Jump to content

Examine individual changes

This page allows you to examine the variables generated by the Edit Filter for an individual change.

Variables generated for this change

VariableValue
Edit count of the user (user_editcount)
88765
Name of the user account (user_name)
'TakuyaMurata'
Type of the user account (user_type)
'named'
Time email address was confirmed (user_emailconfirm)
'20090116132730'
Age of the user account (user_age)
695729573
Groups (including implicit) the user is in (user_groups)
[ 0 => 'extendedconfirmed', 1 => 'ipblock-exempt', 2 => 'reviewer', 3 => '*', 4 => 'user', 5 => 'autoconfirmed' ]
Rights that the user has (user_rights)
[ 0 => 'extendedconfirmed', 1 => 'ipblock-exempt', 2 => 'torunblocked', 3 => 'sfsblock-bypass', 4 => 'review', 5 => 'autoreview', 6 => 'autoconfirmed', 7 => 'editsemiprotected', 8 => 'createaccount', 9 => 'read', 10 => 'edit', 11 => 'createtalk', 12 => 'writeapi', 13 => 'viewmyprivateinfo', 14 => 'editmyprivateinfo', 15 => 'editmyoptions', 16 => 'abusefilter-log-detail', 17 => 'urlshortener-create-url', 18 => 'centralauth-merge', 19 => 'abusefilter-view', 20 => 'abusefilter-log', 21 => 'vipsscaler-test', 22 => 'collectionsaveasuserpage', 23 => 'reupload-own', 24 => 'move-rootuserpages', 25 => 'createpage', 26 => 'minoredit', 27 => 'editmyusercss', 28 => 'editmyuserjson', 29 => 'editmyuserjs', 30 => 'sendemail', 31 => 'applychangetags', 32 => 'viewmywatchlist', 33 => 'editmywatchlist', 34 => 'spamblacklistlog', 35 => 'mwoauthmanagemygrants', 36 => 'reupload', 37 => 'upload', 38 => 'move', 39 => 'skipcaptcha', 40 => 'ipinfo', 41 => 'ipinfo-view-basic', 42 => 'transcode-reset', 43 => 'transcode-status', 44 => 'createpagemainns', 45 => 'movestable', 46 => 'enrollasmentor' ]
Whether or not a user is editing through the mobile interface (user_mobile)
false
Whether the user is editing from mobile app (user_app)
false
Page ID (page_id)
77424313
Page namespace (page_namespace)
0
Page title without namespace (page_title)
'Cauchy's estimate'
Full page title (page_prefixedtitle)
'Cauchy's estimate'
Edit protection level of the page (page_restrictions_edit)
[]
Page age in seconds (page_age)
404329
Action (action)
'edit'
Edit summary/reason (summary)
'more general estimate '
Time since last page edit in seconds (page_last_edit_age)
340101
Old content model (old_content_model)
'wikitext'
New content model (new_content_model)
'wikitext'
Old page wikitext, before the edit (old_wikitext)
'In mathematics, specifically in [[complex analysis]], '''Cauchy's estimate''' gives local bounds for the [[derivative]]s of a [[holomorphic function]]. These bounds are optimal. == Statement and consequence== Let <math>f</math> be a holomorphic function on the open ball <math>B(a, r)</math> in <math>\mathbb C</math>. If <math>M</math> is the sup of <math>|f|</math> over <math>B(a, r)</math>, then Cauchy's estimate says:<ref>{{harvnb|Rudin|1986|loc=Theorem 10.26.}}</ref> for each integer <math>n > 0</math>, :<math>|f^{(n)}(a)| \le \frac{n!}{r^n} M</math> where <math>f^{(n)}</math> is the ''n''-th [[complex derivative]] of <math>f</math>; i.e., <math>f' = \frac{\partial f}{\partial z}</math> and <math>f^{(n)} = (f^{(n-1)})^'</math> (see {{section link| Wirtinger_derivatives|Relation_with_complex_differentiation}}). Moreover, taking <math>f(z) = z^n, a = 0, r = 1</math> shows the above estimate cannot be improved. As a corollary, for example, we obtain [[Liouville's theorem (complex analysis)|Liouville's theorem]], which says a bounded entire function is constant (indeed, let <math>r \to \infty</math> in the estimate.) Slightly more generally, if <math>f</math> is an entire function bounded by <math>A + B|z|^k</math> for some constants <math>A, B</math> and some integer <math>k > 0</math>, then <math>f</math> is a polynomial.<ref>{{harvnb|Rudin|1986|loc=Ch 10. Exercise 4.}}</ref> == Proof == We start with [[Cauchy's integral formula]] applied to <math>f</math> :<math>f(z) = \frac{1}{2\pi i} \int_{|w-a| = r'} \frac{f(w)}{w - z} \, dw,</math> where <math>r' < r</math>. By the [[differentiation under the integral sign]] (in the complex variable),<ref>This step is Exercise 7 in Ch. 10. of {{harvnb|Rudin|1986}}</ref> we get: :<math>f^{(n)}(z) = \frac{n!}{2\pi i} \int_{|w-a| = r'} \frac{f(w)}{(w - z)^{n+1}} \, dw.</math> Thus, :<math>|f^{(n)}(a)| \le \frac{n!M}{2\pi} \int_{|w-a| = r'} \frac{|dw|}{|w - a|^{n+1}} = \frac{n!M}{{r'}^n}.</math> Letting <math>r' \to r</math> finishes the proof. <math>\square</math> == See also == *[[Taylor's theorem]] == References == {{reflist}} *{{Citation |author =[[Lars Hörmander]] |date=1990 |orig-year=1966 |title=An Introduction to Complex Analysis in Several Variables |edition=3rd |publisher=North Holland |isbn=978-1-493-30273-4 |url={{Google books|MaM7AAAAQBAJ|An Introduction to Complex Analysis in Several Variables|plainurl=yes}}}} * {{cite book | last=Rudin | first=Walter | authorlink = Walter Rudin | title = Real and Complex Analysis (International Series in Pure and Applied Mathematics) | publisher=McGraw-Hill | year=1986 |isbn=978-0-07-054234-1}} == Further reading == * https://math.stackexchange.com/questions/114349/how-is-cauchys-estimate-derived/114363 {{analysis-stub}}'
