Jump to content

Examine individual changes

This page allows you to examine the variables generated by the Edit Filter for an individual change.

Variables generated for this change

VariableValue
Edit count of the user (user_editcount)
89700
Name of the user account (user_name)
'TakuyaMurata'
Type of the user account (user_type)
'named'
Age of the user account (user_age)
705324906
Groups (including implicit) the user is in (user_groups)
[ 0 => 'extendedconfirmed', 1 => 'ipblock-exempt', 2 => 'reviewer', 3 => '*', 4 => 'user', 5 => 'autoconfirmed' ]
Whether or not a user is editing through the mobile interface (user_mobile)
false
Whether the user is editing from mobile app (user_app)
false
Page ID (page_id)
9856577
Page namespace (page_namespace)
0
Page title without namespace (page_title)
'Point-finite collection'
Full page title (page_prefixedtitle)
'Point-finite collection'
Edit protection level of the page (page_restrictions_edit)
[]
Page age in seconds (page_age)
558817062
Action (action)
'edit'
Edit summary/reason (summary)
'ref'
Time since last page edit in seconds (page_last_edit_age)
362
Old content model (old_content_model)
'wikitext'
New content model (new_content_model)
'wikitext'
Old page wikitext, before the edit (old_wikitext)
'{{short description|Topological concept for collections of sets}} In [[mathematics]], a collection or [[family of sets|family]] <math>\mathcal{U}</math> of subsets of a [[topological space]] <math>X</math> is said to be '''point-finite''' if every point of <math>X</math> lies in only finitely many members of <math>\mathcal{U}.</math>{{sfn|Willard|2004|p=145–152}}<ref name="w">{{citation|title=General Topology|series=Dover Books on Mathematics|first=Stephen|last=Willard|publisher=Courier Dover Publications|year=2012|pages=145–152|url=https://books.google.com/books?id=UrsHbOjiR8QC&pg=PA145|isbn=9780486131788|oclc=829161886}}.</ref> A [[metacompact space]] is a topological space in which every [[open cover]] admits a point-finite open [[Refinement (topology)|refinement]]. Every [[locally finite collection]] of subsets of a topological space is also point-finite. A topological space in which every open cover admits a locally finite open refinement is called a [[paracompact space]]. Every paracompact space is therefore metacompact.<ref name="w"/> == Dieudonné's theorem == Since a paracompact (Hausdorff) space is normal, the next theorem applies in particular to a paracompact space. {{math_theorem|math_statement=Let <math>X</math> be a [[normal space]]. Then each point-finite open cover of <math>X</math> has a [[shrinking (topology)|shrinking]]; that is, if <math>\{ U_i \mid i \in I \}</math> is an open cover indexed by a set <math>I</math>, there is an open cover <math>\{ V_i \mid i \in I \}</math> indexed by the same set <math>I</math> such that <math>\overline{V_i} \subset U_i</math> for each <math>i \in I</math>.}} ==References== {{reflist}} *{{Citation | last1=Dieudonné | first1=Jean | author1-link=Jean Dieudonné | title=Une généralisation des espaces compacts | mr=0013297 | year=1944 | journal=[[Journal de Mathématiques Pures et Appliquées]]|series= Neuvième Série | issn=0021-7824 | volume=23 | pages=65–76}} * {{Willard General Topology}} <!--{{sfn|Willard|2004|p=}}--> * {{Willard General Topology|year=2012}} <!--{{sfn|Willard|2012|p=}}--> {{PlanetMath attribution|id = 8398|title = point finite}} {{topology}} {{topology-stub}} [[Category:General topology]] [[Category:Families of sets]]'
New page wikitext, after the edit (new_wikitext)
'{{short description|Topological concept for collections of sets}} In [[mathematics]], a collection or [[family of sets|family]] <math>\mathcal{U}</math> of subsets of a [[topological space]] <math>X</math> is said to be '''point-finite''' if every point of <math>X</math> lies in only finitely many members of <math>\mathcal{U}.</math>{{sfn|Willard|2004|p=145–152}}<ref name="w">{{citation|title=General Topology|series=Dover Books on Mathematics|first=Stephen|last=Willard|publisher=Courier Dover Publications|year=2012|pages=145–152|url=https://books.google.com/books?id=UrsHbOjiR8QC&pg=PA145|isbn=9780486131788|oclc=829161886}}.</ref> A [[metacompact space]] is a topological space in which every [[open cover]] admits a point-finite open [[Refinement (topology)|refinement]]. Every [[locally finite collection]] of subsets of a topological space is also point-finite. A topological space in which every open cover admits a locally finite open refinement is called a [[paracompact space]]. Every paracompact space is therefore metacompact.