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Abstract. We propose a new notion of cryptographic tamper evidence. A tamper-evident signature
scheme provides an additional procedure Div which detects tampering: given two signatures, Div can
determine whether one of them was generated by the forger. Surprisingly, this is possible even after the
adversary has inconspicuously learned (exposed1) some | or even all | the secrets in the system. In
this case, it might be impossible to tell which signature is generated by the legitimate signer and which
by the forger. But at least the fact of the tampering will be made evident.

We de�ne several variants of tamper-evidence, di�ering in their power to detect tampering. In all of
these, we assume an equally powerful adversary: she adaptively controls all the inputs to the legitimate
signer (i.e., all messages to be signed and their timing), and observes all his outputs; she can also
adaptively expose all the secrets at arbitrary times.
We provide tamper-evident schemes for all the variants and prove their optimality.
Achieving the strongest tamper evidence turns out to be provably expensive. However, we de�ne a
somewhat weaker, but still practical, variant: �-synchronous tamper-evidence (�-te) and provide �-te
schemes with logarithmic cost. Our �-te schemes use a combinatorial construction of �-separating sets,
which might be of independent interest.

We stress that our mechanisms are purely cryptographic: the tamper-detection algorithm Div is stateless
and takes no inputs except the two signatures (in particular, it keeps no logs), we use no infrastructure
(or other ways to conceal additional secrets), and we use no hardware properties (except those implied
by the standard cryptographic assumptions, such as random number generators).

Our constructions are based on arbitrary ordinary signature schemes and do not require random oracles.

1 Introduction

Key exposure is a well-known threat for any cryptographic tool. For signatures, exposed keys are
revoked after the exposure is detected. This detection of the exposure has previously been dealt
with outside the scope of cryptography (e.g., delegated to hardware and/or heuristic \forensics").
Indeed, if an adversary inconspicuously learned all the secret information within the system, it may
seem that the cryptographic tools without any remaining secrets are helpless against her.

This paper challenges this perception, by providing a cryptographic mechanism to detect the
adversary's presence within the system even after she has learned all the secrets. Thus, while it still
might not be possible to distinguish forger-generated signatures from the legitimate ones, our new
mechanisms can at least make the tampering evident.

1.1 Related work

Key exposures: avoidance and damage containment. Some mechanisms to minimize the
damage from break-ins have been proposed in the past. A representative sample of these methods
1 We say that a secret is exposed when it becomes known to the adversary. Exposure does not imply that the secrets

become publicly known. Moreover, nobody | except the adversary | is aware of the exposure taking place.
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and references include threshold [DF89,Ped91,BF97], pro-active [OY91,HJJ+97,CHH00], remotely-
keyed [Bla95,Bla96,Luc97,BFN98], key-insulated [DKXY02,DKXY], intrusion-resilient [IR02,Itk02],
all-or-nothing protection [CDH+00], etc. In these methods, secrets are typically protected by being
distributed (shared among multiple modules), thus minimizing the e�ect of partial exposures.

In this paper, however, we focus on the total and inconspicuous exposures of all the secrets
within the system at the time of the exposure. For such exposures, only forward-security has
being de�ned [And97,BM99] and achieved [And97,BM99,Kra00,AR00,IR01,MMM02,Itk02,KR02]
previously. None of these approaches provided any help in detecting whether an exposure occurred.

Fail-stop signatures. Tamper-evident signatures should be distinguished from the fail-stop
signatures [PP97]: the fail-stop signatures do not address the issue of dealing with an adversary
who learned the signer's secrets.2 Instead, they help only in the case of a computationally powerful
adversary. Namely, in the fail-stop model, each public key has a large number of valid private key
values corresponding to it. An adversary may be powerful enough to compute all of these private
keys, but still cannot determine which of these keys is known to the signer. Given a signature forged
by such an adversary, the signer, however, can repudiate it by proving that he does not know the
speci�c private key that must have been used to forge the signature. Thus, that approach too does
not o�er any help in the case when the signer's keys have been exposed.

Coercive exposures. Some previous work addresses the issue of dealing with the situations where
the secret keys are exposed under some coercive methods. In such cases, the coerced signer may use
some kind of subliminal communication embedded in the signature to inform the authorities that
the signature and/or secret keys were extracted from the signer under duress (see, e.g., [HJJY00]).

Another approach proposes monotone signature schemes [NPT01], which allow the veri�cation
algorithm to be updated after an attack. Namely, under duress the signer can reveal some (but
not all!) of his secrets to the adversary. These secrets enable the adversary to generate signatures
that are valid according to the current veri�cation algorithm. However, this veri�cation algorithm
can then be updated so that all the signatures generated by the legitimate signer (before or after
the update) remain valid, but all the signatures generated by the adversary are not valid under
the updated veri�cation. Again, this approach does not work in case of total exposures. Also, the
cost of these signatures is linear in the number of updates. This matches our least eÆcient (but
strongest) construction, except that we do not require the updates of the veri�cation algorithm. In
fact, our general lower-bounds proof in Sec. 4 can be modi�ed to yield the linear lower bounds for
the length of the monotone signatures3, thus proving optimality of the results of [NPT01]. To the
best of our knowledge no lower bounds for monotone signatures were shown previously. However,
slightly modifying the de�nition of the monotone signatures | to allow key evolution | allows
exponential performance improvement (see Sec. 5).

