t) =
DecodeA(M i

p) and (mi
a,m

i
s) = DecodeB(M i

p,M
i
e). We require that M i

a = mi
a, M i

s = mi
s, M i

o = mi
o,

M i
n = mi

n, and M i
t = mi

t for all i.

Security requirements for EtM encoding schemes. The security requirements for EtM
encoding schemes are formalized in Appendix C. For Type n EtM encoding schemes (i.e., EtM
encoding schemes used to construct Type n CTs) we define a security property called etm-secn. In
order for Type 1–Type 3 EtM encoding schemes to be etm-sec1–etm-sec3-secure, it must be the case
that if Mp and M ′

p are distinct strings, then they do not decode (via DecodeA) to identical Mn,Mt

strings. For Type 2 EtM encoding schemes it should also be the case that if DecodeB(Mp,Me) is
called followed by a call DecodeC(>), then the next time DecodeB(Mp,Me) is invoked, the response
is (⊥,⊥). For Type 3 EtM encoding schemes it should also be the case that if Mp, Me were in the
output of one invocation of Encode, M ′

p,M
′
e were in the output of some later Encode invocation,

and DecodeB(M ′
p,M

′
e) is called followed by a call DecodeC(>), then a later call DecodeB(Mp,Me)

returns (⊥,⊥).
Consider some interaction with the encoding and decoding algorithms. Let (M i

p, M
i
o,M

i
n, M i

e,

19

M i
t) denote the 5-tuple returned by Encode after its i-th invocation. Let mj

p denote the parameter
to the j-th call to DecodeA and let (mj

o, m
j
n,mj

t) denote the response. Then for Type 4 encoding
schemes it should be the case that (M i

n,M i
t) 6= (mj

n,mj
t) for all i 6= j. And, if M j

p 6= mj
p, then it

should be the case that (M j
n, M j

t) 6= (mj
n,mj

t).

7.1 Summary of results

Chosen-plaintext privacy. The following result, which interprets Theorem F.1, shows how to
design an Encode-then-EtM CT that preserves privacy under chosen-plaintexts attacks.

Result 7.2 (Privacy of Encode-then-EtM) To construct a Type n Encode-then-EtM scheme
CT from an encryption scheme SE and a MAC, one should use a Type n EtM encoding scheme
that respects the IV properties of SE . If all the components satisfy their respective consistency
requirements and SE is ind-cpa-secure, then CT will be a cryptographic transform that provably
provides privacy under chosen-plaintext attacks (i.e., CT will be ct-priv-cpa-secure).

Integrity. We now show how to construct Encode-then-EtM cryptographic transforms meeting
the CT integrity goals. The following distills the results from Theorem F.2.

Result 7.3 (Integrity of Encode-then-EtM) To construct a Type n Encode-then-EtM scheme
CT from an encryption scheme SE and a MAC MA, one should use a Type n etm-secn-secure
EtM encoding scheme that respects the IV requirements of MA. If all the components satisfy
their respective consistency requirements and MA is unforgeable (uf-secure), then CT will be a
cryptographic transform that provably meets the ct-int-ctxtn integrity notion.

Observe that for an Encode-then-EtM CT, the base encryption scheme is not required to be length
preserving. As for the previous paradigms, it is not hard to find base components that satisfy the
requirements in the above guidelines.

8 Conclusions and Future Work

In this paper we formalize what it means for different types of cryptographic transforms to be
secure, and we present guidelines for developers on how to build such cryptographic transforms.
The analyses and recommendations are done in a general way, thereby allowing developers to control
the specifics of how to instantiate the recommendations.

Although our results encompass many of the ways developers might naturally construct cryp-
tographic transforms, we do note that there are some ways of constructing CTs that cannot be
modeled with any of the three paradigms Encode-then-{E&M, MtE, EtM}. Consider, for example,
a cryptographic transform that first MACs some string and then uses the MAC tag as the IV for
the underlying encryption scheme. Such a construction falls outside of the three paradigms because
it introduces additional interconnections between the encryption and authentication components.
We also do not consider encryption schemes with chained initialization vectors since doing so would
require feedback from the the encryption component to the encoding component. Considering these
and other more advanced composition methods is the topic of future research.

Acknowledgments

We thank David McGrew and Chanathip Namprempre for comments.

20

References

[1] C. Beaver, T. Draelos, R. Schroeppel, and M. Torgerson. ManTiCore: Encryption with joint
cipher-state authentication, 2003. Cryptology ePrint Archive 2003/154, available at http:
//eprint.iacr.org/.

[2] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmet-
ric encryption. In Proceedings of the 38th Annual Symposium on Foundations of Computer
Science, pages 394–403. IEEE Computer Society Press, 1997.

[3] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining message
authentication code. In Y. Desmedt, editor, Advances in Cryptology – CRYPTO ’94, volume
839 of Lecture Notes in Computer Science, pages 341–358. Springer-Verlag, Berlin Germany,
Aug. 1994.

[4] M. Bellare, T. Kohno, and C. Namprempre. Authenticated encryption in SSH: Provably
fixing the SSH binary packet protocol. In Proceedings of the 9th Conference on Computer and
Communications Security, Nov. 2002.

[5] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. In T. Okamoto, editor, Advances in Cryptology
– ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages 531–545.
Springer-Verlag, Berlin Germany, Dec. 2000.

[6] M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to exploit nonces or redun-
dancy in plaintexts for efficient cryptography. In T. Okamoto, editor, Advances in Cryptology
– ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages 317–330.
Springer-Verlag, Berlin Germany, Dec. 2000.

[7] M. Bellare, P. Rogaway, and D. Wagner. A conventional authenticated-encryption mode, 2003.
Cryptology ePrint Archive 2003/069, available at http://eprint.iacr.org/.

[8] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC: Fast and secure message
authentication. In M. Wiener, editor, Advances in Cryptology – CRYPTO ’99, volume 1666
of Lecture Notes in Computer Science, pages 216–233. Springer-Verlag, Berlin Germany, Aug.
1999.

[9] B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuagnoux. Password interception in a SSL/TLS
channel. In D. Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin Germany, 2003.

[10] Y. Dodis and J. H. An. Concealment and its applications to authenticated encryption. In
E. Biham, editor, Advances in Cryptology – EUROCRYPT 2003, volume 2656 of Lecture
Notes in Computer Science, pages 312–329. Springer-Verlag, Berlin Germany, 2003.

[11] N. Ferguson, D. Whiting, B. Schneier, J. Kelsey, S. Lucks, and T. Kohno. Helix: Fast en-
cryption and authentication in a single cryptographic primitive. In T. Johansson, editor,
Fast Software Encryption 2003, Lecture Notes in Computer Science. Springer-Verlag, Berlin
Germany, 2003.

[12] V. Gligor and P. Donescu. Fast encryption and authentication: XCBC encryption and XECB
authentication modes. In Fast Software Encryption 2001, Lecture Notes in Computer Science.
Springer-Verlag, Berlin Germany, 2001.

21

[13] P. Hawkes and G. Rose. Primitive specification for SOBER-128, 2003. Cryptology ePrint
Archive 2003/081, available at http://eprint.iacr.org/.

[14] T. Iwata and K. Kurosawa. OMAC: One-key CBC MAC. In T. Johansson, editor, Fast Software
Encryption 2003, Lecture Notes in Computer Science. Springer-Verlag, Berlin Germany, 2003.

[15] C. Jutla. Encryption modes with almost free message integrity. In B. Pfitzmann, editor,
Advances in Cryptology – EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer
Science, pages 529–544. Springer-Verlag, Berlin Germany, May 2001.

[16] J. Katz and M. Yung. Unforgeable encryption and chosen ciphertext secure modes of opera-
tion. In B. Schneier, editor, Fast Software Encryption 2000, volume 1978 of Lecture Notes in
Computer Science, pages 284–299. Springer-Verlag, Berlin Germany, Apr. 2000.