<ref name="w"/> == Dieudonné's theorem == Since a paracompact (Hausdorff) space is normal, the next theorem applies in particular to a paracompact space. {{math_theorem|math_statement=<ref>{{harvnb|Dieudonné|1994|loc=Théorème 6.}}</ref> Let <math>X</math> be a [[normal space]]. Then each point-finite open cover of <math>X</math> has a [[shrinking (topology)|shrinking]]; that is, if <math>\{ U_i \mid i \in I \}</math> is an open cover indexed by a set <math>I</math>, there is an open cover <math>\{ V_i \mid i \in I \}</math> indexed by the same set <math>I</math> such that <math>\overline{V_i} \subset U_i</math> for each <math>i \in I</math>.}} ==References== {{reflist}} *{{Citation | last1=Dieudonné | first1=Jean | author1-link=Jean Dieudonné | title=Une généralisation des espaces compacts | mr=0013297 | year=1944 | journal=[[Journal de Mathématiques Pures et Appliquées]]|series= Neuvième Série | issn=0021-7824 | volume=23 | pages=65–76}} * {{Willard General Topology}} <!--{{sfn|Willard|2004|p=}}--> * {{Willard General Topology|year=2012}} <!--{{sfn|Willard|2012|p=}}--> {{PlanetMath attribution|id = 8398|title = point finite}} {{topology}} {{topology-stub}} [[Category:General topology]] [[Category:Families of sets]]'
Unified diff of changes made by edit (edit_diff)
'@@ -8,5 +8,5 @@ Since a paracompact (Hausdorff) space is normal, the next theorem applies in particular to a paracompact space. -{{math_theorem|math_statement=Let <math>X</math> be a [[normal space]]. Then each point-finite open cover of <math>X</math> has a [[shrinking (topology)|shrinking]]; that is, if <math>\{ U_i \mid i \in I \}</math> is an open cover indexed by a set <math>I</math>, there is an open cover <math>\{ V_i \mid i \in I \}</math> indexed by the same set <math>I</math> such that <math>\overline{V_i} \subset U_i</math> for each <math>i \in I</math>.}} +{{math_theorem|math_statement=<ref>{{harvnb|Dieudonné|1994|loc=Théorème 6.}}</ref> Let <math>X</math> be a [[normal space]]. Then each point-finite open cover of <math>X</math> has a [[shrinking (topology)|shrinking]]; that is, if <math>\{ U_i \mid i \in I \}</math> is an open cover indexed by a set <math>I</math>, there is an open cover <math>\{ V_i \mid i \in I \}</math> indexed by the same set <math>I</math> such that <math>\overline{V_i} \subset U_i</math> for each <math>i \in I</math>.}} ==References== '
New page size (new_size)
2306
Old page size (old_size)
2250
Size change in edit (edit_delta)
56
Lines added in edit (added_lines)
[ 0 => '{{math_theorem|math_statement=<ref>{{harvnb|Dieudonné|1994|loc=Théorème 6.}}</ref> Let <math>X</math> be a [[normal space]]. Then each point-finite open cover of <math>X</math> has a [[shrinking (topology)|shrinking]]; that is, if <math>\{ U_i \mid i \in I \}</math> is an open cover indexed by a set <math>I</math>, there is an open cover <math>\{ V_i \mid i \in I \}</math> indexed by the same set <math>I</math> such that <math>\overline{V_i} \subset U_i</math> for each <math>i \in I</math>.}}' ]
Lines removed in edit (removed_lines)
[ 0 => '{{math_theorem|math_statement=Let <math>X</math> be a [[normal space]]. Then each point-finite open cover of <math>X</math> has a [[shrinking (topology)|shrinking]]; that is, if <math>\{ U_i \mid i \in I \}</math> is an open cover indexed by a set <math>I</math>, there is an open cover <math>\{ V_i \mid i \in I \}</math> indexed by the same set <math>I</math> such that <math>\overline{V_i} \subset U_i</math> for each <math>i \in I</math>.}}' ]
Parsed HTML source of the new revision (new_html)
'<div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Topological concept for collections of sets</div> <p>In <a href="/https/en.wikipedia.org/wiki/Mathematics" title="Mathematics">mathematics</a>, a collection or <a href="/https/en.wikipedia.org/wiki/Family_of_sets" title="Family of sets">family</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {U}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">U</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {U}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e63ea009de5efbca2fc285b8550daaed577c6b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-left: -0.038ex; width:1.635ex; height:2.176ex;" alt="{\displaystyle {\mathcal {U}}}"></span> of subsets of a <a href="/https/en.wikipedia.org/wiki/Topological_space" title="Topological space">topological space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is said to be <b>point-finite</b> if every point of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> lies in only finitely many members of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {U}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">U</mi> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {U}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/271d653f1fa1c669be616a0cbba39c134c275d15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-left: -0.038ex; width:2.282ex; height:2.176ex;" alt="{\displaystyle {\mathcal {U}}.