1.2 Our contribution: Tamper Evidence

In contrast to the previous work, we consider the situation where the adversary inconspicuously
learns all secrets of the system at some (unknown) points of time. Our goal is to provide security
after such undetected total exposures.

2 In fact, in [PP97], the authors write \Naturally, this possibility of distinguishing forged signatures from authentic
signatures only exists as long as forger has not stolen the signer's key". We show that this observation does not
fully apply to the key-evolving signatures (which were introduced after the above paper).

3 Indeed, some of our constructions (namely, the strongly tamper-evident schemes) bear similarity to some of those of
[NPT01]. It may be interesting to explore whether/how some of the optimizations proposed there for the monotone
signatures might be applied to improve performance of our schemes (up to constant factors).
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Intuition. Suppose the adversary learns all the secrets at time te. Then, clearly, she has all the
keys of the legitimate signer, and thus can generate valid signatures. However, if both the signer and
the adversary remain active (i.e., generate signatures) then the system has changed fundamentally:
instead of having a single entity | the legitimate signer | it now contains two active \versions"
running at the same time. Now, if the signer evolves in some randomized fashion, then the two
versions will diverge (see Fig. 1), and this divergence might be detectable.

State

S

Time

F

t
1 2et t

Fig. 1. Divergence of forger and signer. Signer's secrets are exposed at time te. It still may be possible to tell whether
signatures, generated at t1; t2 > te, originated from the di�erent \branches" (one signer's, the other { forger's).

Approach. Indeed, this is exactly what we capture in our de�nitions. We use key-evolving schemes
(de�ned originally for forward-security [BM99]) as the basis for our de�nitions. Any direct connec-
tion between tamper-evident and forward-secure signatures stops at that. In particular, it is crucial
for the tamper-evident schemes to use true randomness for the evolution. Even pseudo-randomness
is not suÆcient, as the seed might be exposed too. But for forward-secure signatures, randomness
| even if used, as in [BM99] | can be replaced with pseudo-randomness (as done in [Kra00] to
achieve some optimizations). Using true randomness in key evolution allows us to achieve and then
detect divergence of the signer's and forger's versions. Detection of this divergence is exactly what
constitutes tamper-evidence | thus the name Div for the new procedure.

Variants, constructions, lower bounds. We de�ne several variants of tamper-evidence. In
all the variants we allow the forger F to adaptively determine all the messages to be signed by the
legitimate signer S, and the times when they are to be signed, before and/or after the exposure
and/or the forgery.
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The strongest variant guarantees to detect divergence given any two signatures generated by S
and F at any two time periods after the exposure (it is impossible to do anything beyond forward-
security for the periods before the exposure4). We present a tamper-evident signature scheme with
this strong tamper-evidence property. This scheme imposes linear in time performance penalty.
Moreover, we prove that no better scheme is possible.

Fortunately, more eÆcient schemes are possible for slightly weaker notions of tamper-evidence:

Perfectly-synchronous tamper-evidence works with the same powerful adversary, but guarantees
to detect divergence only when the two given signatures are generated by the signer S and the forger
F at the same time period after the key exposure.

�-synchronous tamper-evidence generalizes the above notions: for such schemes, the tampering
is guaranteed to be detected as long as the time periods of the two signatures are relatively closer
to each other than to the exposure time. The exact relative proximity is characterized by the
parameter � (� = 0 yielding strong and � =1 | perfectly-synchronous tamper-evidence).

We present both perfectly- and �- synchronous tamper-evident schemes. The cost of the �rst
one is only twice that of an ordinary signature scheme. For any �nite constant � > 0, we construct
an �-synchronous tamper-evident scheme with a logarithmic factor overhead (with � appearing in
the base of the logarithm). We prove asymptotic optimality of all these schemes.

Next, in Section 2 we formally de�ne tamper-evident signature schemes and present our con-
structions in Section 3. In Section 4 we prove the optimality of our constructions by proving the
information-theoretic lower-bounds. Finally, in the Section 5 we discuss various aspects of the
tamper-evident signatures, including their potential applications. We also propose there some im-
provements for the monotone signatures.

2 De�nitions

2.1 Functional de�nitions

Key Evolving Signature Schemes. As discussed above, tamper-evident signatures must evolve
the signer's state, similarly to the forward-secure signatures, but for a di�erent reason.5 We therefore
use the de�nition of the key-evolving signature schemes proposed by Bellare and Miner [BM99].
Intuitively, in key-evolving schemes the public key remains unchanged, while the corresponding
secret key changes periodically. This de�nition is purely functional: security is addressed separately.

Key-evolving signature scheme is a quadruple of algorithms KESig=(Gen;Upd;Sign;Vf), where:

KESig:Gen, the probabilistic key generation algorithm.
Input: a security parameter k 2 N (given in unary as 1k); and the total number of periods T ;
Output: a pair (SK 0;PK ), the initial secret key and the public key;

KESig:Upd, the probabilistic secret key update algorithm.
Input: the secret key SK t for the current period t < T ;
Output: the new secret key SK t+1 for the next period t+ 1.

KESig:Sign, the (possibly probabilistic) signing algorithm.
Input: the secret key SK t= hSt; t; T i for the time period t � T and the messageM to be signed;
Output: the signature ht; sigi of M for time period t.