[17] T. Kohno, J. Viega, and D. Whiting. The CWC authenticated encryption (associated data)
mode, 2003. Cryptology ePrint Archive 2003/106, available at http://eprint.iacr.org/.

[18] H. Krawczyk. The order of encryption and authentication for protecting communications (or:
How secure is SSL?). In J. Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume
2139 of Lecture Notes in Computer Science, pages 310–331. Springer-Verlag, Berlin Germany,
Aug. 2001.

[19] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for message authenticationa.
IETF Internet Request for Comments 2104, Feb. 1997.

[20] P. Rogaway. Authenticated-encryption with associated-data. In Proceedings of the 9th Con-
ference on Computer and Communications Security, Nov. 2002.

[21] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode of operation
for efficient authenticated encryption. In Proceedings of the 8th Conference on Computer and
Communications Security, pages 196–205. ACM Press, 2001.

[22] S. Vaudenay. Security flaws induced by CBC padding – applications to SSL, IPSEC, WTLS
. . . . In L. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332 of
Lecture Notes in Computer Science, pages 534–545. Springer-Verlag, Berlin Germany, 2002.

A Type 5 Cryptographic Transforms

Type 5 CTs are designed to ensure the in-order delivery of packets. Unlike Type 4 CTs, bogus
packets should be rejected, but should not cause the CT decapsulation algorithm to reject all future
(possibly legitimate) packets.

In what follows we present the consistency requirements for Type 5 cryptographic transforms,
as well as the consistency requirements for Type 5 E&M, MtE, and EtM encoding schemes. The
notions of privacy and integrity for Type 5 CTs are defined in Appendix B. The notions of security
for Type 5 encoding schemes are defined in Appendix C.

Consistency requirements. For a Type 5 CT, CT = (KG, Encap, Decap), let (M1
a ,M1

s), (M2
a ,

M2
s), . . . denote a sequence of message pairs and C1, C2, . . . denote their encapsulation under Encap

and any key K. We require that if DecapK has not yet accepted any message (i.e., DecapK is in
its initial state or has always returned (⊥,⊥)), then DecapK(C1) = (M1

a ,M1
s). For i ≥ 1, if the

only packets accepted by DecapK are C1, C2, . . . , Ci, in that order but with possibly some bad (and
rejected) packets in the sequence of messages given to DecapK , then DecapK(Ci+1) = (M i+1

a ,M i+1
s).

22

Consistency requirements for Type 5 E&M encoding schemes. We use the term calling
sequence to denote some sequence of calls to Decode[ABC] as they might appear in Construction 5.1.
I.e., a calling sequence consists of a call DecodeA(Mp) for some Mp and, if the response is not ⊥,
a call DecodeB(Mp,Me) for some Me, and, if the response is not (⊥,⊥,⊥,⊥), a call to DecodeC.
We say that (Mp,Me) is successfully decoded if, in a calling sequence, the responses of the first two
decoding algorithms are not ⊥ or (⊥,⊥,⊥,⊥), respectively, and DecodeC(>) is called.

Assume that the decoding algorithms are always called as per the calling sequence (e.g., a
DecodeB call is always followed by a DecodeC call unless DecodeB returns (⊥,⊥,⊥,⊥)). Fix i ≥ 0
and assume that the only messages that have been successfully decoded are (M1

p ,M1
e), . . . , (M i

p,M
i
e),

and that they were decoded in order. We require that after invoking DecodeA(M i+1
p) followed by

DecodeB(M i+1
p ,M i+1

e) and then DecodeC(>), the response to the first call is M i+1
o and the response

to the second call is (M i+1
a , M i+1

s ,M i+1
n , M i+1

t).

Consistency requirements for Type 5 MtE encoding schemes. We use the term calling
sequence to refer to some sequence of calls to Decode[ABC] as they might appear in Construction 6.1.
I.e., a calling sequence consists of a call DecodeA(Mp) and, if the response is not ⊥, either a call
DecodeC(⊥) finalizing the calling sequence, or a call DecodeB(Mp,Me) for some Me and, if the
response is not (⊥,⊥,⊥,⊥), a call to DecodeC. We say that (Mp,Me) is successfully decoded if,
in a calling sequence, the responses of decoding algorithms DecodeA and DecodeB are not ⊥ or
(⊥,⊥,⊥,⊥), respectively, and DecodeC(⊥) is never called.

Assume that the decoding algorithms are always called in successive calling sequences. Fix i ≥ 0
and assume that the only messages that have been successfully decoded are (M1

p ,M1
e), . . . , (M i

p,M
i
e),

and that they were decoded in order. We require that after invoking DecodeA(M i+1
p) followed by

DecodeB(M i+1
p ,M i+1

e) and then DecodeC(>), the response to the first call is M i+1
o and the response

to the second call is (M i+1
a , M i+1

s ,M i+1
n , M i+1

t).

Consistency requirements for Type 5 EtM encoding schemes. We use the term calling
sequence to refer to some sequence of calls to Decode[ABC] as they might appear in Construction 7.1.
Note that they have exactly the same form as calling sequences for Type 5 MtE encoding schemes.
We say that (Mp,Me) is successfully decoded if, in a calling sequence, the responses of decoding
algorithms DecodeA and DecodeB are not (⊥,⊥,⊥) or (⊥,⊥), respectively, and DecodeC(⊥) is
never called.

Assume that the decoding algorithms are always called in successive calling sequences. Fix i ≥ 0
and assume that the only messages that have been successfully decoded are (M1

p ,M1
e), . . . , (M i

p,M
i
e),

and that they were decoded in order. We require that after invoking DecodeA(M i+1
p) followed by

DecodeB(M i+1
p ,M i+1

e) and then DecodeC(>), the response to the first call is (M i+1
o ,M i+1

n , M i+1
t)

and the response to the second call is (M i+1
a ,M i+1

s).

B Formal Notions of Security

We use a concrete security treatment in order to model schemes based on finite objects such as
block ciphers and cryptographic hash functions. To an adversary attacking a given scheme we
associate a number, called the advantage, that measures its success in breaking the scheme with
respect to a particular notion of security. Intuitively, the smaller the adversary’s advantage against
a scheme, the stronger the scheme is with respect to that adversary. For each of the security notions
we consider here and in Appendix C, take “secure” to mean that the advantage (with respect to
that security notion) of any adversary with “reasonable” resources is “small”.

23

Cryptographic transforms. In what follows we present chosen-plaintext privacy and integrity
notions for cryptographic transforms. As noted in the body of this paper, if a Type n CT meets
the ct-int-ctxtn integrity notion and the ct-priv-cpa notion, then it will also provably meet a very
strong notion of privacy under chosen-ciphertext attacks (the proof of this fact follows the proof of
a similar result for authenticated encryption schemes in [5]). This means that it suffices to consider
the notions ct-priv-cpa and ct-int-ctxtn. We do not discuss chosen-ciphertext privacy notions further.

Let CT = (KG,Encap, Decap) be a cryptographic transform with key space KeySpCT, associated
data space AdSpCT, and message space MsgSpCT. For K ∈ KeySpCT and b ∈ {0, 1}, we denote
by EncapK(·,LR(·, ·, b)) an oracle that takes input Ma ∈ AdSpCT and M0,M1 ∈ MsgSpCT, and
returns EncapK(Ma, Mb) (i.e., the encapsulation of the associated data and either the left message
(b = 0) or the right message (b = 1)). In the tradition of [2], we call this oracle a left-or-right (LR)
encapsulation oracle. To define privacy of a cryptographic transform we consider adversaries that
have access to an LR encapsulation oracle EncapK(·,LR(·, ·, b)), for K returned by KG.

Definition B.1 (Privacy for cryptographic transforms) Let CT = (KG, Encap, Decap) be a
cryptographic transform and let b ∈ {0, 1}. Let A be an adversary with access to an LR encapsu-
lation oracle EncapK(·,LR(·, ·, b)). Assume A returns a bit. Consider the following experiment.