}"></span><sup id="cite_ref-FOOTNOTEWillard2004145–152_1-0" class="reference"><a href="#cite_note-FOOTNOTEWillard2004145–152-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-w_2-0" class="reference"><a href="#cite_note-w-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>A <a href="/https/en.wikipedia.org/wiki/Metacompact_space" title="Metacompact space">metacompact space</a> is a topological space in which every <a href="/https/en.wikipedia.org/wiki/Open_cover" class="mw-redirect" title="Open cover">open cover</a> admits a point-finite open <a href="/https/en.wikipedia.org/wiki/Refinement_(topology)" class="mw-redirect" title="Refinement (topology)">refinement</a>. Every <a href="/https/en.wikipedia.org/wiki/Locally_finite_collection" title="Locally finite collection">locally finite collection</a> of subsets of a topological space is also point-finite. A topological space in which every open cover admits a locally finite open refinement is called a <a href="/https/en.wikipedia.org/wiki/Paracompact_space" title="Paracompact space">paracompact space</a>. Every paracompact space is therefore metacompact.<sup id="cite_ref-w_2-1" class="reference"><a href="#cite_note-w-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Dieudonné's_theorem"><span id="Dieudonn.C3.A9.27s_theorem"></span>Dieudonné's theorem</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/https/en.wikipedia.org/w/index.php?title=Point-finite_collection&amp;veaction=edit&amp;section=1" title="Edit section: Dieudonné&#039;s theorem" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/https/en.wikipedia.org/w/index.php?title=Point-finite_collection&amp;action=edit&amp;section=1" title="Edit section&#039;s source code: Dieudonné&#039;s theorem"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Since a paracompact (Hausdorff) space is normal, the next theorem applies in particular to a paracompact space. </p> <style data-mw-deduplicate="TemplateStyles:r1110004140">.mw-parser-output .math_theorem{margin:1em 2em;padding:0.5em 1em 0.4em;border:1px solid #aaa;overflow:hidden}@media(max-width:500px){.mw-parser-output .math_theorem{margin:1em 0em;padding:0.5em 0.5em 0.4em}}</style><div class="math_theorem" style=""> <p><strong class="theorem-name">Theorem</strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> be a <a href="/https/en.wikipedia.org/wiki/Normal_space" title="Normal space">normal space</a>. Then each point-finite open cover of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> has a <a href="/https/en.wikipedia.org/w/index.php?title=Shrinking_(topology)&amp;action=edit&amp;redlink=1" class="new" title="Shrinking (topology) (page does not exist)">shrinking</a>; that is, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{U_{i}\mid i\in I\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{U_{i}\mid i\in I\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35b86f693c8edae23070063ba539296067210d08" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.464ex; height:2.843ex;" alt="{\displaystyle \{U_{i}\mid i\in I\}}"></span> is an open cover indexed by a set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>, there is an open cover <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{V_{i}\mid i\in I\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2223;<!-- ∣ --></mo> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{V_{i}\mid i\in I\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d2ff9b41b797858e859fdc839f7d987434b1952" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.232ex; height:2.843ex;" alt="{\displaystyle \{V_{i}\mid i\in I\}}"></span> indexed by the same set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {V_{i}}}\subset U_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>&#x2282;<!