4 We can limit the window of vulnerability to the period of the exposure by combining tamper-evidence with forward-
security. This window of vulnerability is even stronger if tamper-evidence is combined with intrusion-resilience.

5 In particular, randomness of the evolution was optional for forward-security, but is crucial for tamper-evidence;
while one-wayness of the evolution was of central value for forward-security, but is optional for tamper-evidence.
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KESig:Vf, the veri�cation algorithm.
Input: the public key PK ; a message M ; and an alleged signature ht; sigi;
Output: valid if ht; sigi is a valid signature of M , or fail otherwise.

We require that KESig:VfPK (M;KESig:SignSK t
(M)) = valid for all M and t. For some schemes, T

is optional: i.e., T =1 [Itk02].

Divergence test. As discussed in the introduction, at the core of our tamper-evidence is the
observation that after the key exposure there in essence exist two versions of the signer within the
system | while under normal conditions (without compromises) there should be only one. Thus we
say that the exposure leads to divergence. To accommodate functionally the test of this condition
| which provides tamper-evidence | we add one more procedure to the above:

KESig:Div, the (possibly probabilistic) divergence test algorithm.
Input: two signatures ht1; �1i; ht2; �2i;
Output: foul if divergence is detected; ok otherwise.

2.2 Security de�nitions

Signature security. For the sake of brevity, we skip the signature security de�nition | it
is essentially the same as the classic de�nition of Goldwasser, Micali and Rivest's [GMR88] for
(ordinary) digital signatures secure against adaptive chosen message attacks (but as in the other
key-evolving schemes | such as forward-secure signatures | the authenticity includes the period
number: we consider the adversary successful even if she generates a signature di�ering only in the
period number from one of those generated by the legitimate signer).

Tamper-evidence. Say that KESig is self-consistent if KESig:Div(ht1; �1i; ht2; �2i) = ok for all
signature pairs ht1; �1i, ht2; �2i, provided that both signatures are generated by the same legitimate
signer S (legitimate signer does not deviate from the algorithms speci�ed by the scheme). We
consider only self-consistent schemes in this paper.

De�nition 1 (Adversary). Let F be an adversary and S the legitimate signer (for the given
instance of KESig, generated independently of F ). Allow F to adaptively obtain from S both signa-
tures for any time-period/message pairs (t;M), and secret keys SK i. Let te be the latest exposure
time period: maximum t such that F obtained SK t. Eventually (after polynomially-bounded time),
F must output two signatures fht1; �1i; ht2; �2ig, such that t1; t2 > te, and ht1; �1i was gener-
ated by S (upon F 's request), while ht2; �2i by F (i.e., the corresponding ht2;Mi was not queried
from S). We write FS ! hte; f(t1; �1); (t2; �2)gi. The probability that the adversary succeeds is

PrSuccKESig(F )
def
= Prob[KESig:Div(ht1; �1i; ht2; �2i)=okand KESig:Vf(hti; �ii)=valid; i=1; 2].

De�nition 2 (Tamper-Evidence Safety).
Let KESig be self-consistent, and let k be a security parameter. Let FS ! hte; f(t1; �1); (t2; �2)gi.
ft01; t

0
2g are t

0
e-safe (for KESig) if PrSuccKESig(F ) < 1=2k whenever te= t0e and ft1; t2g=ft

0
1; t

0
2g.

In other words, let S be the set of all triplets ht0e; ft
0
1; t

0
2gi such that if for any F as above

FS!hte; f(t1; �1); (t2; �2)gi and hte; ft1; t2gi2S then PrSuccKESig(F ) < 1=2k. ft01; t
0
2g are t

0
e-safe

i� ht0e; ft
0
1; t

0
2gi 2 S:

De�nition 3 (Strong Tamper-Evidence). KESig is strongly tamper-evident if t01 and t02 are
t0e-safe for all t01; t

0
2 > t0e.
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Below we consider two weaker versions of tamper-evidence. For both of them, we preserve the
power of the adversary. Unlike the strong tamper-evident schemes, both of these weaker versions
are allowed to miss some cases of tampering. The �rst | weaker | guarantees to detect tampering
only for simultaneous signatures:

De�nition 4 (Perfectly Synchronous Tamper-Evidence). KESig is perfectly-synchronous
tamper-evident if ft01; t

0
2g are t

0
e-safe for any t01; t

0
2; t

0
e, such that t01 = t02 > t0e.

This notion of synchronicity can be relaxed signi�cantly: namely, we can tolerate any distance
between the time periods t1; t2 of the signatures, as long as they are closer to each other than some
factor (1=�) of their distance to the exposure time te:

De�nition 5 (�-Synchronous Tamper-Evidence). KESig is �-synchronous tamper-evident if
ft01; t

0
2g are t

0
e-safe for any t01; t

0
2; t

0
e such that min(t01; t

0
2)� te > �jt01 � t02j.

Note: 0-synchronous tamper-evidence is equivalent to the strong one of de�nition 3, while perfectly
synchronous tamper-evidence of de�nition 4 corresponds to 1-synchronous tamper-evidence. We
abbreviate �-synchronous tamper-evident as �-te (e.g., KESig in de�nitions 5, 4, and 3 are �-te,
1-te, and 0-te, respectively).