Experiment Expct-priv-cpa-b
CT (A)

K
R← KG

Run AEncapK(·,LR(·,·,b))

Reply to EncapK(Ma,LR(M0,M1, b)) queries as follows:
C

R← EncapK(Ma,Mb) ; A ⇐ C
Until A returns a bit d
Return d

We require that for all queries Ma,M0,M1 to EncapK(·,LR(·, ·, b)), |M0| = |M1|. We define the
ct-priv-cpa advantage of ct-priv-cpa adversary A as

Advct-priv-cpa
CT (A) = Pr

[
Expct-priv-cpa-1

CT (A) = 1
]
− Pr

[
Expct-priv-cpa-0

CT (A) = 1
]
.

Definition B.2 (Integrity for cryptographic transforms) Let CT = (KG, Encap, Decap) be a
cryptographic transform. Let A1, A2, A3, A4, and A5 be adversaries each with access to an encap-
sulation oracle EncapK(·, ·) and a decapsulation-verification oracle Decap∗K(·). The decapsulation-
verification oracle, on input C, invokes DecapK(C) and returns 1 if DecapK(C) 6= (⊥,⊥) and 0
otherwise. Consider the experiments defined below. Each experiment returns 1 if the adversary
“wins” and 0 otherwise.

Experiment Expct-int-ctxt1
CT (A1)

K
R← KG ; S ← ∅

Run A
EncapK(·,·),Decap∗K(·)
1

Reply to EncapK(Ma, Ms) queries as follows:
C

R← EncapK(Ma,Ms) ; S ← S ∪ {C} ; A1 ⇐ C
Reply to Decap∗K(C) queries as follows:

(Ma, Ms) ← DecapK(C)
If (Ma,Ms) 6= (⊥,⊥) and C 6∈ S then return 1 EndIf
If (Ma,Ms) 6= (⊥,⊥) then A1 ⇐ 1
Else A1 ⇐ 0 EndIf

Until A1 halts

24

Return 0

Experiment Expct-int-ctxt2
CT (A2)

K
R← KG ; S ← ∅ ; S′ ← ∅

Run A
EncapK(·,·),Decap∗K(·)
2

Reply to EncapK(Ma, Ms) queries as follows:
C

R← EncapK(Ma,Ms) ; S ← S ∪ {C} ; A2 ⇐ C
Reply to Decap∗K(C) queries as follows:

(Ma, Ms) ← DecapK(C)
If (Ma,Ms) 6= (⊥,⊥) and (C /∈ S or C ∈ S′) then return 1 EndIf
If (Ma,Ms) 6= (⊥,⊥) then S′ ← S′ ∪ {C} ; A2 ⇐ 1
Else A2 ⇐ 0 EndIf

Until A2 halts
Return 0

Experiment Expct-int-ctxt3
CT (A3)

K
R← KG ; i ← 0 ; j ← 0

Run A
EncapK(·,·),Decap∗K(·)
3

Reply to EncapK(Ma, Ms) queries as follows:
i ← i + 1 ; Ci

R← EncapK(Ma,Ms) ; A3 ⇐ Ci

Reply to Decap∗K(C) queries as follows:
(Ma, Ms) ← DecapK(C)
If (Ma,Ms) 6= (⊥,⊥) and C /∈ {Cj+1, . . . , Ci}then return 1 EndIf
If (Ma,Ms) 6= (⊥,⊥) then j ← index of C in {Cj+1, . . . , Ci} ; A3 ⇐ 1
Else A3 ⇐ 0 EndIf

Until A3 halts
Return 0

Experiment Expct-int-ctxt4
CT (A4)

K
R← KG ; i ← 0 ; j ← 0 ; phase ← 0

Run A
EncapK(·,·),Decap∗K(·)
4

Reply to EncapK(Ma, Ms) queries as follows:
i ← i + 1 ; Ci

R← EncapK(Ma,Ms) ; A4 ⇐ Ci

Reply to Decap∗K(C) queries as follows:
j ← j + 1 ; (Ma,Ms) ← DecapK(C)
If j > i or C 6= Cj then phase ← 1 EndIf
If (Ma,Ms) 6= (⊥,⊥) and phase = 1 then return 1 EndIf
If (Ma,Ms) 6= (⊥,⊥) then A4 ⇐ 1
Else A4 ⇐ 0 EndIf

Until A4 halts
Return 0

Experiment Expct-int-ctxt5
CT (A5)

K
R← KG ; i ← 0 ; j ← 0

Run A
EncapK(·,·),Decap∗K(·)
5

Reply to EncapK(Ma, Ms) queries as follows:
i ← i + 1 ; Ci

R← EncapK(Ma,Ms) ; A5 ⇐ Ci

Reply to Decap∗K(C) queries as follows:
(Ma, Ms) ← DecapK(C)

25

If (Ma,Ms) 6= (⊥,⊥) and (j + 1 > i or C 6= Cj+1) then return 1 EndIf
If (Ma,Ms) 6= (⊥,⊥) then j ← j + 1 ; A5 ⇐ 1
Else A5 ⇐ 0 EndIf

Until A5 halts
Return 0

For n = 1, . . . , 5, we define the ct-int-ctxtn advantage of ct-int-ctxtn adversary An as

Advct-int-ctxtn
CT (An) = Pr

[
Expct-int-ctxtn

CT (An) = 1
]
.

Privacy for symmetric encryption schemes and MACs. We now describe a notion of
chosen-plaintext privacy for encryption schemes and MACs. Although the notion is most intuitive
when applied to encryption schemes, there are some situations where having a privacy-preserving
MAC is useful.

To define the privacy of a symmetric encryption scheme or MAC SE = (K, E ,D), we give
an adversary access to a left-or-right (LR) encryption (or tagging) oracle EK(·,LR(·, ·, b)), for
some unknown key K returned by K and a bit b. On input I,M0,M1, where I ∈ IVSpSE and
M0,M1 ∈ MsgSpSE , the oracle returns EI

K(Mb). The following notion of security extends the notion
of left-or-right-indistinguishability from [2] to encryption schemes that explicitly take a nonce or
IV as input.

Definition B.3 (Privacy for symmetric encryption and MAC schemes) Let SE = (K, E ,
D) be a symmetric encryption scheme or a message-authentication scheme, and let b ∈ {0, 1}. Let
Acpa be an adversary with access to a left-or-right encryption (or tagging) oracle EK(·,LR(·, ·, b)).
Assume Acpa returns a bit. Consider the following experiment.

Experiment Expind-cpa-b
SE (Acpa)

K
R← K

Run A
EK(·,LR(·,·,b))
cpa

Reply to EK(I,LR(M0,M1, b)) queries as follows:
C

R← EI
K(Mb) ; Acpa ⇐ C

Until Acpa returns a bit d

Return d

We require that for all queries I,M0, M1 to EK(·,LR(·, ·, b)), |M0| = |M1|. We call the adversary
Acpa nonce-respecting if it never queries its oracle with the same nonce twice. We call the adversary
length-based IV-respecting if it chooses the first IV uniformly at random and independently and if
the subsequent IVs are computed using the encryption scheme’s length-based IV-deriving function.
We call the adversary random-IV-respecting if it only queries its oracle with IVs chosen uniformly
at random and independently. (As noted in the body, we can consider such adversaries in our
reductions because we can control how the encoding algorithms generate the IVs.) We define the
chosen-plaintext (ind-cpa) advantage of ind-cpa adversary A as

Advind-cpa
SE (Acpa) = Pr

[
Expind-cpa-1

SE (Acpa) = 1
]
− Pr

[
Expind-cpa-0

SE (Acpa) = 1
]
.

Intuitively, we say that the scheme SE preserves privacy against nonce-respecting (resp., length-
based IV-respecting or random-IV-respecting) adversaries if the advantage of all nonce-respecting
(resp., length-based IV-respecting or random-IV-respecting) adversaries with reasonable resources
is small.

26

Definition B.4 (Privacy for MACs under distinct chosen-plaintexts.) Let MA = (K, T ,
V) be a message-authentication scheme. Let b ∈ {0, 1}. Let A be an adversary with access to a
left-or-right tagging oracle TK(·,LR(·, ·, b)). Consider the following experiment.