-- ⊂ --></mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {V_{i}}}\subset U_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38e9674c4e27146317edb4a8bf30a621197f286b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.756ex; height:3.343ex;" alt="{\displaystyle {\overline {V_{i}}}\subset U_{i}}"></span> for each <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d740fe587228ce31b71c9628e089d1a9b37c6be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.815ex; height:2.176ex;" alt="{\displaystyle i\in I}"></span>. </p> </div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/https/en.wikipedia.org/w/index.php?title=Point-finite_collection&amp;veaction=edit&amp;section=2" title="Edit section: References" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/https/en.wikipedia.org/w/index.php?title=Point-finite_collection&amp;action=edit&amp;section=2" title="Edit section&#039;s source code: References"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-FOOTNOTEWillard2004145–152-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEWillard2004145–152_1-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFWillard2004">Willard 2004</a>, p.&#160;145–152.</span> </li> <li id="cite_note-w-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-w_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-w_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFWillard2012" class="citation cs2">Willard, Stephen (2012), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=UrsHbOjiR8QC&amp;pg=PA145"><i>General Topology</i></a>, Dover Books on Mathematics, Courier Dover Publications, pp.&#160;145–152, <a href="/https/en.wikipedia.org/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/https/en.wikipedia.org/wiki/Special:BookSources/9780486131788" title="Special:BookSources/9780486131788"><bdi>9780486131788</bdi></a>, <a href="/https/en.wikipedia.org/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/829161886">829161886</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=General+Topology&amp;rft.series=Dover+Books+on+Mathematics&amp;rft.pages=145-152&amp;rft.pub=Courier+Dover+Publications&amp;rft.date=2012&amp;rft_id=info%3Aoclcnum%2F829161886&amp;rft.isbn=9780486131788&amp;rft.aulast=Willard&amp;rft.aufirst=Stephen&amp;rft_id=https%3A%2F%2Ffanyv88.com%3A443%2Fhttps%2Fbooks.google.com%2Fbooks%3Fid%3DUrsHbOjiR8QC%26pg%3DPA145&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoint-finite+collection" class="Z3988"></span>.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><a href="#CITEREFDieudonné1994">Dieudonné 1994</a>, Théorème 6.<span class="error harv-error" style="display: none; font-size:100%"> harvnb error: no target: CITEREFDieudonné1994 (<a href="/https/en.wikipedia.org/wiki/Category:Harv_and_Sfn_template_errors" title="Category:Harv and Sfn template errors">help</a>)</span></span> </li> </ol></div></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDieudonné1944" class="citation cs2"><a href="/https/en.wikipedia.org/wiki/Jean_Dieudonn%C3%A9" title="Jean Dieudonné">Dieudonné, Jean</a> (1944), "Une généralisation des espaces compacts", <i><a href="/https/en.wikipedia.org/wiki/Journal_de_Math%C3%A9matiques_Pures_et_Appliqu%C3%A9es" title="Journal de Mathématiques Pures et Appliquées">Journal de Mathématiques Pures et Appliquées</a></i>, Neuvième Série, <b>23</b>: 65–76, <a href="/https/en.wikipedia.org/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0021-7824">0021-7824</a>, <a href="/https/en.wikipedia.org/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0013297">0013297</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+de+Math%C3%A9matiques+Pures+et+Appliqu%C3%A9es&amp;rft.atitle=Une+g%C3%A9n%C3%A9ralisation+des+espaces+compacts&amp;rft.volume=23&amp;rft.pages=65-76&amp;rft.date=1944&amp;rft.issn=0021-7824&amp;rft_id=https%3A%2F%2Ffanyv88.com%3A443%2Fhttps%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0013297%23id-name%3DMR&amp;rft.aulast=Dieudonn%C3%A9&amp;rft.aufirst=Jean&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoint-finite+collection" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWillard2004" class="citation book cs1">Willard, Stephen (2004) [1970]. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=-o8xJQ7Ag2cC"><i>General Topology</i></a>. <a href="/https/en.wikipedia.org/wiki/Mineola,_N.Y." class="mw-redirect" title="Mineola, N.Y.">Mineola, N.Y.</a>: <a href="/https/en.wikipedia.org/wiki/Dover_Publications" title="Dover Publications">Dover Publications</a>. <a href="/https/en.wikipedia.org/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/https/en.wikipedia.org/wiki/Special:BookSources/978-0-486-43479-7" title="Special:BookSources/978-0-486-43479-7"><bdi>978-0-486-43479-7</bdi></a>. <a href="/https/en.wikipedia.org/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/115240">115240</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=General+Topology&amp;rft.place=Mineola%2C+N.Y.