Possible relaxations. One might wish to further relax the above de�nitions, e.g., to achieve
more eÆcient constructions. Such relaxations may include limiting adversary powers and/or allow-
ing not self-consistent schemes (i.e., \self-consistent" only with high probability), and/or allowing
the probability of missing divergence to be much greater (e.g., less than some constant, say 1%),
etc. In this paper we do not consider any such relaxations.

3 Constructions

This section proposes constructions for the strongly and synchronous tamper-evident schemes. The
subsequent Section 4 shows that these constructions are optimal (at least up to a constant factor),
by proving the matching lower bounds.

Our constructions are generic in the sense that they can be based on any ordinary signature
scheme. Also they easily generalize to allow addition of tamper-evidence to other signature models,
such as forward-secure or intrusion-resilient.

3.1 Strongly Tamper-Evident Scheme

Construction: Intuitively, this construction extends an ordinary signature by simply appending
to it a sequence of hsignature - public keyi pairs, where each signature is to be veri�ed using
the corresponding public key of the pair. The public keys (and corresponding secret keys) are
generated at random, one per time period. So, a tamper-evident signature at time t includes t of
these randomly generated (and uncerti�ed) public keys. When the signer's secrets are exposed at
time te, the adversary learns all the te secret keys corresponding to these te randomly generated
public keys. But after te, the signer generates new public-secret key pairs, such that the secret keys
for these are not known to the adversary. So, the adversary must either use di�erent public keys
for t > te | which enables detection of divergence, or must forge the signatures for the signer's
public keys for periods t > te, without knowing the corresponding secret keys.

Formally, let � be any ordinary signature scheme. Si denotes a speci�c instance of � with the
corresponding private and public keys Si:SK ;Si:PK generated by the � :Gen algorithm.
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De�ne KESig:Gen to be � :Gen! (KESig:SK 0 = S0:SK ;KESig:PK = S0:PK ).
KESig:Upd(SK t�1), for t � T , runs � :Gen! St:hPK ;SK i. These keys are appended to the current
key KESig:SK t�1 yielding the next period's key KESig:SK t = ht;S0:SK ; hSi:PK ;Si:SK ii=1 to ti.
KESig:Sign(SK t; t;M), for t � T , runs Si:Sign(SK ; ht;Mi) ! �i for all i = 0 to t, generating the
signature b�t;M = ht; �0; hSi:PK ; �iii=1 to ti.
KESig:Vf(PK ;M; ht; �0; : : :i), returns valid if Si:Vf(PK ; ht;Mi) for all i : 0 � i � t (i.e., all the
ordinary signatures are veri�ed).6

Finally, to test for foul play, KESig:Div(b�t1;M1
; b�0t2;M2

) �rst veri�es all the S-signatures (except
the very �rst; their numbers must match the corresponding time periods) in both b�t1;M1

and
b�0t2;M2

for ht1;M1i and ht2;M2i respectively, and if any are invalid, it returns foul.7 If all the S-
signatures are valid, it returns ok if one of the sequences hSi:PK ii=1 to t1 and hS 0j :PK ij=1 to t2

from b�t1;M2
; b�t2;M2

respectively, is a pre�x of the other. Otherwise, KESig:Div returns foul.

Claim. KESig is as secure as � (in the sense of [GMR88]).
Assuming that � is secure, KESig is strongly tamper-evident (0-te).

Proof sketch: The proof of signature security is trivial, because our signature simply contains the
ordinary signature, appended with random values, which can be easily simulated.

It is also obvious that our scheme is self-consistent.
For the tamper-evidence proof, reduce forging a signature S to F fooling the Div test. Suppose

that we are given a public key S:PK (and no corresponding secret key). Suppose that we are also
given a signature oracle access to the S-signer. The goal is to use forger F | violating the tamper-
evidence of our scheme | to generate an non-queried signature valid for S:PK . To achieve this,
guess a time period j(= t2) for which F will fool the Div test, and set Sj :PK  S:PK . All the
other parameters and keys are generated by the simulator at random. Then the (adaptive) queries
of F can be satis�ed by the simulator either directly or with the help of the S-signer oracle.

If F chooses te < j and t1; t2 � j, and succeeds in generating ht2; �2i which passes that KESig:Div
test, then �2 contains the S-signature for ht2;Mi for someM . If F succeeds, then ht2;Mi was never
queried, and thus is a forgery for the S. ut

Note: inclusion of t in ht;Mi is needed to prevent the truncation attack. Namely, F obtains
from the signature oracle for S the signature �1 = �ht1;Mi for the message M at time t1. Then, if t
is not included in all the messages for any t2 < t1, �2 = �ht2;Mi is a pre�x of �1, and thus can be
obtained from it by a simple truncation.

3.2 Perfectly Synchronous Tamper-Evident Scheme

Simple construction: Suppose we use the above scheme, but we are guaranteed that t1 = t2 = t.
Then we can actually drop all the keys and signatures hSi:PK ; �iii=1 to t�1, leaving only the \real"
signature S0 and the last period's appended signature hSt:PK ; �ti.

The proof above is essentially una�ected by this omission.
The bene�t to the eÆciency is, of course, dramatic: now a tamper-evident signature is just twice

as long as the ordinary one.