Experiment Expind-dcpa-b
MA (A)

K
R← K

Run ATK(·,LR(·,·,b))

Reply to TK(I,LR(M0,M1, b)) queries as follows:
C

R← T I
K(Mb) ; A ⇐ C

Until A returns a bit d
Return d

We require that for all queries I, M0,M1 to the tagging oracle, |M0| = |M1|. If Ii, M i
0,M

i
1 is the i-th

oracle query, we require that for all indices j, k, j 6= k, (Ij ,M j
0) 6= (Ik,Mk

0) and (Ij , M j
1) 6= (Ik, Mk

1)
(i.e., all left queries are distinct and all right queries are distinct). We call the adversary A nonce-
respecting if it never queries its oracle with the same nonce twice. We define the distinct-chosen-
plaintext (ind-dcpa) advantage of ind-dcpa adversary A as

Advind-dcpa
MA (A) = Pr

[
Expind-dcpa-1

MA (A) = 1
]
− Pr

[
Expind-dcpa-0

MA (A) = 1
]
.

Intuitively, we say that MA preserves distinct-chosen-plaintext privacy against (nonce-respecting)
adversaries if the advantage of all (nonce-respecting) adversaries with reasonable resources is
small.

Unforgeability and pseudorandomness of MACs. We now specify the notions of unforge-
ability and pseudorandomness for MACs.

Definition B.5 (Unforgeability of MACs) Let MA = (K, T ,V) be a message-authentication
scheme. Let F be an adversary with access to a tagging oracle and a verification oracle. Consider
the experiment:

Experiment Expuf-cma
MA (F)

K
R← K ; S ← ∅

Run F TK(·,·),VK(·,·,·)

Reply to TK(I,M) queries as follows:
τ

R← T I
K(M) ; S ← S ∪ {(I,M, τ)} ; F ⇐ τ

Reply to VK(I, M, τ) queries as follows:
v ← VI

K(M, τ)
If v = 1 and (I, M, τ) 6∈ S then return 1
F ⇐ v

Until F halts
Return 0

We define the uf advantage of the forger via

Advuf-cma
MA (F) = Pr

[
Expuf-cma

MA (F) = 1
]
.

Definition B.6 (Pseudorandom functions) Let F : {0, 1}k × M → {0, 1}L be a family of
functions from some message space M to {0, 1}L, and let RandM→L denote the family of all
functions from M to {0, 1}L. Let D be an adversary with access to an oracle. Consider the
following experiment.

27

Experiment Expprf-b
F (D)

If b = 1 then K
R← {0, 1}k ; g ← FK

Else g
R← RandM→L EndIf

Run Dg

Reply to g(M) queries as follows:
D ⇐ g(M)

Until D returns a bit d
Return d

We define the prf advantage of prf adversary D as

Advprf
F (D) = Pr

[
Expprf-1

F (D) = 1
]
− Pr

[
Expprf-0

F (D) = 1
]
.

Relationships between notions. As shown in [3], if a MAC is a secure PRF, then it is also
uf-secure. (When we say a MAC MA = (K, T ,V) is a secure PRF, we mean that the MAC takes
no IVs (i.e., IVSpMA = {ε}) and the family of functions F = { TK(ε, ·) : K ∈ KeySpMA } is a
secure PRF.) We also comment that a number of popular MACs are proven to be secure PRFs.
Furthermore, as shown in [4], if a MAC is a secure PRF, then it also ind-dcpa-secure. The reader
may ask why we even introduce the ind-dcpa notion if most popular MACs are secure PRFs and
the PRF notion implies the ind-dcpa notion. The reason is that in our analysis we want to focus
on the minimum properties necessary in order to achieve our goals.

C Security Properties for Encoding Schemes

Definition C.1 (Security of E&M- and MtE-encoding schemes) Consider an E&M or MtE
encoding scheme EC = (Encode,DecodeA, DecodeB, DecodeC). Let Acpa be an adversary with access
to an encoding oracle Encode(·, ·) and for n = 1, . . . , 5, let An be an adversary with access to an
encoding oracle and decoding oracles DecodeA(·), DecodeB(·, ·), DecodeC(·) (the adversary may need
access to all decoding oracles since these may share state). Let (M i

a,M
i
s) denote an adversary’s

i-th encoding query and let (M i
p,M

i
o,M

i
n,M i

e,M
i
t) denote the response for that query. Let (mi

p,m
i
e)

denote An’s i-th DecodeB(·, ·) query and let (mi
a,m

i
s,m

i
n, mi

t) denote the response for that query.
Consider the following experiments. (The experiments Expmte-secn

EC (An) for MtE are identical
to the Expe&m-secn

EC (An) experiments for E&M.)

Experiment Expe&m-coll
EC (Acpa)

Run A
Encode(·,·)
cpa and if it makes two queries (M i

a,M i
s) and (M j

a ,M j
s) to Encode(·, ·) such that i 6= j and

(M i
n,M i

t) = (M j
n,M j

t)
then return 1 else return 0

Experiment Expe&m-sec1
EC (A1)

Run A1
Encode(·,·),DecodeA(·),DecodeB(·,·),DecodeC(·) and, if the following occurs:

— A1 makes a query (M i
a,M i

s) to Encode(·, ·) and a query (mj
p,m

j
e) to DecodeB(·, ·) such that

(M i
p,M

i
e) 6= (mj

p,m
j
e) and (M i

n,M i
t) = (mj

n, mj
t)

then return 1 else return 0

Experiment Expe&m-sec2
EC (A2)

Run A2
Encode(·,·),DecodeA(·),DecodeB(·,·),DecodeC(·) and, if one of the following occurs:

— A2 makes a query (M i
a,M i

s) to Encode(·, ·) and a query (mj
p,m

j
e) to DecodeB(·, ·) such that

(M i
p,M

i
e) 6= (mj

p,m
j
e) and (M i

n,M i
t) = (mj

n, mj
t)

— A2 twice makes a query (mj
p,m

j
e) to DecodeB(·, ·), the next Decode[ABC] query following the first of

28

these queries is a call DecodeC(>), and the response for the second of these queries is not (⊥,⊥,⊥,⊥)
then return 1 else return 0

Experiment Expe&m-sec3
EC (A3)

Run A3
Encode(·,·),DecodeA(·),DecodeB(·,·),DecodeC(·) and, if one of the following occurs:

— A3 makes a query (M i
a,M i

s) to Encode(·, ·) and a query (mj
p,m

j
e) to DecodeB(·, ·) such that

(M i
p,M

i
e) 6= (mj

p,m
j
e) and (M i

n,M i
t) = (mj

n, mj
t)

— A3 makes queries (mj
p, m

j
e) and (mj+l

p ,mj+l
e), l ≥ 1, to DecodeB(·, ·) such that the next

Decode[ABC] query following the first of these queries is a call DecodeC(>), the response for the
second of these queries is not (⊥,⊥,⊥,⊥), and for some i, k with k ≤ i,(mj

p,m
j
e) = (M i

p,M
i
e) and

(mj+l
p ,mj+l

e) = (Mk
p , Mk

e)
then return 1 else return 0

Experiment Expe&m-sec4
EC (A4)

Run A4
Encode(·,·),DecodeA(·),DecodeB(·,·),DecodeC(·) and, if one of the following occurs:

— A4 makes a query (M i
a,M i

s) to Encode(·, ·) and a query (mj
p,m

j
e) to DecodeB(·, ·) such that

i 6= j and (M i
n,M i

t) = (mj
n,mj

t)
— A4 makes a query (M j

a ,M j
s) to Encode(·, ·) and a query (mj

p,m
j
e) to DecodeB(·, ·) such that

(M j
p ,M j

e) 6= (mj
p, m

j
e) and (M j

n,M j
t) = (mj

n, mj
t)

then return 1 else return 0

Experiment Expe&m-sec5
EC (A5)