New page wikitext, after the edit (new_wikitext)
'In mathematics, specifically in [[complex analysis]], '''Cauchy's estimate''' gives local bounds for the [[derivative]]s of a [[holomorphic function]]. These bounds are optimal. == Statement and consequence== Let <math>f</math> be a holomorphic function on the open ball <math>B(a, r)</math> in <math>\mathbb C</math>. If <math>M</math> is the sup of <math>|f|</math> over <math>B(a, r)</math>, then Cauchy's estimate says:<ref>{{harvnb|Rudin|1986|loc=Theorem 10.26.}}</ref> for each integer <math>n > 0</math>, :<math>|f^{(n)}(a)| \le \frac{n!}{r^n} M</math> where <math>f^{(n)}</math> is the ''n''-th [[complex derivative]] of <math>f</math>; i.e., <math>f' = \frac{\partial f}{\partial z}</math> and <math>f^{(n)} = (f^{(n-1)})^'</math> (see {{section link| Wirtinger_derivatives|Relation_with_complex_differentiation}}). Moreover, taking <math>f(z) = z^n, a = 0, r = 1</math> shows the above estimate cannot be improved. As a corollary, for example, we obtain [[Liouville's theorem (complex analysis)|Liouville's theorem]], which says a bounded entire function is constant (indeed, let <math>r \to \infty</math> in the estimate.) Slightly more generally, if <math>f</math> is an entire function bounded by <math>A + B|z|^k</math> for some constants <math>A, B</math> and some integer <math>k > 0</math>, then <math>f</math> is a polynomial.<ref>{{harvnb|Rudin|1986|loc=Ch 10. Exercise 4.}}</ref> == Proof == We start with [[Cauchy's integral formula]] applied to <math>f</math> :<math>f(z) = \frac{1}{2\pi i} \int_{|w-a| = r'} \frac{f(w)}{w - z} \, dw,</math> where <math>r' < r</math>. By the [[differentiation under the integral sign]] (in the complex variable),<ref>This step is Exercise 7 in Ch. 10. of {{harvnb|Rudin|1986}}</ref> we get: :<math>f^{(n)}(z) = \frac{n!}{2\pi i} \int_{|w-a| = r'} \frac{f(w)}{(w - z)^{n+1}} \, dw.</math> Thus, :<math>|f^{(n)}(a)| \le \frac{n!M}{2\pi} \int_{|w-a| = r'} \frac{|dw|}{|w - a|^{n+1}} = \frac{n!M}{{r'}^n}.</math> Letting <math>r' \to r</math> finishes the proof. <math>\square</math> == Related estimate == Here is a somehow more general but slightly less precise estimate. It says:<ref>{{harvnb|Hörmander|1990}}</ref> given an open subset <math>U \subset \mathbb{C}</math>, a compact subset <math>K \subset U</math> and an integer <math>n > 0</math>, there is a constant <math>C_{K, n}</math> such that :<math>\sup_{K} |f^{(n)}| \le C_{K, n} \int_U |f| \, d\mu</math> where <math>d\mu</math> is the Lebesgue measure. == See also == *[[Taylor's theorem]] == References == {{reflist}} *{{Citation |author =[[Lars Hörmander]] |date=1990 |orig-year=1966 |title=An Introduction to Complex Analysis in Several Variables |edition=3rd |publisher=North Holland |isbn=978-1-493-30273-4 |url={{Google books|MaM7AAAAQBAJ|An Introduction to Complex Analysis in Several Variables|plainurl=yes}}}} * {{cite book | last=Rudin | first=Walter | authorlink = Walter Rudin | title = Real and Complex Analysis (International Series in Pure and Applied Mathematics) | publisher=McGraw-Hill | year=1986 |isbn=978-0-07-054234-1}} == Further reading == * https://math.stackexchange.com/questions/114349/how-is-cauchys-estimate-derived/114363 {{analysis-stub}}'
Unified diff of changes made by edit (edit_diff)
'@@ -18,4 +18,9 @@ :<math>|f^{(n)}(a)| \le \frac{n!M}{2\pi} \int_{|w-a| = r'} \frac{|dw|}{|w - a|^{n+1}} = \frac{n!M}{{r'}^n}.</math> Letting <math>r' \to r</math> finishes the proof. <math>\square</math> + +== Related estimate == +Here is a somehow more general but slightly less precise estimate. It says:<ref>{{harvnb|Hörmander|1990}}</ref> given an open subset <math>U \subset \mathbb{C}</math>, a compact subset <math>K \subset U</math> and an integer <math>n > 0</math>, there is a constant <math>C_{K, n}</math> such that +:<math>\sup_{K} |f^{(n)}| \le C_{K, n} \int_U |f| \, d\mu</math> +where <math>d\mu</math> is the Lebesgue measure. == See also == '
New page size (new_size)
3198
Old page size (old_size)
2762
Size change in edit (edit_delta)
436