6 It is feasible to have the veri�cation of the uncerti�ed keys as part of Div, but it would require changing the
functional de�nition to pass the message to Div. Also, instead of signing the message with all the keys, it is
possible to form a certi�cation chain. This variant can be more eÆcient in some aspects: the chain does not
need to regenerated for each signature. Moreover, the chained construction must be used to achieve the universal
indisputability of the tamper evidence discussed in Section 5. However, the version in the main text appears slightly
simpler to discuss. In particular, the security proof of the chained version requires random oracles.

7 This may not be needed, if these signatures have been veri�ed by KESig:Vf, as suggested in the above footnote.
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Tree-based construction. A similar synchronous tamper-evident scheme can be obtained using
tree-based constructions for forward-secure and intrusion-resilient schemes [BM99,MMM02,Itk02].
Indeed these constructions served as one of the inspirations for this work. While not as eÆcient
as the previous synchronous tamper-evident scheme, the tree-based construction below provides a
somewhat more 
exible synchronicity restriction than the above scheme as well as some intuition
for our subsequent constructions for the �-synchronous schemes.

Intuitively all of these tree-based schemes construct a \certi�cation hierarchy" tree using S-
signatures. In this tree, each leaf corresponds to a time period and each node has a public-secret
key-pair corresponding to it. The root public key is the public key of the tree-based scheme. And
each signature is generated using the corresponding leaf keys and includes the certi�cation path
from the leaf public key to the root. Thus each tree-based scheme signature includes a logarithmic
number of ordinary signatures (all, but one, are computed at most once per period, independently
of the message being signed).

The hierarchy is actually not constructed all at once, but rather generated as needed.8

Our main observation here is that, as for the strong tamper-evidence, the S-key-pairs can be
generated in a randomized fashion (i.e., without pseudo-randomness, as in, say, [Kra00]). This way,
even though a similar (actually even slightly larger) number of keys is generated by S in t time
periods, each signature must include only O(lg t) of these keys, and a signature for each of these
O(lg t) keys. Moreover, all but one (leaf) signatures are computed only once per period (or even
less frequently) and are simply re-used for each signature.

t t te 21 t’2

Fig. 2. Tree-based scheme. Here, it is easy to see that the common pre�x of the paths from root to t1 and t2 is not
a pre�x of the path from the root to te. On the other hand, t1 and t02 do not have this property. Thus, Div test can
detect divergence for times t1; t2 but not t1; t

0

2.

8 The original tree-based schemes [BM99,MMM02,Itk02] stored the secret keys of the \right path" for the current
leaf (see [Itk02]). For the scheme here, since we are not concerned with forward-security, we can simplify to store
the secrets corresponding to the nodes on the path from the current leaf to the root (instead of its right path).
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Intuitively, this scheme has somewhat looser synchronicity restrictions than the perfectly syn-
chronous tamper-evidence: it can detect divergence as long as the paths from root to t1 and t2
diverge after they diverge with te (or in other words, the common pre�x of t1 and t2 is not a pre�x
of te, see Fig. 2). But it still falls short of the �-te.

Next, we generalize the above tree construction to achieve �-synchronous tamper-evidence for
any constant �. As for the tree construction, the cost is only O(lg t).

3.3 Separating Sets and �-TE Schemes

C-schemes. Let C be a collection of contiguous sets (intervals) of integers (time period numbers).
De�ne a C-scheme as follows: Let a di�erent public/secret key pair (SI :PK ;SI :SK ) correspond
to each interval I 2 C (the key pair is generated randomly at the beginning of the interval, and
is destroyed at the end of it). Each C-signature for the time period t contains a SI -signature
hSI :PK ; �Ii generated using SI :SK for each interval I 2 C such that t 2 I.9 Let C contain the
in�nite interval I0 of all the integers; SI0 :PK is the public key of the C-scheme.

Say, that C is an �-separating collection if for any te < t1; t2 : jte � min(t1; t2)j > �jt1 � t2j,
there exists an interval I 2 C such that t1; t2 2 I but te 62 I.

Lemma 1. Let C be an �-separating collection. Then C-scheme is �-synchronous tamper-evident.

Indeed, since C is �-separating, there exists I, such that t1; t2 2 I but te 62 I. Thus, both
signatures b�t1;M1

and b�t2;M2
must use the same public key SI :PK . However, SI :SK was not created

{ and thus was not known { at the time of the latest exposure te. Thus F cannot generate the
SI -signature for SI :PK (i.e., we could reduce forging S signatures to F ' success). ut

The 0-, �- and 1- te schemes of the above sections can be viewed as such C-schemes: For the
0-te scheme we used C0 = fft; t + 1; : : :g for all tg. Our 1-te scheme used C1 = fftg for all tg.
The tree-based schemes use Ctree = ffi2

j; : : : ; (i+1)2j � 1g for all j�0; i>0g.10

Thus, constructing �-te schemes is reduced to a combinatorial problem of constructing �-separating
collections; the number of intervals containing t, for each t, corresponds to the scheme's cost.

Constructing �-Separating Collections

Fact 1 For any t1; t2 : jt1 � t2j = d, any interval of size � d(1 + �) containing t1; t2 cannot also
contain such te that jte �min(t1; t2)j > �jt1 � t2j.

