Saltu al enhavo

Pra-Lie-alĝebro

El Vikipedio, la libera enciklopedio
La printebla versio ne plu estas subtenata kaj povas havi bildigajn erarojn. Bonvolu ĝisdatigi viajn retumilajn legosignojn kaj bonvolu anstataŭe uzi la defaŭltan retumilan printan funkcion.

En algebro, pra-Lie-alĝebro estas ĝeneraligo de la koncepto de asocieca alĝebro, plenumanta malfortigitan aksiomon de asocieco, kies komutilo tamen plenumas la aksiomon de alĝebro de Lie.[1]

Laŭ la usona fizikisto John Baez,

Citaĵo
 “Pra-Lie-alĝebro” sugestas alĝebron de Lie kun kelkaj kruroj fortiritaj. Sed efektive ĝi estas asocieca alĝebro kun kelkaj kruroj fortiritaj! Ĉiu asocieca algebro donas alĝebron de Lie — sed oni ne bezonas la plenan forton de la asocieca leĝo por ludi ĉi tiun ludon. Sufiĉas pra-Lie-alĝebro.” 
— John Baez[2]

Difino

Supozu ke estas komuta ringo. Do, dekstra pra-Lie-alĝebro super estas -modulo ekipita per dulineara operacio

plenumanta la jenan aksiomon:

.

En la ĉi-supra aksiomo, estas la asociilo

.

La maldekstra pra-Lie-alĝebro estas simile -modulo ekipita per dulineara operacio

plenumanta la malan aksiomon:

.

Ecoj

Dekstra (aŭ maldekstra) pra-Lie-alĝebro povas esti rigardata kiel alĝebro de Lie, se oni difinas la Lie-krampon kiel la komutilon:

.

Ekzemploj

Asocieca alĝebro (eble sen unuo) estas kaj dekstra pra-Lie-alĝebro kaj maldekstra pra-Lie-alĝebro, ĉar la asociilo simple nulas.

Historio

La koncepton pre-Lie-alĝebro enkondukis la usona matematikisto Murray Gerstenhaber (1927–).

Referencoj

  1. Zinbiel, Guillaume W., "Encyclopedia of types of algebras 2010", 2010. (angle)
  2. Baez, John. Week 299 (angle). This Week's Finds in Mathematical Physics (2010-06-12).

Eksteraj ligiloj