Lines added in edit (added_lines)
[ 0 => '', 1 => '== Related estimate ==', 2 => 'Here is a somehow more general but slightly less precise estimate. It says:<ref>{{harvnb|Hörmander|1990}}</ref> given an open subset <math>U \subset \mathbb{C}</math>, a compact subset <math>K \subset U</math> and an integer <math>n > 0</math>, there is a constant <math>C_{K, n}</math> such that', 3 => ':<math>\sup_{K} |f^{(n)}| \le C_{K, n} \int_U |f| \, d\mu</math>', 4 => 'where <math>d\mu</math> is the Lebesgue measure.' ]
Lines removed in edit (removed_lines)
[]
Parsed HTML source of the new revision (new_html)
'<div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p>In mathematics, specifically in <a href="/https/en.wikipedia.org/wiki/Complex_analysis" title="Complex analysis">complex analysis</a>, <b>Cauchy's estimate</b> gives local bounds for the <a href="/https/en.wikipedia.org/wiki/Derivative" title="Derivative">derivatives</a> of a <a href="/https/en.wikipedia.org/wiki/Holomorphic_function" title="Holomorphic function">holomorphic function</a>. These bounds are optimal. </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none" /><div class="toctitle" lang="en" dir="ltr"><h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Statement_and_consequence"><span class="tocnumber">1</span> <span class="toctext">Statement and consequence</span></a></li> <li class="toclevel-1 tocsection-2"><a href="#Proof"><span class="tocnumber">2</span> <span class="toctext">Proof</span></a></li> <li class="toclevel-1 tocsection-3"><a href="#Related_estimate"><span class="tocnumber">3</span> <span class="toctext">Related estimate</span></a></li> <li class="toclevel-1 tocsection-4"><a href="#See_also"><span class="tocnumber">4</span> <span class="toctext">See also</span></a></li> <li class="toclevel-1 tocsection-5"><a href="#References"><span class="tocnumber">5</span> <span class="toctext">References</span></a></li> <li class="toclevel-1 tocsection-6"><a href="#Further_reading"><span class="tocnumber">6</span> <span class="toctext">Further reading</span></a></li> </ul> </div> <div class="mw-heading mw-heading2"><h2 id="Statement_and_consequence">Statement and consequence</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/https/en.wikipedia.org/w/index.php?title=Cauchy%27s_estimate&amp;veaction=edit&amp;section=1" title="Edit section: Statement and consequence" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/https/en.wikipedia.org/w/index.php?title=Cauchy%27s_estimate&amp;action=edit&amp;section=1" title="Edit section&#039;s source code: Statement and consequence"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> be a holomorphic function on the open ball <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B(a,r)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B(a,r)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d65752bb841eb20bc3668a1fcdc08a01a3c2c54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.886ex; height:2.843ex;" alt="{\displaystyle B(a,r)}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span>. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> is the sup of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/940e58aa437f429f47fd743a819e41fedaa1ff9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.572ex; height:2.843ex;" alt="{\displaystyle |f|}"></span> over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B(a,r)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B(a,r)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d65752bb841eb20bc3668a1fcdc08a01a3c2c54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.886ex; height:2.843ex;" alt="{\displaystyle B(a,r)}"></span>, then Cauchy's estimate says:<sup id="cite_ref-1" class="reference"><a href="#cite_note-1">&#91;1&#93;</a></sup> for each integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27a6a5d982d54202a14f111cb8a49210501b2c96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n&gt;0}"></span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f^{(n)}(a)|\leq {\frac {n!}{r^{n}}}M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f^{(n)}(a)|\leq {\frac {n!}{r^{n}}}M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80ad645ad10f13304469925f6f04b70ef8141470" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:16.795ex; height:5.343ex;" alt="{\displaystyle |f^{(n)}(a)|\leq {\frac {n!