Run A5
Encode(·,·),DecodeA(·),DecodeB(·,·),DecodeC(·) and, if one of the following occurs:

— A5 makes a query (M i
a,M i

s) to Encode(·, ·) and a query (mj
p,m

j
e) to DecodeB(·, ·) such that

(M i
n,M i

t) = (mj
n,mj

t) and, prior to the j-th DecodeB(·, ·) query, A5 did not make exactly i− 1
DecodeB(·, ·) queries that returned messages (i.e., not ⊥) and that were followed by DecodeC(>) calls

— A5 makes a query (M i
a,M i

s) to Encode(·, ·) and a query (mj
p,m

j
e) to DecodeB(·, ·) such that

(M i
p,M

i
e) 6= (mj

p,m
j
e) and (M i

n,M i
t) = (mj

n, mj
t), and, prior to the j-th DecodeB(·, ·) query, A5 made

exactly i− 1 DecodeB(·, ·) queries that returned messages (i.e., not ⊥) and that were followed by
DecodeC(>) calls

then return 1 else return 0

We define the e&m-coll advantage of adversary Acpa, and, for n = 1, . . . , 5, the e&m-secn advantage
and the mte-secn advantage of adversary An, respectively, as follows:

Adve&m-coll
EC (Acpa) = Pr

[
Expe&m-coll

EC (Acpa) = 1
]

Adve&m-secn
EC (An) = Pr

[
Expe&m-secn

EC (An) = 1
]

Advmte-secn
EC (An) = Pr

[
Expmte-secn

EC (An) = 1
]
.

Definition C.2 (Security of EtM encoding schemes) Consider an EtM encoding scheme
EC = (Encode, DecodeA, DecodeB,DecodeC). For n = 1, . . . , 5, let An be an adversary with access
to an encoding oracle Encode(·, ·) and decoding oracles DecodeA(·), DecodeB(·, ·), DecodeC(·) (the
adversary may need access to all decoding oracles since these may share state). Let (M i

a,M
i
s)

denote an adversary’s i-th encoding query and let (M i
p, M

i
o,M

i
n,M i

e,M
i
t) denote the response for

that query. Let mi
p denote An’s i-th DecodeA(·) query and let (mi

o,m
i
n, mi

t) denote the response
for that query. Consider the following experiments.

Experiment Expetm-sec1
EC (A1)

Run A1
Encode(·,·),DecodeA(·),DecodeB(·,·),DecodeC(·) and, if the following occurs:

— A1 makes a query (M i
a,M i

s) to Encode(·, ·) and a query mj
p to DecodeA(·) such that

M i
p 6= mj

p and (M i
n,M i

t) = (mj
n,mj

t)
then return 1 else return 0

29

Experiment Expetm-sec2
EC (A2)

Run A2
Encode(·,·),DecodeA(·),DecodeB(·,·),DecodeC(·) and, if one of the following occurs:

— A2 makes a query (M i
a,M i

s) to Encode(·, ·) and a query mj
p to DecodeA(·) such that

M i
p 6= mj

p and (M i
n,M i

t) = (mj
n,mj

t)
— A2 twice makes a query (mj

p,m
j
e) to DecodeB(·, ·), the next Decode[ABC] query following the first of

these queries is a call DecodeC(>), and the response for the second of these queries is not (⊥,⊥)
then return 1 else return 0

Experiment Expetm-sec3
EC (A3)

Run A3
Encode(·,·),DecodeA(·),DecodeB(·,·),DecodeC(·) and, if one of the following occurs:

— A3 makes a query (M i
a,M i

s) to Encode(·, ·) and a query mj
p to DecodeA(·) such that

M i
p 6= mj

p and (M i
n,M i

t) = (mj
n,mj

t)
— A3 makes queries (mj

p, m
j
e) and (mj+l

p ,mj+l
e), l ≥ 1, to DecodeB(·, ·) such that the next

Decode[ABC] query following the first of these queries is a call DecodeC(>), the response for the
second of these queries is not (⊥,⊥), and for some i, k with k ≤ i, (mj

p,m
j
e) = (M i

p,M
i
e) and

(mj+l
p ,mj+l

e) = (Mk
p , Mk

e)
then return 1 else return 0

Experiment Expetm-sec4
EC (A4)

Run A4
Encode(·,·),DecodeA(·),DecodeB(·,·),DecodeC(·) and, if one of the following occurs:

— A4 makes a query (M i
a,M i

s) to Encode(·, ·) and a query mj
p to DecodeA(·) such that

i 6= j and (M i
n,M i

t) = (mj
n,mj

t)
— A4 makes a query (M j

a ,M j
s) to Encode(·, ·) and a query mj

p to DecodeA(·) such that
M j

p 6= mj
p and (M j

n,M j
t) = (mj

n,mj
t)

then return 1 else return 0

Experiment Expetm-sec5
EC (A5)

Run A5
Encode(·,·),DecodeA(·),DecodeB(·,·),DecodeC(·) and, if A5 only invokes Decode[ABC] in legitimate EtM

calling sequences (see Appendix A), and one of the following occurs:
— A5 makes a query (M i

a,M i
s) to Encode(·, ·) and a query mj

p to DecodeA(·) such that
(M i

n,M i
t) = (mj

n,mj
t) and, prior to the j-th DecodeA(·) query, A5 did not make exactly i− 1

Decode[ABC] calling sequences that ended in the call DecodeC(>)
— A5 makes a query (M i

a,M i
s) to Encode(·, ·) and a query mj

p to DecodeA(·) such that
M i

p 6= mj
p and (M i

n,M i
t) = (mj

n,mj
t), and, prior to the j-th DecodeA(·) query, A5 made exactly , i− 1

Decode[ABC] calling sequences that ended in the call DecodeC(>)
then return 1 else return 0

For n = 1, . . . , 5, we define the etm-secn advantage of adversary An as

Advetm-secn
EC (An) = Pr

[
Expetm-secn

EC (An) = 1
]
.

D Encode-then-E&M

Privacy. The following is our privacy result for Encode-then-E&M CTs. This theorem is inter-
preted in Result 5.2.

Theorem D.1 (Privacy of Encode-then-E&M) Let SE , MA, and EC be an encryption, a
message authentication, and an E&M encoding scheme, respectively. Let CT be the cryptographic
transform associated to them as per Construction 5.1. Then, given any ct-priv-cpa adversary S
against CT, there exist adversaries A, B, D, and C such that

Advct-priv-cpa
CT (S) ≤ Advind-cpa

SE (A) + Advind-dcpa
MA (D) +

2 ·Adve&m-coll
EC (C)

30

and

Advct-priv-cpa
CT (S) ≤ Advind-cpa

SE (A) + Advind-cpa
MA (B) .

Furthermore, A,B,D, and C use the same resources as S except that A’s, B’s, and D’s inputs
to their respective oracles may be of different lengths than those of S (due to the encoding). If
EC is nonce-respecting-for-encryption (resp., length-based IV-respecting-for-encryption or random-
IV-respecting-for-encryption), then A will be nonce-respecting (resp., length-based IV-respecting
or random-IV-respecting). Similarly, if EC is nonce-respecting-for-MACing, then B and D will be
nonce-respecting.

The proof of Theorem D.1 is similar to the proof of Lemma 6.4 in [4] and is omitted here. Differences
between Theorem D.1 and Lemma 6.4 in [4] include the following: we consider cryptographic
transforms that take associated data; we allow SE to take nonces, length-based IVs, or random-IVs
as input, and MA to take nonces as input; in order for the hybrid argument to work, we use the
fact that we can recover the randomness from the output of EC’s encoding function.

We remark that if the underlying MAC requires a nonce, then Adve&m-coll
EC (C) = 0. We also

note that some MACs (e.g., Carter-Wegman MACs) are ind-cpa- and ind-dcpa-secure.

Integrity. We begin by formalizing a new property for Encode-then-E&M CTs. As with our
use of the ind-dcpa notion, we use this security notion because we feel it important to accurately
describe the specific properties we require from the CT. In most situations, however, one does not
actually need to manipulate this definition but must merely invoke Lemma D.3.