Indeed, jte �min(t1; t2)j > �jt1 � t2j = �d) jte �max(t1; t2)j > (1 + �)d.
Let � be any constant such that 0 < � < �. Intuitively, we de�ne intervals as in Fig. 3: the

intervals of length d(1+�) are going to be shifted by multiples of d(���). Then, for any t1; t2
such that d � jt1�t2j � d(1+�) there exists an interval (i) containing both t1 and t2 and (ii) not
containing te satisfying the �-synchronicity: jte �min(t1; t2)j > �jt1 � t2j.

For t1; t2 such that jt1�t2j > d(1+�) intervals of size > d(1+�)(1+�) are needed. In other
words the interval lengths can increase by a factor of 1 + �.

9 Thus, the signer must have the same secret key SI :SK for all t 2 I. But then if the signer has SI :SK during
periods t1 < t2, then this key must also be in the signer's possession during all periods t : t1 � t � t2. Therefore,
requiring that the sets in C be contiguous re
ects the security requirements in a natural way.

10 The version of Sec. 3.2 actually allowed i = 0; though using it with a balanced hierarchy also bounds t. If t is
unbounded, then allowing i = 0 leads to each t belonging to in�nite number of intervals and thus to an in�nite
number of keys for each time t. The Ctree above eliminates all intervals containing 0: these cannot help separation
of any t1; t2 from te. This results in each t belonging to only 1 + lg t intervals.
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(1+α)d

t1 t2

>d
<d(1+β)

dd (1+β) (α−β)

te

Fig. 3. Arranging intervals of size d(1+�). Any two points at distance � d(1+�) will be contained in one of the
intervals. At the same time, for any t1; t2, separated by distance > d, the interval containing t1; t2 cannot contain
such a te which would satisfy �-synchronicity requirement: jte � min(t1; t2)j > �jt1 � t2j. Thus, these intervals \take
care" of the signatures separated by distances >d and � d(1+�)

More formally, for level j, let dj
def
= (1+�)j. Then the corresponding interval length is Lj

def
=

dj(1+�), separating t1; t2 : dj � jt1�t2j � dj(1+�) from te. The shift �j
def
= dj(���). The intervals

for level are shifted by �j , guaranteeing that each pair t1; t2 as above belongs to some interval of
the level. De�ne interval I�;�;i;j = [i�j; : : : ; i�j +Lj � 1]. Note: jI�;�;i;j j = Lj. We refer to j as the
level of I�;�;i;j , and i as its displacement.

De�ne C�;� = fftg : t > 0g
S
fI�;�;i;j : i>0; j � 0g. Intuitively, the singleton sets deal with

the cases jt1�t2j = 0 (i.e., t1= t2), while the level j intervals handle the distances jt1�t2j such that
dj < jt1�t2j � dj+1.

In C�;�, no more than Lj=�j+1 = (1+�)=(���)+1 intervals of any one level contain each point
t. Moreover, t cannot be contained by any intervals of level j such that t < �j = (1+�)j(���).
Thus, t can be contained by intervals of at most log1+�(t=(�� �)) levels.

So, the total number of intervals containing time period t is upper-bounded by 1+((1+�)=(��
�) + 1) � log1+� t=(�� �). Using an C�;�-scheme to achieve �-synchronous tamper-evidence yields
the same upper-bound (plus one for the I0) on the number of keys used for and ordinary signatures
included in an �-te signature at time t. For constants � > � > 0, the above formula simpli�es to
O(lg t). We leave out of this version of the paper the question of computing the values of � for
the given �, which would yield the best constant factors hidden by the big-O notation. It may be
helpful to consider the case of 2-synchronicity: using � = 1, the number of keys stored and used at
time t is at most 2 + 4 lg t. Thus we have the following lemma:

Lemma 2. For any constant �>0 and ordinary signature scheme �, there exists an �-synchronous
tamper-evident scheme KESig, storing O(lg t) keys and generating O(lg t) �-signatures for each
KESig-signature at time t.

3.4 Lower Bounds For The Subset Separation Schemes

In this section we consider only tamper-evident schemes based on using an ordinary signature
scheme to separate S from F by requiring that for any te < t1; t2 there exists a signature scheme
instance with a public key p (using corresponding secret key s) such that the signatures for times
t1; t2 must both use this instance, but at time te the key s was not known to the signer (and thus to
the attacker, who exposed all the secrets of the signer at times � te). Such schemes are equivalent to
the subset separation schemes. We provide the lower-bounds for this restricted class. The general
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case lower bounds proven in the subsequent section subsume those of this section. However, we
leave them here due to their more intuitive clarity.

Claim. Any ste scheme requires at least t�2 ordinary keys/signatures to be used for each ste
signature at time t.11

Indeed, consider the signature at time t2 = t. Let t1 = t � 1, and te = t � 2. Then there must
be a key shared by t1, and t2, but not te. Now, let t1 = t � 2; te = t � 3. Then, there must be a
di�erent key shared by t; t � 2, but not t � 3. Let's make one more step before we generalize: let
t1 = t� 3; te = t� 4. Then, t and t� 3 must share a key not shared by te. This key must clearly be
di�erent from the previous. But it also must be di�erent from the one shared by t and t�1 but not
t� 2: because if the key is known at times t� 3 and t, then it must be known also at t� 2. Thus,
to generalize: for each 1 < i < t� 1, there must be a di�erent key shared by t1 = t and t2 = t� i
but not te = t� i� 1. ut

The above claim proves that our scheme (Sec. 3.1) is optimal within this general approach.