&amp;rft.pub=Dover+Publications&amp;rft.date=2004&amp;rft_id=info%3Aoclcnum%2F115240&amp;rft.isbn=978-0-486-43479-7&amp;rft.aulast=Willard&amp;rft.aufirst=Stephen&amp;rft_id=https%3A%2F%2Ffanyv88.com%3A443%2Fhttps%2Fbooks.google.com%2Fbooks%3Fid%3D-o8xJQ7Ag2cC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoint-finite+collection" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWillard2012" class="citation book cs1">Willard, Stephen (2012) [1970]. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=UrsHbOjiR8QC"><i>General Topology</i></a>. <a href="/https/en.wikipedia.org/wiki/Mineola,_N.Y." class="mw-redirect" title="Mineola, N.Y.">Mineola, N.Y.</a>: Courier <a href="/https/en.wikipedia.org/wiki/Dover_Publications" title="Dover Publications">Dover Publications</a>. <a href="/https/en.wikipedia.org/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/https/en.wikipedia.org/wiki/Special:BookSources/9780486131788" title="Special:BookSources/9780486131788"><bdi>9780486131788</bdi></a>. <a href="/https/en.wikipedia.org/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/829161886">829161886</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=General+Topology&amp;rft.place=Mineola%2C+N.Y.&amp;rft.pub=Courier+Dover+Publications&amp;rft.date=2012&amp;rft_id=info%3Aoclcnum%2F829161886&amp;rft.isbn=9780486131788&amp;rft.aulast=Willard&amp;rft.aufirst=Stephen&amp;rft_id=https%3A%2F%2Ffanyv88.com%3A443%2Fhttps%2Fbooks.google.com%2Fbooks%3Fid%3DUrsHbOjiR8QC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoint-finite+collection" class="Z3988"></span></li></ul> <p><i>This article incorporates material from point finite on <a href="/https/en.wikipedia.org/wiki/PlanetMath" title="PlanetMath">PlanetMath</a>, which is licensed under the <a href="/https/en.wikipedia.org/wiki/Wikipedia:CC-BY-SA" class="mw-redirect" title="Wikipedia:CC-BY-SA">Creative Commons Attribution/Share-Alike License</a>.</i> </p> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Topology" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/https/en.wikipedia.org/wiki/Template:Topology" title="Template:Topology"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/https/en.wikipedia.org/wiki/Template_talk:Topology" title="Template talk:Topology"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/https/en.wikipedia.org/wiki/Special:EditPage/Template:Topology" title="Special:EditPage/Template:Topology"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Topology" style="font-size:114%;margin:0 4em"><a href="/https/en.wikipedia.org/wiki/Topology" title="Topology">Topology</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:#e5e5ff;">Fields</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/https/en.wikipedia.org/wiki/General_topology" title="General topology">General (point-set)</a></li> <li><a href="/https/en.wikipedia.org/wiki/Algebraic_topology" title="Algebraic topology">Algebraic</a></li> <li><a href="/https/en.wikipedia.org/wiki/Combinatorial_topology" title="Combinatorial topology">Combinatorial</a></li> <li><a href="/https/en.wikipedia.org/wiki/Continuum_(topology)" title="Continuum (topology)">Continuum</a></li> <li><a href="/https/en.wikipedia.org/wiki/Differential_topology" title="Differential topology">Differential</a></li> <li><a href="/https/en.wikipedia.org/wiki/Geometric_topology" title="Geometric topology">Geometric</a> <ul><li><a href="/https/en.wikipedia.org/wiki/Low-dimensional_topology" title="Low-dimensional topology">low-dimensional</a></li></ul></li> <li><a href="/https/en.wikipedia.org/wiki/Homology_(mathematics)" title="Homology (mathematics)">Homology</a> <ul><li><a href="/https/en.wikipedia.org/wiki/Cohomology" title="Cohomology">cohomology</a></li></ul></li> <li><a href="/https/en.wikipedia.org/wiki/Set-theoretic_topology" title="Set-theoretic topology">Set-theoretic</a></li> <li><a href="/https/en.wikipedia.org/wiki/Digital_topology" title="Digital topology">Digital</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="4" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/https/en.wikipedia.org/wiki/Klein_bottle" title="Klein bottle"><img alt="Computer graphics rendering of a Klein bottle" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Kleinsche_Flasche.png/60px-Kleinsche_Flasche.png" decoding="async" width="60" height="80" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Kleinsche_Flasche.png/90px-Kleinsche_Flasche.