}{r^{n}}}M}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(n)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(n)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9dfb1963ccde0e87eb3838f51dc19041e2ff3816" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.818ex; height:3.176ex;" alt="{\displaystyle f^{(n)}}"></span> is the <i>n</i>-th <a href="/https/en.wikipedia.org/wiki/Complex_derivative" class="mw-redirect" title="Complex derivative">complex derivative</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>; i.e., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'={\frac {\partial f}{\partial z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>z</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'={\frac {\partial f}{\partial z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a9000aecfae183657471bd560a8ee07ac2da6c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:8.536ex; height:5.676ex;" alt="{\displaystyle f&#039;={\frac {\partial f}{\partial z}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(n)}=(f^{(n-1)})^{'}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi></mi> <mo>&#x2032;</mo> </msup> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(n)}=(f^{(n-1)})^{'}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31da025df7202b9cb0bec66ae999126d62d91963" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.409ex; height:3.343ex;" alt="{\displaystyle f^{(n)}=(f^{(n-1)})^{&#039;}}"></span> (see <a href="/https/en.wikipedia.org/wiki/Wirtinger_derivatives#Relation_with_complex_differentiation" title="Wirtinger derivatives">Wirtinger derivatives §&#160;Relation with complex differentiation</a>). </p><p>Moreover, taking <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)=z^{n},a=0,r=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> <mi>a</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)=z^{n},a=0,r=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67c7e70948200626ceb1399b4934004d4be3f9a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.451ex; height:2.843ex;" alt="{\displaystyle f(z)=z^{n},a=0,r=1}"></span> shows the above estimate cannot be improved. </p><p>As a corollary, for example, we obtain <a href="/https/en.wikipedia.org/wiki/Liouville%27s_theorem_(complex_analysis)" title="Liouville&#39;s theorem (complex analysis)">Liouville's theorem</a>, which says a bounded entire function is constant (indeed, let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\to \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\to \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcd3a85ea2e3d6b4027434e502cace4177d7a3e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.986ex; height:1.843ex;" alt="{\displaystyle r\to \infty }"></span> in the estimate.) Slightly more generally, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is an entire function bounded by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A+B|z|^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A+B|z|^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f465afd08072e87371a1b95edbb4b5e71839bce0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.818ex; height:3.343ex;" alt="{\displaystyle A+B|z|^{k}}"></span> for some constants <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96c3298ea9aa77c226be56a7d8515baaa517b90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.541ex; height:2.509ex;" alt="{\displaystyle A,B}"></span> and some integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27b3af208b148139eefc03f0f80fa94c38c5af45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.472ex; height:2.176ex;" alt="{\displaystyle k&gt;0}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is a polynomial.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2">&#91;2&#93;</a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Proof">Proof</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/https/en.wikipedia.org/w/index.php?title=Cauchy%27s_estimate&amp;veaction=edit&amp;section=2" title="Edit section: Proof" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/https/en.wikipedia.org/w/index.php?title=Cauchy%27s_estimate&amp;action=edit&amp;section=2" title="Edit section&#039;s source code: Proof"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>We start with <a href="/https/en.wikipedia.org/wiki/Cauchy%27s_integral_formula" title="Cauchy&#39;s integral formula">Cauchy's integral formula</a> applied to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z)={\frac {1}{2\pi i}}\int _{|w-a|=r'}{\frac {f(w)}{w-z}}\,dw,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>i</mi> </mrow> </mfrac> </mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>w</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <msup> <mi>r</mi> <mo>&#x2032;</mo> </msup> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>w</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>w</mi> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>w</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z)={\frac {1}{2\pi i}}\int _{|w-a|=r'}{\frac {f(w)}{w-z}}\,dw,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7bf5a924a9e38462b49516bbf43b93f6321ae2e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:30.841ex; height:6.509ex;" alt="{\displaystyle f(z)={\frac {1}{2\pi i}}\int _{|w-a|=r&#039;}{\frac {f(w)}{w-z}}\,dw,}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r'&lt;r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mo>&#x2032;</mo> </msup> <mo>&lt;</mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r'&lt;r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0bfd384ece42a19de6855ed576bffb0d10a79d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.88ex; height:2.509ex;" alt="{\displaystyle r&#039;&lt;r}"></span>. By the <a href="/https/en.wikipedia.org/wiki/Differentiation_under_the_integral_sign" class="mw-redirect" title="Differentiation under the integral sign">differentiation under the integral sign</a> (in the complex variable),<sup id="cite_ref-3" class="reference"><a href="#cite_note-3">&#91;3&#93;</a></sup> we get: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(n)}(z)={\frac {n!}{2\pi i}}\int _{|w-a|=r'}{\frac {f(w)}{(w-z)^{n+1}}}\,dw.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>i</mi> </mrow> </mfrac> </mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>w</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <msup> <mi>r</mi> <mo>&#x2032;</mo> </msup> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>w</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>w</mi> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>w</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(n)}(z)={\frac {n!}{2\pi i}}\int _{|w-a|=r'}{\frac {f(w)}{(w-z)^{n+1}}}\,dw.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b02f9212a37b2971062484c1bd45e0ede21feba6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:38.509ex; height:6.509ex;" alt="{\displaystyle f^{(n)}(z)={\frac {n!}{2\pi i}}\int _{|w-a|=r&#039;}{\frac {f(w)}{(w-z)^{n+1}}}\,dw.}"></span></dd></dl> <p>Thus, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f^{(n)}(a)|\leq {\frac {n!M}{2\pi }}\int _{|w-a|=r'}{\frac {|dw|}{|w-a|^{n+1}}}={\frac {n!M}{{r'}^{n}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> <mi>M</mi> </mrow> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>w</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <msup> <mi>r</mi> <mo>&#x2032;</mo> </msup> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>d</mi> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>w</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> <mi>M</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>r</mi> <mo>&#x2032;</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f^{(n)}(a)|\leq {\frac {n!M}{2\pi }}\int _{|w-a|=r'}{\frac {|dw|}{|w-a|^{n+1}}}={\frac {n!M}{{r'}^{n}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/801b61869a791e0216cbda46bec9ff278218af5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:45.908ex; height:6.843ex;" alt="{\displaystyle |f^{(n)}(a)|\leq {\frac {n!M}{2\pi }}\int _{|w-a|=r&#039;}{\frac {|dw|}{|w-a|^{n+1}}}={\frac {n!M}{{r&#039;}^{n}}}.}"></span></dd></dl> <p>Letting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r'\to r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r'\to r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e8bf8c1abd5104a9f3147a1ff09513f4c4e99a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.396ex; height:2.509ex;" alt="{\displaystyle r&#039;\to r}"></span> finishes the proof. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \square }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x25FB;<!-- ◻ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \square }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/455831d58fa08f311b934d324adcff89a868b4e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \square }"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Related_estimate">Related estimate</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/https/en.wikipedia.org/w/index.php?title=Cauchy%27s_estimate&amp;veaction=edit&amp;section=3" title="Edit section: Related estimate" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/https/en.wikipedia.org/w/index.php?title=Cauchy%27s_estimate&amp;action=edit&amp;section=3" title="Edit section&#039;s source code: Related estimate"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Here is a somehow more general but slightly less precise estimate. It says:<sup id="cite_ref-4" class="reference"><a href="#cite_note-4">&#91;4&#93;</a></sup> given an open subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U\subset \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>&#x2282;<!