That claim generalizes to �-synchronicity:

Claim. For any constant �, any �-synchronous scheme for each signature at time t must generate

(lg t) ordinary signatures (using as many di�erent keys).

Indeed, let � > 0 be some arbitrarily small constant, set t2 = t, and initially let t1 = t�1 and te =
bt� (1 + �)� �c. There must be a key that separates t1; t2 from te. And it must be di�erent from
the one that separates t2 = t and t1 = bt� (1 + �)� �c from te = bt� (1 + �)� (1 + �)2 � 2�c.
This step can be iterated k times as long as t �

Pk
i=0(1+�)i = (1+�)k+1=�. Thus, at least 
(lg t)

ordinary signatures (all using di�erent keys) must be generated for each TE signature at time t. ut

The next section extends these lower bounds to the most general tamper-evident schemes.

4 General Lower Bounds

Let KESig be some key-evolving signature scheme with a divergence test, according to the de�nitions
in Sec. 2.1, and the adversary as in the De�nition 1.

De�ne support of t, suppKESig(t), to be a longest increasing chain t0; t1; : : : ; tl = t, such that
t; ti+1 are ti-safe in the given KESig scheme for all i : 0 � i � l � 1 (thus, tj ; tj0 are also ti-safe for
any j; j0 > i). Order of t, ordKESig(t), is de�ned to be the length l of this chain (measured in the
number of possible values for the exposure time period ti). For example, if KESig is ste, then for
any t, ordKESig(t) = t+ 1, since we can set ti = i� 1 for all 0 � i � t+ 1; exposure time te = �1
corresponds to having no exposure. For �-te KESig, ordKESig(t) = �(log1+� t).

Recall that k is the security parameter used in the de�nition of safety (Def. 2).

We now show that the length of the signature at time t must be at least ordKESig(t) � k.

Let t0; t1; : : : ; tl= t be a support of t. Let F 0 be any (forger) algorithm; unless stated otherwise,
we do not assume that F 0 has any access to the legitimate signer's secrets or even signatures. In this
respect, F 0 is signi�cantly weaker than the adversary F of the De�nition 1. Generate an instance
of KESig, and let the legitimate signer S generate signatures hti; �ii for some message m and all
i = 1; : : : ; l (signature for t0 is not needed, since t0 is used only as a possible exposure time period;
often t0=�1). For a signature ht; �i of some other messagem0 (6=m) at time t, de�ne event Ci(ht; �i)
to be KESig:Div(hti; �ii; ht; �i) = ok. Let C[j](ht; �i) be the conjunction of all Ci=1;:::;j(ht; �i).

11 This claim, including the proof, was suggested by Leonid Levin.
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Lemma 3. Prob[F 0 ! (t; �) : s.t. C[l](ht; �i) ] < 1=2kl

Proof: Let Pj
def
= Prob[F 0 ! (t; �) : s.t. C[j](ht; �i) ], for 0<j� l, and (vacuously) set P0=1. Then

the lemma states that Pl < 1=2kl.
Let F 0 ! (t; �). Then, Pj = Prob[Cj(ht; �i) jC[j�1](ht; �i)] � Prob[C[j�1](ht; �i)]. Substitute Pj�1 =
Prob[C[j�1](ht; �i)] into the above to get Pj = Prob[Cj(ht; �i)jC[j�1](ht; �i)] � Pj�1.
Let S(ti) be the full record of the legitimate signer's evolution up to and including time period ti
(that is the record of all the signer's information up until that time, including the secret keys).
Then, Prob[Cj(ht; �i)jC[j�1](ht; �i)] � Prob[F 0S(tj�1) ! (t; �0) : KESig:Div(htj; �ji; ht; �

0i) = ok] �

Prob[FS ! ht0e = tj�1; f(t
0
1 = tj; �

0
1 = �j); (t

0
2 = t; �02)gi : KESig:Div(ht

0
1; �

0
1i; ht

0
2; �

0
2i)= ok] < 1=2k,

where F is the forger from De�nitions 1, 2.
Putting it all together we get Pj < Pj�1 � 1=2

k. Thus, Pj < 1=2kj . ut
Let Cl(ht; �i) be true (e.g., ht; �i is generated by the legitimate signer S). If j�j < lk then a

random �0 = � with probability > 1=2lk, which contradicts Lemma 3. Thus, the following theorem
follows as a corollary from the Lemma:

Theorem 1. Let KESig:Sign! ht; �i for some message. Then j�j > k � ordKESig(t).

Since for the strongly tamper evident schemes ordKESig(t) = t + 1, and for the �-synchronous
schemes (for �nite �>0) ordKESig(t) = �(lg t), we get the following corollaries:

Corollary 1 (Strong Tamper-Evident Signature Length).
j�j > k � (t+ 1) for any ste KESig:Sign! ht; �i.

Corollary 2 (�-Synchronous Tamper-Evident Signature Length).
j�j = 
(k � lg t) for any �-te KESig:Sign! ht; �i.

5 Discussion

Universal evidence. We can modify our constructions (e.g., using chaining as suggested in the
footnote 6) so that any pair of signatures ht1; �1i; ht2; �2i, which are both valid for the same public
key but Div(ht1; �1i; ht2; �2i) = foul, represents a universal and indisputable evidence that either
the key has been exposed or that the signer is faking the key exposure.