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Kleinsche_Flasche.png/120px-Kleinsche_Flasche.png 2x" data-file-width="1171" data-file-height="1561" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:#e5e5ff;">Key concepts</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/https/en.wikipedia.org/wiki/Open_set" title="Open set">Open set</a>&#160;/&#32;<a href="/https/en.wikipedia.org/wiki/Closed_set" title="Closed set">Closed set</a></li> <li><a href="/https/en.wikipedia.org/wiki/Interior_(topology)" title="Interior (topology)">Interior</a></li> <li><a href="/https/en.wikipedia.org/wiki/Continuity_(topology)" class="mw-redirect" title="Continuity (topology)">Continuity</a></li> <li><a href="/https/en.wikipedia.org/wiki/Topological_space" title="Topological space">Space</a> <ul><li><a href="/https/en.wikipedia.org/wiki/Compact_space" title="Compact space">compact</a></li> <li><a href="/https/en.wikipedia.org/wiki/Connected_space" title="Connected space">connected</a></li> <li><a href="/https/en.wikipedia.org/wiki/Hausdorff_space" title="Hausdorff space">Hausdorff</a></li> <li><a href="/https/en.wikipedia.org/wiki/Metric_space" title="Metric space">metric</a></li> <li><a href="/https/en.wikipedia.org/wiki/Uniform_space" title="Uniform space">uniform</a></li></ul></li> <li><a href="/https/en.wikipedia.org/wiki/Homotopy" title="Homotopy">Homotopy</a> <ul><li><a href="/https/en.wikipedia.org/wiki/Homotopy_group" title="Homotopy group">homotopy group</a></li> <li><a href="/https/en.wikipedia.org/wiki/Fundamental_group" title="Fundamental group">fundamental group</a></li></ul></li> <li><a href="/https/en.wikipedia.org/wiki/Simplicial_complex" title="Simplicial complex">Simplicial complex</a></li> <li><a href="/https/en.wikipedia.org/wiki/CW_complex" title="CW complex">CW complex</a></li> <li><a href="/https/en.wikipedia.org/wiki/Polyhedral_complex" title="Polyhedral complex">Polyhedral complex</a></li> <li><a href="/https/en.wikipedia.org/wiki/Manifold" title="Manifold">Manifold</a></li> <li><a href="/https/en.wikipedia.org/wiki/Bundle_(mathematics)" title="Bundle (mathematics)">Bundle (mathematics)</a></li> <li><a href="/https/en.wikipedia.org/wiki/Second-countable_space" title="Second-countable space">Second-countable space</a></li> <li><a href="/https/en.wikipedia.org/wiki/Cobordism" title="Cobordism">Cobordism</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:#e5e5ff;">Metrics and properties</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/https/en.wikipedia.org/wiki/Euler_characteristic" title="Euler characteristic">Euler characteristic</a></li> <li><a href="/https/en.wikipedia.org/wiki/Betti_number" title="Betti number">Betti number</a></li> <li><a href="/https/en.wikipedia.org/wiki/Winding_number" title="Winding number">Winding number</a></li> <li><a href="/https/en.wikipedia.org/wiki/Chern_class" title="Chern class">Chern number</a></li> <li><a href="/https/en.wikipedia.org/wiki/Orientability" title="Orientability">Orientability</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;background:#e5e5ff;"><a href="/https/en.wikipedia.org/wiki/Category:Theorems_in_topology" title="Category:Theorems in topology">Key results</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/https/en.wikipedia.org/wiki/Banach_fixed-point_theorem" title="Banach fixed-point theorem">Banach fixed-point theorem</a></li> <li><a href="/https/en.wikipedia.org/wiki/De_Rham_cohomology" title="De Rham cohomology">De Rham cohomology</a></li> <li><a href="/https/en.wikipedia.org/wiki/Invariance_of_domain" title="Invariance of domain">Invariance of domain</a></li> <li><a href="/https/en.wikipedia.org/wiki/Poincar%C3%A9_conjecture" title="Poincaré conjecture">Poincaré conjecture</a></li> <li><a href="/https/en.wikipedia.org/wiki/Tychonoff%27s_theorem" title="Tychonoff&#39;s theorem">Tychonoff's theorem</a></li> <li><a href="/https/en.wikipedia.org/wiki/Urysohn%27s_lemma" title="Urysohn&#39;s lemma">Urysohn's lemma</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/https/en.wikipedia.org/wiki/Category:Topology" title="Category:Topology">Category</a></li> <li><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/https/en.wikipedia.org/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/https/en.wikipedia.org/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics&#32;portal</a></li> <li><span class="noviewer" typeof="mw:File"><a href="/https/en.wikipedia.org/wiki/File:Wikibooks-logo.svg" class="mw-file-description" title="Wikibooks page"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/16px-Wikibooks-logo.