Definition D.2 Fix n ∈ {1, . . . , 5}. Let SE , MA, and EC, respectively, be an encryption, a
message authentication, and an E&M encoding scheme. Let CT = (KG, Encap,Decap) be a Type
n cryptographic transform associated to them as per Construction 5.1. Let A be an adversary
with access to an encapsulation oracle EncapK(·, ·) and a decapsulation oracle DecapK(·). Let
(M i

a,M
i
s) denote the adversary’s i-th encapsulation oracle query, (M i

p,M
i
o,M

i
n,M i

e,M
i
t) denote the

encoding of that query, and 〈M i
p, σi, τi〉 denote the returned ciphertext. Let 〈mi

p, σ
′
i, τ

′
i〉 denote the

i-th decapsulation query (assuming it is parseable), and mi
o, m

i
n,mi

e,m
i
t,m

i
a,m

i
s denote the internal

values in the decapsulation process (or ⊥ if an error occurs during decapsulation). A “wins” if it
makes a decapsulation query 〈mj

p, σ′j , τ
′
j〉 such that (mj

o,m
j
e) = (M i

o,M
i
e) for some i ∈ {1, . . . , k}

but σ′j 6= σi (where k is the number of EncapK(·, ·) oracle queries made by A before A’s j-th
decapsulation query). We define the e&m-sp advantage of e&m-sp adversary A as

Adve&m-sp
CT (A) = Pr

[
K

R← KG : A “wins”
]

.

The following lemma shows that if the underlying encryption scheme is length preserving (such
as random-IV CBC mode as defined in the first example of a random IVed encryption scheme in
Section 3), then an adversary cannot win the game described in the above definition.

Lemma D.3 Fix n ∈ {1, . . . , 5}. Let SE , MA, and EC, respectively, be an encryption, a MAC,
and a Type n E&M encoding scheme. Let CT = (KG, Encap,Decap) be a Type n cryptographic
transform associated to them as per Construction 5.1. Let A be an e&m-sp adversary. If SE ’s
encryption operation is length-preserving, then

Adve&m-sp
CT (A) = 0 .

Proof: If SE ’s encryption operation is length-preserving, then given any IV I, the encryption
operation is bijective. This means A can never win.

We can now state our integrity result for Encode-then-E&M constructions. This theorem is inter-
preted in Result 5.3.

31

Theorem D.4 (Integrity of Encode-then-E&M) Fix n ∈ {1, . . . , 5}. Let SE , MA, and EC,
respectively, be an encryption, a MAC, and a Type n E&M encoding scheme. Let CT be a Type n
cryptographic transform associated to them as per Construction 5.1. Then, given any ct-int-ctxtn
adversary I against CT, there exist adversaries F , C, and S such that

Advct-int-ctxtn
CT (I) ≤ Advuf-cma

MA (F) + Adve&m-secn
EC (C) +

Adve&m-sp
CT (S) .

Furthermore, F , C, and S use the same resources as I except that F ’s messages to its oracles
may be of different lengths than I’s queries to its oracles (due to encoding) and C’s messages to
its decoding oracle may have slightly different lengths than I’s decapsulation queries. If EC is
nonce-respecting-for-MACing, then F will be nonce-respecting.

We remark that the proof of the above for Type 4 CTs is similar to the proof of Theorem 6.5 of [4]
except that we consider cryptographic transforms that accept associated data. Let us now consider
the proof for all types n ∈ {1, . . . , 5}.
Proof: Let F , C, and S be adversaries that run I and reply to I’s oracle queries using their own
oracles. In more detail, F presents I with encapsulation and decapsulation-verification oracles ex-
actly as in Construction 5.1 except that F uses its own oracles for handling tagging and verification
portions of Construction 5.1. Similarly, C runs I exactly as in Construction 5.1 except that it runs
all encoding and decoding operations through its own oracles. In the case of S, S simply passes all
of I’s encapsulation and decapsulation queries to its (S’s) own oracles.

Let (M i
a,M

i
s) denote I’s i-th oracle query, let (M i

p,M
i
o,M

i
n,M i

e, M
i
t) denote the encoding of that

query, and let 〈M i
p, σi, τi〉 denote the returned ciphertext. Additionally, let 〈mi

p, σ
′
i, τ

′
i〉 denote the

i-th decapsulation-verification query (assuming it is parseable), mi
o, m

i
n,mi

e,m
i
t,m

i
a,m

i
s denote the

internal values in the decapsulation process (or ⊥ if an error occurs during decapsulation). Let j
denote the index of I’s (first) winning query and let k denote the number of encapsulation oracle
queries performed at the time I wins.

Let E be the event that I wins. By partitioning the event E, we see that if I succeeds in forging,
then one of F , C, and S will also win their game.

For a Type 1 CT, let the event E be partitioned as follows:

E : I wins
E1 : E occurs and (mj

p, m
j
e, τ ′j) ∈ { (M i

p,M
i
e, τi) : 1 ≤ i ≤ k } // S wins

E2 : E occurs and (mj
p, m

j
e, τ ′j) 6∈ { (M i

p,M
i
e, τi) : 1 ≤ i ≤ k }

E2,1 : E2 occurs and (mj
n,mj

t , τ
′
j) 6∈ { (M i

n, M i
t , τi) : 1 ≤ i ≤ k } // F wins

E2,2 : E2 occurs and (mj
n,mj

t , τ
′
j) ∈ { (M i

n, M i
t , τi) : 1 ≤ i ≤ k } // C wins

The above partitioning shows that if the event E occurs, then one of E1, E2,1, or E2,2 must occur.
Note that if E1 occurs then S wins its game. This is because mj

p = M i
p (and therefore mj

o = M i
o by

consistency requirements on the encoding scheme) and τ ′j = τi but σ′j 6= σi (otherwise this would not
be a winning forgery for I). Consequently (mj

o,m
j
e) = (M i

o,M
i
e) but σ′j 6= σi. Also, if E2,1 occurs,

then F forges. This is clear from the fact that F never queried its tagging oracle with (mj
n,mj

t)
(or, if it did, the response wasn’t τ ′j). Lastly, if E2,2 occurs, then C wins its game. This is because
we know that there is some index i such that (mj

n,mj
t) = (M i

n,M i
t) but (mj

p,m
j
e) 6= (M i

p, M
i
e) (the

latter comes from the event E2). Together, this means that the probability that I wins is upper

32

bounded by the sum of the probabilities that C, F , and S win their respective games. The theorem
follows for Type 1 CTs.

Let us now consider the other types of cryptographic transforms. For Type 2 we partition E as
follows:

E : I wins
E1 : E occurs and (mj

p, m
j
e, τ ′j) ∈ { (M i

p,M
i
e, τi) : 1 ≤ i ≤ k }

E1,1 : E1 occurs and there does not exist i such that (mj
p, σ′j , τ

′
j) = (M i

p, σi, τi) // S wins

E1,2 : E1 occurs and there exists i such that (mj
p, σ′j , τ

′
j) = (M i

p, σi, τi) // C wins

E2 : E occurs and (mj
p, m

j
e, τ ′j) 6∈ { (M i

p,M
i
e, τi) : 1 ≤ i ≤ k }

E2,1 : E2 occurs and (mj
n,mj

t , τ
′
j) 6∈ { (M i

n, M i
t , τi) : 1 ≤ i ≤ k } // F wins

E2,2 : E2 occurs and (mj
n,mj

t , τ
′
j) ∈ { (M i

n, M i
t , τi) : 1 ≤ i ≤ k } // C wins

Above the partitioning of event E is the same as with Type 1 except that we further partition
event E1. If the event E1,1 occurs then S wins (since (mj

o,m
j
e) = (M i

o,M
i
e) for some index i but

σ′j 6= σi). In the case of E1,2, in order for I’s j-th decapsulation query to be considered a forgery, it
must be a replayed packet. The first it would have been accepted (by the consistency requirements
on cryptographic transforms). This means that the DecodeB failed to return all ⊥s in response to
its second query with mj

p,m
j
e, allowing C to win.