-- ⊂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U\subset \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1987e3c9fabe04333aa33cf0452f94a6daa71cbd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.559ex; height:2.176ex;" alt="{\displaystyle U\subset \mathbb {C} }"></span>, a compact subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\subset U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2282;<!-- ⊂ --></mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\subset U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ed682dca3a92174f9efae55ca7ddd073567c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.947ex; height:2.176ex;" alt="{\displaystyle K\subset U}"></span> and an integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27a6a5d982d54202a14f111cb8a49210501b2c96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n&gt;0}"></span>, there is a constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{K,n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{K,n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af912029b504008bf944ea5cc879eb729560c539" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.799ex; height:2.843ex;" alt="{\displaystyle C_{K,n}}"></span> such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sup _{K}|f^{(n)}|\leq C_{K,n}\int _{U}|f|\,d\mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sup _{K}|f^{(n)}|\leq C_{K,n}\int _{U}|f|\,d\mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b1993403dc123658eeb2df7db7f2d2b654f5510" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.034ex; height:5.843ex;" alt="{\displaystyle \sup _{K}|f^{(n)}|\leq C_{K,n}\int _{U}|f|\,d\mu }"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afc73ac32e066a58718ee0c9576b05f7485ab008" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.618ex; height:2.676ex;" alt="{\displaystyle d\mu }"></span> is the Lebesgue measure. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/https/en.wikipedia.org/w/index.php?title=Cauchy%27s_estimate&amp;veaction=edit&amp;section=4" title="Edit section: See also" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/https/en.wikipedia.org/w/index.php?title=Cauchy%27s_estimate&amp;action=edit&amp;section=4" title="Edit section&#039;s source code: See also"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/https/en.wikipedia.org/wiki/Taylor%27s_theorem" title="Taylor&#39;s theorem">Taylor's theorem</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/https/en.wikipedia.org/w/index.php?title=Cauchy%27s_estimate&amp;veaction=edit&amp;section=5" title="Edit section: References" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/https/en.wikipedia.org/w/index.php?title=Cauchy%27s_estimate&amp;action=edit&amp;section=5" title="Edit section&#039;s source code: References"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1217336898">.mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><a href="#CITEREFRudin1986">Rudin 1986</a>, Theorem 10.26.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><a href="#CITEREFRudin1986">Rudin 1986</a>, Ch 10. Exercise 4.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">This step is Exercise 7 in Ch. 10. of <a href="#CITEREFRudin1986">Rudin 1986</a></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><a href="#CITEREFHörmander1990">Hörmander 1990</a><span class="error harv-error" style="display: none; font-size:100%"> harvnb error: no target: CITEREFHörmander1990 (<a href="/https/en.wikipedia.org/wiki/Category:Harv_and_Sfn_template_errors" title="Category:Harv and Sfn template errors">help</a>)</span></span> </li> </ol></div></div> <ul><li><style data-mw-deduplicate="TemplateStyles:r1215172403">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a{background-size:contain}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a{background-size:contain}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a{background-size:contain}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#2C882D;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911F}html.skin-theme-clientpref-night .mw-parser-output .cs1-visible-error,html.skin-theme-clientpref-night .mw-parser-output .cs1-hidden-error{color:#f8a397}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-visible-error,html.skin-theme-clientpref-os .mw-parser-output .cs1-hidden-error{color:#f8a397}html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911F}}</style><cite id="CITEREFLars_Hörmander1990" class="citation cs2"><a href="/https/en.wikipedia.org/wiki/Lars_H%C3%B6rmander" title="Lars