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/24px-Wikibooks-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/32px-Wikibooks-logo.svg.png 2x" data-file-width="300" data-file-height="300" /></a></span> <a href="https://en.wikibooks.org/wiki/Topology" class="extiw" title="wikibooks:Topology">Wikibook</a></li> <li><span class="noviewer" typeof="mw:File"><a href="/https/en.wikipedia.org/wiki/File:Wikiversity_logo_2017.svg" class="mw-file-description" title="Wikiversity page"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/16px-Wikiversity_logo_2017.svg.png" decoding="async" width="16" height="13" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/24px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/32px-Wikiversity_logo_2017.svg.png 2x" data-file-width="626" data-file-height="512" /></a></span> <a href="https://en.wikiversity.org/wiki/Topology" class="extiw" title="wikiversity:Topology">Wikiversity</a></li> <li><span class="noviewer" typeof="mw:File"><span title="List-Class article"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/16px-Symbol_list_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/23px-Symbol_list_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/31px-Symbol_list_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/https/en.wikipedia.org/wiki/List_of_topology_topics" title="List of topology topics">Topics</a> <ul><li><a href="/https/en.wikipedia.org/wiki/List_of_general_topology_topics" title="List of general topology topics">general</a></li> <li><a href="/https/en.wikipedia.org/wiki/List_of_algebraic_topology_topics" title="List of algebraic topology topics">algebraic</a></li> <li><a href="/https/en.wikipedia.org/wiki/List_of_geometric_topology_topics" title="List of geometric topology topics">geometric</a></li></ul></li> <li><span class="noviewer" typeof="mw:File"><span title="List-Class article"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/16px-Symbol_list_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/23px-Symbol_list_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/31px-Symbol_list_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/https/en.wikipedia.org/wiki/List_of_important_publications_in_mathematics#Topology" title="List of important publications in mathematics">Publications</a></li></ul> </div></td></tr></tbody></table></div> <style data-mw-deduplicate="TemplateStyles:r1012311289">.mw-parser-output .asbox{position:relative;overflow:hidden}.mw-parser-output .asbox table{background:transparent}.mw-parser-output .asbox p{margin:0}.mw-parser-output .asbox p+p{margin-top:0.25em}.mw-parser-output .asbox-body{font-style:italic}.mw-parser-output .asbox-note{font-size:smaller}.mw-parser-output .asbox .navbar{position:absolute;top:-0.75em;right:1em;display:none}</style><div role="note" class="metadata plainlinks asbox stub"><table role="presentation"><tbody><tr class="noresize"><td><span typeof="mw:File"><a href="/https/en.wikipedia.org/wiki/File:KleinBottle-01.png" class="mw-file-description"><img alt="Stub icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/46/KleinBottle-01.png/30px-KleinBottle-01.png" decoding="async" width="30" height="38" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/46/KleinBottle-01.png/45px-KleinBottle-01.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/46/KleinBottle-01.png/60px-KleinBottle-01.png 2x" data-file-width="240" data-file-height="300" /></a></span></td><td><p class="asbox-body">This <a href="/https/en.wikipedia.org/wiki/Topology" title="Topology">topology-related</a> article is a <a href="/https/en.wikipedia.org/wiki/Wikipedia:Stub" title="Wikipedia:Stub">stub</a>. You can help Wikipedia by <a class="external text" href="https://en.wikipedia.org/w/index.php?title=Point-finite_collection&amp;action=edit">expanding it</a>.</p></td></tr></tbody></table><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/https/en.wikipedia.org/wiki/Template:Topology-stub" title="Template:Topology-stub"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/https/en.wikipedia.org/wiki/Template_talk:Topology-stub" title="Template talk:Topology-stub"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/https/en.wikipedia.org/wiki/Special:EditPage/Template:Topology-stub" title="Special:EditPage/Template:Topology-stub"><abbr title="Edit this template">e</abbr></a></li></ul></div></div></div>'
Whether or not the change was made through a Tor exit node (tor_exit_node)
false
Unix timestamp of change (timestamp)
'1731836614'