For Type 3 we partition E as with Type 2. As with Type 2, when E1,2 occurs C will win its game
(although C’s game with Type 3 encoding schemes is different than its game with Type 2 encoding
schemes).

For Type 4 we partition E as follows:

E : I wins
E1 : E occurs and (mj

n,mj
t) 6∈ {(M1

n,M1
t), . . . , (Mk

n ,Mk
t)} // F wins

E2 : E occurs and (mj
n,mj

t) ∈ {(M1
n,M1

t), . . . , (Mk
n , Mk

t)}
E2,1 : E2 occurs and either k < j or (mj

p,m
j
e) 6= (M j

p ,M j
e) // C wins

E2,2 : E2 occurs and k ≥ j and (mj
p,m

j
e) = (M j

p ,M j
e)

E2,2,1 : E2,2 occurs and τ ′j 6= τj and (mj
n,mj

t) 6∈ {(M1
n, M1

t), . . . , (M j−1
n ,M j−1

t),
(M j+1

n ,M j+1
t), . . . , (Mk

n ,Mk
t)} // F wins

E2,2,2 : E2,2 occurs and τ ′j 6= τj and (mj
n,mj

t) ∈ {(M1
n, M1

t), . . . , (M j−1
n ,M j−1

t),
(M j+1

n ,M j+1
t), . . . , (Mk

n ,Mk
t)} // C wins

E2,2,3 : E2,2 occurs and τ ′j = τj . // S wins

If events E1 or E2,2,1 occur then F wins its game; if events E2,1 or E2,2,2 occur, then C wins its
game; if event E2,2,3 occurs, S wins its game. Note that, for E2,2,3, we make use of the fact that,
as per Construction 5.1, once a forgery attempt is detected, the decapsulation algorithm enters the
state ⊥. This means that prior to the first forgery attempt all the decapsulation-verification queries
were in order and, since I’s j-th decapsulation-verification oracle query is a forgery, it must be the
case that σ′j 6= σj . (Note that, for Type 4 constructions, if the construction didn’t enter a halting
state we could not guarantee that σ′j 6= σj .) Additionally, by the consistency requirements on the
encoding scheme, mj

o = M j
o .

Let us now consider Type 5. As before, let j denote the index of I’s winning decapsulation-
verification-oracle query. Let l be the number of decapsulation-verification oracle queries (including

33

the j-th query) that succeeded in decapsulating (i.e., not returning (⊥,⊥)). We now partition E
as follows:

E : I wins
E1 : E occurs and (mj

n,mj
t) 6∈ {(M1

n,M1
t), . . . , (Mk

n ,Mk
t)} // F wins

E2 : E occurs and (mj
n,mj

t) ∈ {(M1
n,M1

t), . . . , (Mk
n , Mk

t)}
E2,1 : E2 occurs and either k < l or (mj

p,m
j
e) 6= (M l

p,M
l
e) // C wins

E2,2 : E2 occurs and k ≥ l and (mj
p,m

j
e) = (M l

p, M
l
e)

E2,2,1 : E2,2 occurs and τ ′j 6= τl and (mj
n,mj

t) 6∈ {(M1
n,M1

t), . . . , (M l−1
n ,M l−1

t),
(M l+1

n ,M l+1
t), . . . , (Mk

n ,Mk
t)} // F wins

E2,2,2 : E2,2 occurs and τ ′j 6= τl and (mj
n,mj

t) ∈ {(M1
n,M1

t), . . . , (M l−1
n ,M l−1

t),
(M l+1

n ,M l+1
t), . . . , (Mk

n ,Mk
t)} // C wins

E2,2,3 : E2,2 occurs and τ ′j = τl. // S wins

If events E1 or E2,2,1 occur then F wins its game. Furthermore, if events E2,1 or E2,2,2 occur, then
C wins its game. And if event E2,2,3 occurs, S wins its game. To see that S wins when E2,2,3

occurs, we use the consistency requirement on Type 5 encoding schemes that tell us that mj
o = M l

o.
Furthermore, it must be the case that σ′j 6= σl since otherwise the j-th decapsulation-verification
query would not be a forgery.

E Encode-then-MtE

Privacy. We now state out result for Encode-then-MtE constructions. This theorem is interpreted
in Result 6.2.

Theorem E.1 (Privacy of Encode-then-MtE) Let SE , MA, and EC, respectively, be an en-
cryption, a message authentication, and an MtE encoding scheme. Let CT be the cryptographic
transform associated to them as per Construction 6.1. Then, given any ct-priv-cpa adversary S
against CT, there exists an adversary A such that

Advct-priv-cpa
CT (S) ≤ Advind-cpa

SE (A) .

Furthermore, A use the same resources as S except that its input to its oracle may be of different
lengths than those of S (due to the encoding). If EC is nonce-respecting-for-encryption (resp.,
length-based IV-respecting-for-encryption or random-IV-respecting-for-encryption), then A will be
nonce-respecting (resp., length-based IV-respecting or random-IV-respecting).

The proof is similar to that of Theorem 4.5 in [5] and is omitted here. We remark that the proof
relies on the fact that Mp is independent of the content of the messages and that, when run with
the same random tape, the Mo values will also be the same. (These are consistency requirements
for MtE encoding schemes specified in Section 6.)

Integrity. We begin by formalizing a new property for Encode-then-MtE CTs, analogous to the
e&m-sp property for Encode-then-E&M CTs. In most situations, one does not actually need to
manipulate this definition but must merely invoke Lemma E.3.

Definition E.2 Fix n ∈ {1, . . . , 5}. Let SE , MA, and EC, respectively, be an encryption, a
message authentication, and an MtE encoding scheme. Let CT = (KG, Encap, Decap) be a Type n
cryptographic transform associated to them as per Construction 6.1. Let A be an adversary with
access to an encapsulation oracle EncapK(·, ·) and a decapsulation oracle DecapK(·). Let (M i

a,M
i
s)

34

denote the adversary’s i-th encapsulation oracle query, (M i
p,M

i
o,M

i
n,M i

e,M
i
t) denote the encoding

of that query, τi denote the intermediate tag, and 〈M i
p, σi〉 denote the returned ciphertext. Let

〈mi
p, σ

′
i〉 denote the i-th decapsulation query (assuming it is parseable), τ ′i denote the intermediate

tag, and mi
o,m

i
n,mi

e,m
i
t,m

i
a,m

i
s denote the internal values in the decapsulation process (or ⊥ if

an error occurs during decapsulation). A “wins” if it makes a decapsulation query 〈mj
p, σ′j〉 such

that (mj
o,m

j
e, τ ′j) = (M i

o,M
i
e, τi) for some i ∈ {1, . . . , k} but σ′j 6= σi (where k is the number of

EncapK(·, ·) oracle queries made by A before A’s j-th decapsulation query). We define the mte-sp
advantage of mte-sp adversary A as

Advmte-sp
CT (A) = Pr

[
K

R← KG : A “wins”
]

.

As in Appendix D, we present a lemma showing that if the underlying encryption scheme is length
preserving, then an adversary cannot win the game described above.

Lemma E.3 Fix n ∈ {1, . . . , 5}. Let SE , MA, and EC, respectively, be an encryption, a MAC,
and a Type n MtE encoding scheme. Let CT = (KG, Encap, Decap) be a Type n cryptographic
transform associated to them as per Construction 6.1. Let A be an mte-sp adversary. If SE ’s
encryption operation is length-preserving, then

Advmte-sp
CT (A) = 0 .

We now state our integrity result for Encode-then-MtE constructions, which is interpreted in
Result 6.3.

Theorem E.4 (Integrity of Encode-then-MtE) Let SE , MA, and EC, respectively, be an
encryption, a message authentication, and an MtE encoding scheme. Let CT be a Type n cryp-
tographic transform associated to them as per Construction 6.1. Then, given any ct-int-ctxtn
adversary I against CT, there exist adversaries F , C, and S such that

Advct-int-ctxtn
CT (I) ≤ Advuf-cma

MA (F) + Advmte-secn
EC (C) +

Advmte-sp
CT (S) .