Hörmander">Lars Hörmander</a> (1990) [1966], <a rel="nofollow" class="external text" href="https://books.google.com/books?id=MaM7AAAAQBAJ"><i>An Introduction to Complex Analysis in Several Variables</i></a> (3rd&#160;ed.), North Holland, <a href="/https/en.wikipedia.org/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/https/en.wikipedia.org/wiki/Special:BookSources/978-1-493-30273-4" title="Special:BookSources/978-1-493-30273-4"><bdi>978-1-493-30273-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+Complex+Analysis+in+Several+Variables&amp;rft.edition=3rd&amp;rft.pub=North+Holland&amp;rft.date=1990&amp;rft.isbn=978-1-493-30273-4&amp;rft.au=Lars+H%C3%B6rmander&amp;rft_id=https%3A%2F%2Ffanyv88.com%3A443%2Fhttps%2Fbooks.google.com%2Fbooks%3Fid%3DMaM7AAAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy%27s+estimate" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFRudin1986" class="citation book cs1"><a href="/https/en.wikipedia.org/wiki/Walter_Rudin" title="Walter Rudin">Rudin, Walter</a> (1986). <i>Real and Complex Analysis (International Series in Pure and Applied Mathematics)</i>. McGraw-Hill. <a href="/https/en.wikipedia.org/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/https/en.wikipedia.org/wiki/Special:BookSources/978-0-07-054234-1" title="Special:BookSources/978-0-07-054234-1"><bdi>978-0-07-054234-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Real+and+Complex+Analysis+%28International+Series+in+Pure+and+Applied+Mathematics%29&amp;rft.pub=McGraw-Hill&amp;rft.date=1986&amp;rft.isbn=978-0-07-054234-1&amp;rft.aulast=Rudin&amp;rft.aufirst=Walter&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy%27s+estimate" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/https/en.wikipedia.org/w/index.php?title=Cauchy%27s_estimate&amp;veaction=edit&amp;section=6" title="Edit section: Further reading" class="mw-editsection-visualeditor"><span>edit</span></a><span class="mw-editsection-divider"> | </span><a href="/https/en.wikipedia.org/w/index.php?title=Cauchy%27s_estimate&amp;action=edit&amp;section=6" title="Edit section&#039;s source code: Further reading"><span>edit source</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external free" href="https://math.stackexchange.com/questions/114349/how-is-cauchys-estimate-derived/114363">https://math.stackexchange.com/questions/114349/how-is-cauchys-estimate-derived/114363</a></li></ul> <style data-mw-deduplicate="TemplateStyles:r1012311289">.mw-parser-output .asbox{position:relative;overflow:hidden}.mw-parser-output .asbox table{background:transparent}.mw-parser-output .asbox p{margin:0}.mw-parser-output .asbox p+p{margin-top:0.25em}.mw-parser-output .asbox-body{font-style:italic}.mw-parser-output .asbox-note{font-size:smaller}.mw-parser-output .asbox .navbar{position:absolute;top:-0.75em;right:1em;display:none}</style><div role="note" class="metadata plainlinks asbox stub"><table role="presentation"><tbody><tr class="noresize"><td><span typeof="mw:File"><a href="/https/en.wikipedia.org/wiki/File:Lebesgue_Icon.svg" class="mw-file-description"><img alt="Stub icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Lebesgue_Icon.svg/30px-Lebesgue_Icon.svg.png" decoding="async" width="30" height="30" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Lebesgue_Icon.svg/45px-Lebesgue_Icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Lebesgue_Icon.svg/60px-Lebesgue_Icon.svg.png 2x" data-file-width="512" data-file-height="512" /></a></span></td><td><p class="asbox-body">This <a href="/https/en.wikipedia.org/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a>–related article is a <a href="/https/en.wikipedia.org/wiki/Wikipedia:Stub" title="Wikipedia:Stub">stub</a>. You can help Wikipedia by <a class="external text" href="https://en.wikipedia.org/w/index.php?title=Cauchy%27s_estimate&amp;action=edit">expanding it</a>.</p></td></tr></tbody></table><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236085633">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/https/en.wikipedia.org/wiki/Template:Mathanalysis-stub" title="Template:Mathanalysis-stub"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/https/en.wikipedia.org/wiki/Template_talk:Mathanalysis-stub" title="Template talk:Mathanalysis-stub"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/https/en.wikipedia.org/wiki/Special:EditPage/Template:Mathanalysis-stub" title="Special:EditPage/Template:Mathanalysis-stub"><abbr title="Edit this template">e</abbr></a></li></ul></div></div></div>'
Whether or not the change was made through a Tor exit node (tor_exit_node)
false
Unix timestamp of change (timestamp)
'1722241281'