PKI implications. Revocation is a traditional method of dealing with the compromised keys.
Whatever is the revocation mechanism, the key compromise must be detected �rst, and then the
revocation process followed appropriately. In all the traditional Public Key Infrastructures (PKIs),
some party | call it Revocation Authority (RA) | must be convinced that the key is indeed
compromised, before it actuates the revocation: typically, generating a revocation note12.

Whether RA is the signer himself or a CA (or other), convincing RA of the key compromise
using the previously existing methods is potentially cumbersome both logistically and legally.

In contrast, our schemes allow anyone to detect tampering and present a universally convincing
proof of the compromise: two valid but inconsistent signatures as above. In fact, such a proof may
serve as a revocation note. Moreover, the legitimate signer S can post on some publicly accessible
site his signature for each day (the signature is veri�ed before being posted to avoid denial of

12 This can be a self-signed \suicide note" (as in PGP or other approaches e.g., [Riv98]); in these cases RA is the
signer himself. Alternatively, in the more common PKIs, the revocation note is a part of a Certi�cate Revocation
List (CRL), or a similar data structure, which is generated and certi�ed by some (trusted?) third party, such as
the Certi�cation Authority (CA).
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service attack). This can serve as an automatic revocation check: instead of checking a CRL, the
veri�ers can use that signature with the Div algorithm to verify that S has not been compromised.
Of course, it is possible that immediately following an exposure, F manages to post her version of
the daily signature. But then S will be able to detect the tampering and resolve the con
ict by
out-of-band means. Alternatively, the server can allow more than one signature to be posted for
each user | if two of the posted signatures trigger the tamper-detection test Div, then the other
users of the system will also know that the corresponding secret key has been compromised. A
potential key-recovery mechanism would then be to allow the server to obtain S's signature over
some secure connection, and remove the previous signatures from the server. Then the veri�ers will
again be able to distinguish S's signatures from the forger's.

The public posting site can be replaced with a more \personal" version: in the case of regular
transactions between the signer and a recipient, the recipient can keep the latest signer's signature
as a \cookie". Then even after the exposure of the signer's secrets, the adversary cannot impersonate
the singer to the recipient (again, except immediately after the exposure).

Symmetric signatures and peer-to-peer setting. Since our constructions are generic, it is
possible to use symmetric signatures, and apply the tamper-evidence to the peer-to-peer setting.
The use of symmetric signatures only, however, requires the coordinated randomized key evolution
between the pair of connected nodes. This can be achieved under the condition that the adversary
cannot access some of the information exchanged by the legitimate parties. While this assumes a
weaker adversary than the one tolerated with the asymmetric signatures, this model can still be
practical in some situations and has the advantage of eÆciency o�ered by the symmetric signatures.

Combining tamper evidence with other features. The tamper-evidence can be combined
with other security improvements for signatures: e.g., our constructions can be easily generalized
to the forward-secure [BM99] or intrusion-resilient models [IR02,Itk02].

Monotone Signatures. The monotone signatures were de�ned by Naccache, Pointcheval and
Tymen in [NPT01]. These signatures allow updating the veri�cation algorithm. Then, the legitimate
signer can reveal some secrets under duress. This would allow the extortionist to generate signatures
valid under the current veri�cation algorithm. However, when the signer is released, he can update
the veri�cation algorithm in such a way that all the signatures generated by the legitimate signer
remain valid under the new veri�cation procedure as well; but the signatures generated by the
extortionist are no longer valid.

In contrast to tamper-evident or forward-secure signatures, the de�nitions of [NPT01] do not
include the possibility of also updating the signer keys. We propose to use key-evolving monotone
signatures instead. Then we can achieve the main features of the monotone signatures directly from
the tamper-evident signatures: The veri�cation algorithm would include checking for tampering
using Div and a signature for time period t� 1. The signer would maintain a \correct" version of
the secret key, as well as a version \diverged" in the current period. This divergence cannot be
detected against the signature of the \pre-diversion" period t� 1, used in the current veri�cation.
Thus, the signer can release that diverged version under duress. Afterwards, he can update the
veri�cation by including a signature for the period t. The attacker can be prevented from generating
earlier signatures by combining the above with the forward-security. This method is certainly not
any more eÆcient than the original constructions of [NPT01]; it is given here solely to illustrate the
connection of the two concepts. However, the eÆciency of the monotone signatures can be improved
by the key-evolution: this approach is further developed in [Itk03].

Other Potential Approaches. Suppose, we allow the Div test to occasionally miss divergence
and potentially give a false positive: returning foul on two legitimate signatures. In addition, assume
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that F cannot obtain any signatures from S after te. Then we may attempt the following approach.
De�ne some metric on the space of public keys, and restrict the distance between consecutive public
keys Si:PK ;Si+1:PK , so that there is still a multiple choice for the next public key. Then evolution
of the signer corresponds to a random walk. We can now try to utilize the property that within one
random walk, the distance between the positions at times t1; t2 is likely to be noticeably smaller
than the positions corresponding to t1 and t2 on two di�erent random walks (which diverged at
some previous time te). It is unlikely, however, that this approach will improve on our results above.

Other possible directions for future research include considering more interactive models of
authentication (e.g., zero-knowledge proofs of identity [FS86,FFS88]), and extending Div to use
more than two signatures to detect tampering (such an extension may impact some of the PKI-
related issues discussed in this section)
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