ID-based Signatures from Pairings on Elliptic
Curves

Kenneth G. Paterson

Information Security Group,
Mathematics Department, Royal Holloway University of London,
Egham, Surrey TW20 0EX, UK.

Kenny.Paterson@rhul.ac.uk

Abstract. We present an efficient identity-based signature scheme which
makes use of bilinear pairings on elliptic curves. Our scheme is similar
to the generalized ElGamal signature scheme. We consider the security
of our scheme.
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1 Introduction

The concept of identity-based cryptography is due to Shamir [1]. Recently, Boneh
and Franklin presented an identity-based encryption scheme based on properties
of the Weil and Tate pairings on elliptic curves [2, 3]. Their scheme appears to be
the first fully functioning, efficient and provably secure identity-based encryption
scheme. Such a scheme has the property that a user’s public-key is an easily
calculated function of his identity, while a user’s private key can be calculated
for him by a trusted authority. For reasons of efficiency and convenience, it
is desirable to have an identity-based signature scheme (where the signature
verification function is easily obtained from identity) which is able to make use
of the same underlying computational primitives and possibly the same keys.
Such a scheme, predating [2], was presented in [4]. Here we present an identity-
based signature scheme that is more computationally efficient than the scheme of
[4] and consider its security properties. Our scheme is similar to the generalized
ElGamal signature scheme [5, Section 11.73]. We note that our scheme is quite
distinct from the ordinary (i.e. non-identity-based) signature scheme considered
in [6].

2 Notation

We use the same notation as in [3]. We let G be an additive group of prime
order ¢ and G5 be a multiplicative group of the same order q. We assume the
existence of a bi-linear map é from G1 x G; to G5 with the property that the
discrete logarithm problems in both Gy and G2 are hard (in a sense made precise



in [3]). Typically, Gy will be a subgroup of the group of points on an elliptic curve
over a finite field, G5 will be a subgroup of the multiplicative group of a related
finite field and the map é will be derived from the Weil or Tate pairing on the
elliptic curve. We also assume that an element P € GG satisfying é(P, P) # 1¢,
is known. We refer to [3,7] for a fuller description of how these groups, maps
and other parameters should be selected in practice for efficiency and security.

We let ID be a string denoting the identity of a user and Hy, Hy and Hj
be public cryptographic hash functions. We require H; : {0,1}* — G, H» :
{0,1}* = Z, and H3 : G1 — Z,. In our scheme, a user’s public key for signature
verification is Qyp = Hi(ID), while his secret key for signature generation is
Dip =s-Qip, where s € Z, is a system-wide master secret known to a trusted
authority. These keys are the same as in the encryption scheme of [3]. If desired,
encryption and signature keys can be separated simply by concatenating the
string I D with extra bits which identify the keys’ intended functions. We also
assume that the value P, = s - P is publicly known.

3 The Scheme

To sign a message M (in the form of a bit-string of arbitrary length), a user first
chooses a random k € Zj and computes his signature on message M as the pair
(R, S) € G1 x G1, where:

R=Fk-P, S=Fk"'(Hy(M)-P+ Hs3(R)  Drp).

Here k=" is the inverse of k in Z7.

To verify a purported signature (U, V) on message M, the verifier computes
é(U, V) and compares it to the value é(P, P)H2(M) . ¢(P,,;, Qrp)H2(F). The sig-
nature is accepted if these values in G5 match, and rejected otherwise.

Notice that if (R, .S) is a valid signature on M, then we have

é(R,S) = é(k- P,k~' (Hy(M) - P + H3(R) - Dp))
(P,Hy(M)-P+ Hs(R)-D;p)
(P P)H2 (M) . 6( pub;QID)Hg(R)

where we have used the bi-linearity properties of é. Thus a valid signature will
always satisfy the check.

Our scheme is similar to the generalized ElGamal signature scheme [5, Section
11.73]. In that scheme, R is a group element and S is defined via arithmetic in
Z4 while verification takes place over a group of order g. By contrast, in our
scheme R and S are both defined over a group (typically, a subgroup of the
group of points on an elliptic curve) and verification is carried out via the map
é over a second group. The inclusion of Hs(R) is necessary in the generalised
ElGamal scheme to prevent some standard attacks. These attacks do not appear
to apply to our scheme, and it is possible to omit the term H3(R) from our
scheme without any apparent loss of security. However, this adaptation has the
property that if (R, S) is a valid signature on M, then so too is (£- R, ¢! -S) for
any ¢ € Z. This ‘homomorphic’ property does not appear to help an attacker
compute signatures on new messages.
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4 Efficiency

To compute a signature requires only two hash-function evaluations, some com-
putation in GGy, and an inversion modulo ¢. Signature generation does not require
computation of the map é.

The cost of verifying a signature is dominated by computations of the pairing
é. Notice that é(P, P) is a fixed value in G5 that can be computed once and
stored. Thus one é computation can be saved. Notice too that the value of
é(Ppub, Qrp) does not depend on the particular message M and so is fixed when
verifying any particular user’s signatures. Therefore the cost of computing this
pairing can be amortised over many verifications of that user’s signatures. In
this situation, we can justifiably claim that our scheme requires only a single é
computation. To verify a signature also requires two hash-function evaluations,
two exponentiations in GG and one multiplication in Gs.

Two or three pairing computations are required to verify a signature in the
scheme of [4] (depending on whether or not many signatures are being verified
for a fixed signer). Thus our scheme requires one pairing computation less than
the scheme of [4].

Our signatures have size twice the size of group elements in GG;. Standard
point compression techniques can be used to reduce their size by a factor of 2.

5 Security

The standard model for studying the security of signature schemes is that of
[8]. There an adversary A is challenged with a fixed public key, is allowed to
adaptively request signatures on messages of his choice and is tasked to produce
an existential forgery for that key, i.e. a valid signature for any previously un-
requested message. To capture security in the identity-based setting, we extend
this model by additionally allowing A to obtain private keys Dyp correspond-
ing to identities I D of his choice and to request signatures on messages and for
identities of his choice. The adversary’s task is now to produce a signature on
a message and identity of his choice, but not for an identity for which he has
requested the private key, and not for a message/identity combination for which
he has already requested a signature. The adversary’s advantage is the probabil-
ity that his final output is accepted as a valid signature for his choice of message
and identity.

We consider the security of our scheme against such an extended adversary
in the random oracle model [9]. Suppose then that the hash function H; is re-
placed by a random function in our scheme. Then we can show, using techniques
similar to those in the proof of [3, Lemma 4.6], that an adversary A with ad-
vantage e against our scheme can be used to build an adversary B who can
produce forgeries (in the sense of [8]) for a related, non-identity-based signature
scheme with advantage ¢/cN;. Here N; is the number of H; queries made by A
and c is a small constant. In this related scheme, the fixed public key is Q;p,
the corresponding private key is D;p and our verification condition holds. This



ordinary signature scheme resembles the generalized ElGamal signature scheme
[5, Section 11.73]. Thus the security of our identity-based scheme is linked to the
security of an ordinary signature scheme which resembles a well-known scheme.
If the ordinary scheme is secure, then so is ours, and we can say that the ability
to make private key extractions is of essentially no use to an adversary A.

6 Conclusion

We have presented an identity-based signature scheme using the same com-
putational primitives (and keys if so desired) as the identity-based encryption
scheme of Boneh and Franklin [3]. Our scheme is more efficient than a previ-
ous scheme [4] and we have related the security of our scheme to that of a non
identity-based signature scheme that closely resembles the generalized ElGamal
signature scheme.
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