Furthermore, F , C, and S use the same resources as I except that F ’s messages to its oracles
may be of different lengths than I’s queries to its oracles (due to encoding) and C’s messages to
its decoding oracle may have slightly different lengths than I’s decapsulation queries. If EC is
nonce-respecting-for-MACing, then F will be nonce-respecting.

Proof: The proof is based on the proof of Theorem D.4 for Encode-then-E&M constructions. The
partitioning of event E for Type 2 and Type 3 differs slightly from the partitioning we used in the
proof of Theorem D.4. The difference is because in the Encode-then-MtE construction the tag is
not sent in the clear. The revised partitioning is as follows:

E : I wins
E1 : E occurs and (mj

p, m
j
e, τ ′j) ∈ { (M i

p,M
i
e, τi) : 1 ≤ i ≤ k }

E1,1 : E1 occurs and there does not exist i such that (mj
p, σ′j) = (M i

p, σi) // S wins

E1,2 : E1 occurs and there exists i such that (mj
p, σ′j) = (M i

p, σi) // C wins

E2 : E occurs and (mj
p, m

j
e, τ ′j) 6∈ { (M i

p,M
i
e, τi) : 1 ≤ i ≤ k }

E2,1 : E2 occurs and (mj
n,mj

t , τ
′
j) 6∈ { (M i

n, M i
t , τi) : 1 ≤ i ≤ k } // F wins

E2,1 : E2 occurs and (mj
n,mj

t , τ
′
j) ∈ { (M i

n, M i
t , τi) : 1 ≤ i ≤ k } // C wins

35

The partitioning of E for Type 1, Type 4, and Type 5 is the same as in the proof of Theorem D.4.

F Encode-then-EtM

Privacy. We now state our result for Encode-then-EtM constructions. This theorem is interpreted
in Result 7.2.

Theorem F.1 (Privacy of Encode-then-EtM) Let SE , MA, and EC, respectively, be an en-
cryption, a message authentication, and an EtM encoding scheme. Let CT be the cryptographic
transform associated to them as per Construction 7.1. Then, given any ct-priv-cpa adversary S
against CT, there exists an adversary A such that

Advct-priv-cpa
CT (S) ≤ Advind-cpa

SE (A) .

Furthermore, A use the same resources as S except that its inputs to its oracle may be of different
lengths than those of S (due to the encoding). If EC is nonce-respecting-for-encryption (resp.,
length-based IV-respecting-for-encryption or random-IV-respecting-for-encryption), then A will be
nonce-respecting (resp., length-based IV-respecting or random-IV-respecting).

The proof is similar to that of Theorem 4.7 in [5]. We note that the proof relies on the fact that if the
encoding algorithm is run using the same random tape, on two pairs of messages (Ma,Ms), (Ma, Ns)
such that |Ms| = |Ns|, then the resulting values for Mp, Mo, Mn and Mt will be the same. (These
are consistency requirements for EtM encoding schemes specified in Section 7.)

Integrity. Our integrity results for Encode-then-EtM CTs is presented below. This theorem is
interpreted in Result 7.3.

Theorem F.2 (Integrity of Encode-then-EtM) Fix n ∈ {1, . . . , 5}. Let SE , MA, and EC,
respectively, be an encryption, a message authentication, and an EtM encoding scheme. Let CT
be a Type n cryptographic transform associated to them as per Construction 7.1. Then, given any
ct-int-ctxtn adversary I against CT, there exist adversaries F and C such that

Advct-int-ctxtn
CT (I) ≤ Advuf-cma

MA (F) + Advetm-secn
EC (C).

Furthermore, F and C use the same resources as I except that F ’s messages to its oracles may
be of different lengths than I’s queries to its oracles (due to encoding) and C’s messages to its
decoding oracle may have slightly different lengths than I’s decapsulation queries. If EC is nonce-
respecting-for-MACing, then F will be nonce-respecting.

Proof: The proof is similar to that of Theorem D.4 and Theorem E.4.

Let F and C be adversaries that run I and reply to I’s oracle queries using their own oracles.
Let (M i

a,M
i
s) denote I’s i-th encapsulation query, let (M i

p,M
i
o,M

i
n,M i

e,M
i
t) denote the encoding

of that query, and let 〈M i
p, σi, τi〉 denote the returned ciphertext. Let 〈mi

p, σ
′
i, τ

′
i〉 denote the i-th

decapsulation-verification query (assuming it can be parsed), and mi
o,m

i
n, mi

t,m
i
e,m

i
a,m

i
s denote

the internal values in the decapsulation process (or ⊥ if an error occurs during decapsulation).
Assume that I wins and let j denote the index of its (first) winning decapsulation-verification
query and k denote the number of encapsulation queries performed at the time I wins. We will
prove that either F or C also wins its game.

For Type 1, Type 2, Type 3, and Type 5 CTs, we consider the following events:

36

E : I wins
E1 : E occurs and (mj

n,mj
t , σ

′
j , τ

′
j) 6∈ { (M i

n,M i
t , σi, τi) : 1 ≤ i ≤ k } // F wins

E2 : E occurs and (mj
n,mj

t , σ
′
j , τ

′
j) ∈ { (M i

n,M i
t , σi, τi) : 1 ≤ i ≤ k } // C wins

Note that if event E occurs then either E1 or E2 must occur. Event E1 implies that the query
mj

n, 〈mj
t , σ

′
j〉, τ ′j is accepted by the verification oracle (otherwise 〈mj

p, σ′j , τ
′
j〉 would not be a winning

query for I) and is such that τ ′j was never returned by the tagging oracle as an answer to query
mj

n, 〈mj
t , σ

′
j〉. Therefore, if E1 occurs then F forges.

Assume that event E2 occurs. Then there exists an index i ≤ k such that (mj
n,mj

t , σ
′
j , τ

′
j) =

(M i
n,M i

t , σi, τi). For Type 1 CTs, it must be the case that mj
p 6= M i

p (otherwise 〈mj
p, σ′j , τ

′
j〉 would

not be a winning query for I). Since M i
p 6= mj

p and (M i
n,M i

t) = (mj
n,mj

t), C wins. For Type 2
and Type 3 CTs, C also wins if mj

p 6= M i
p. If mj

p = M i
p then for Type 2 CTs, it must be the case

that 〈mj
p, σ′j , τ

′
j〉 is a replayed packet (otherwise this would not be a winning query for I). The

consistency requirements for the encoding scheme and the encryption scheme, imply that (mj
p,m

j
e)

was decoded correctly (i.e., without returning (⊥,⊥)) twice. Therefore, C also wins in this case.
For Type 3 CTs, mj

p = M i
p implies that 〈mj

p, σ′j , τ
′
j〉 is a replayed or out-of-order packet (otherwise

this would not be a winning query for I). Again, the consistency requirements for the encoding
scheme and the encryption scheme, imply that C wins. For Type 4 CTs, it must be the case that
either i 6= j or mj

p 6= M j
p (if i = j and mj

p = M j
p , then j ≤ k and 〈mj

p, σ′j , τ
′
j〉 = 〈M j

p , σj , τj〉,
which contradicts the assumption that 〈mj

p, σ′j , τ
′
j〉 is a winning query for I). In both of these cases

C wins. Finally, for Type 5 CTs, let l be the number of decapsulation-verification oracle queries
prior to the j-th one that succeeded in decapsulating (i.e., did not return (⊥,⊥)). Then it must
be the case that either l 6= i − 1 or mj

p 6= M i
p (if l = i − 1 and mj

p = M i
p, then l + 1 ≤ k and

〈mj
p, σ′j , τ

′
j〉 = 〈M l+1

p , σl+1, τl+1〉, contradicting the assumption that 〈mj
p, σ′j , τ

′
j〉 is a winning query

for I). In both of these cases C wins. Hence for all CT types, E2 implies that C wins.

37

