Algebro

studfako de matematiko pri strukturoj prezenteblaj ĉefe per egaleco kaj aliaj rilatoj inter esprimoj konsistantaj el simboloj

Algebro (de araba "al-jabr" tio signifas reunuiĝo de rompitaj partoj) [1] estas unu el la plej bazaj branĉoj de matematiko. Ĝi estas malfacile difinebla, sed ĝi estas karakterizita per uzo de simboloj por reprezenti iujn operaciojn, kaj de literoj por reprezenti nombrojn aŭ aliajn elementojn.

Vortdeveno

La vorto algebro devenas de la araba الجبر (al-jabr "restarigo") de la titolo de la libro Ilm al-jabr wa'l-muḳābala de Al-Ĥorazmi. La vorto origine rilatis al la kirurgia proceduro ripari rompitajn aŭ dismetitajn ostojn. La matematika signifo unue estis registrita en la dek-sesa jarcento.[2]

Klasifikado

Algebro povas esti dividita laŭ jenaj fakoj:

Historio

Algebro, same kiel aritmetiko kaj geometrio, estas unu el la plej malnovaj branĉoj de matematiko. La nomo devenas de la traktaĵo de mezazia matematikisto Al-Ĥorazmi, kies araba nomo estis Kitab al-ĝabr wa al-muqabalah.

Algebro aperis pro la bezonoj solvi algebrajn ekvaciojn. La solvo de unuagrada kaj duagrada ekvacioj estis konata jam en antikveco. En 16-a jarcento italaj matematikistoj trovis solvojn de triagrada kaj kvaragrada ekvacioj. En 1799 Gauss evidentigis, ke “ĉiu algebra ekvacio de n-a grado, havas n radikojn (solvojn), reelajn aŭ imaginarajn”.

En la komenco de 19-a jarcento Niels Abel kaj Évariste Galois pruvis, ke la solvojn de la ekvacio kun pli ol 4 gradoj, ne eblas esprimi per koeficiento de la ekvacio pere de la algebraj operacioj.

En moderna algebro oni pristudas ĝeneralan grupteorion, por kiuj estas difinita algebraj operacioj, similaj laŭ sia propreco al operacioj por nombroj. Tiaj operacioj povas esti plenumitaj por plurtermoj, vektoroj, matricoj.

Referencoj

Vidu ankaŭ

Eksteraj ligiloj