Examine individual changes
Appearance
This page allows you to examine the variables generated by the Edit Filter for an individual change.
Variables generated for this change
Variable | Value |
---|---|
Edit count of the user (user_editcount ) | null |
Name of the user account (user_name ) | '148.73.106.121' |
Age of the user account (user_age ) | 0 |
Groups (including implicit) the user is in (user_groups ) | [
0 => '*'
] |
Global groups that the user is in (global_user_groups ) | [] |
Whether or not a user is editing through the mobile interface (user_mobile ) | false |
Page ID (page_id ) | 2011627 |
Page namespace (page_namespace ) | 0 |
Page title without namespace (page_title ) | 'Ground expression' |
Full page title (page_prefixedtitle ) | 'Ground expression' |
Last ten users to contribute to the page (page_recent_contributors ) | [
0 => 'FrescoBot',
1 => 'Luot',
2 => 'The Anome',
3 => 'Dewritech',
4 => '129.170.194.148',
5 => '59.162.23.79',
6 => 'Addbot',
7 => '80.219.67.154',
8 => 'Greatfermat',
9 => 'Carbo1200'
] |
Action (action ) | 'edit' |
Edit summary/reason (summary ) | '๐๐๐=/O.OX_XO.OX_X=/๐O.O๐๐๐ค^o^t,tr,ch,vglbkn.lnnl l' |
Whether or not the edit is marked as minor (no longer in use) (minor_edit ) | false |
Old page wikitext, before the edit (old_wikitext ) | 'In [[mathematical logic]], a '''ground term''' of a [[formal system]] is a [[term (logic)|term]] that does not contain any [[free variables]].
Similarly, a '''ground formula''' is a [[well formed formula|formula]] that does not contain any free variables. In [[First-order logic#Equality and its axioms|first-order logic with identity]], the sentence {{all}} ''x'' (''x''=''x'') is a ground formula.
A '''ground expression''' is a ground term or ground formula.
== Examples ==
Consider the following expressions from [[first order logic]] over a [[signature (mathematical logic)|signature]] containing a constant symbol 0 for the number 0, a unary function symbol ''s'' for the successor function and a binary function symbol + for addition.
* ''s''(0), ''s''(''s''(0)), ''s''(''s''(''s''(0))) ... are ground terms;
* 0+1, 0+1+1, ... are ground terms.
* '''x'''+''s''(1) and ''s''('''x''') are terms, but not ground terms;
* ''s''(0)=1 and 0+0=0 are ground formulae;
* ''s''(1) and โ'''x''': (''s''('''x''')+1=''s''(''s''('''x'''))) are ground expressions.
== Formal definition ==
What follows is a formal definition for [[first-order language]]s. Let a first-order language be given, with <math>C</math> the set of constant symbols, <math>V</math> the set of (individual) variables, <math>F</math> the set of functional operators, and <math>P</math> the set of predicate symbols.
=== Ground terms ===
Ground terms are [[term (logic)|terms]] that contain no variables. They may be defined by logical recursion (formula-recursion):
# elements of C are ground terms;
# If ''f''โ''F'' is an ''n''-ary function symbol and ฮฑ<sub>1</sub>, ฮฑ<sub>2</sub>, ..., ฮฑ<sub>n</sub> are ground terms, then ''f''(ฮฑ<sub>1</sub>, ฮฑ<sub>2</sub>, ..., ฮฑ<sub>n</sub>) is a ground term.
# Every ground term can be given by a finite application of the above two rules (there are no other ground terms; in particular, predicates cannot be ground terms).
Roughly speaking, the [[Herbrand universe]] is the set of all ground terms.
=== Ground atom ===
A '''ground predicate''' or '''ground atom''' or '''ground literal''' is an [[atomic formula]] all of whose argument terms are ground terms.
If ''p''โ''P'' is an ''n''-ary predicate symbol and ฮฑ<sub>1</sub>, ฮฑ<sub>2</sub>, ..., ฮฑ<sub>n</sub> are ground terms, then ''p''(ฮฑ<sub>1</sub>, ฮฑ<sub>2</sub>, ..., ฮฑ<sub>n</sub>) is a ground predicate or ground atom.
Roughly speaking, the [[Herbrand base]] is the set of all ground atoms, while a [[Herbrand interpretation]] assigns a [[truth value]] to each ground atom in the base.
=== Ground formula ===
A ground formula or ground clause is a formula without free variables.
Formulas with free variables may be defined by syntactic recursion as follows:
# The free variables of an unground atom are all variables occurring in it.
# The free variables of ยฌ''p'' are the same as those of ''p''. The free variables of ''p''โจ''q'', ''p''โง''q'', ''p''โ''q'' are those free variables of ''p'' or free variables of ''q''.
# The free variables of {{all}} ''x'' ''p'' and {{exist}} ''x'' ''p'' are the free variables of ''p'' except ''x''.
== References ==
* {{Citation
| title = Handbook of discrete and combinatorial mathematics
| contribution = Logic-based computer programming paradigms
| year = 2000
| editor1-last = Rosen
| editor1-first = K.H.
| editor2-last = Michaels
| editor2-first = J.G.
| last = Dalal
| first = M.
| page = 68
}}
* {{Citation | last1=Hodges | first1=Wilfrid | author1-link=Wilfrid Hodges | title=A shorter model theory | publisher=[[Cambridge University Press]] | isbn=978-0-521-58713-6 | year=1997}}
* [http://web.engr.oregonstate.edu/~afern/classes/cs532/notes/fo-ss.pdf First-Order Logic: Syntax and Semantics]
<!-- these references are essentially random; Hodges is a standard reference but does not define all the terms used in this article -->
[[Category:Mathematical logic]]
[[Category:Logical expressions]]' |
New page wikitext, after the edit (new_wikitext ) | 'In [[mathematical logic]], a '''ground term''' of a [[formal system]] is a [[term (logic)|term]] that does not contain any [[free variables]].
Similarly, a '''ground formula''' is a [[well formed formula|formula]] that does not contain any free variables. In [[First-order logic#Equality and its axioms|first-order logic with identity]], the sentence {{all}} ''x'' (''x''=''x'') is a ground formula.
A '''ground expression''' is a ground term or ground formula.
== Examples ==
Consider the following expressions from [[first order logic]] over a [[signature (mathematical logic)|signature]] containing a constant symbol 0 for the number 0, a unary function symbol ''s'' for the successor function and a binary function symbol + for addition.
* ''s''(0), ''s''(''s''(0)), ''s''(''s''(''s''(0))) ... are ground terms;
* 0+1, 0+1+1, ... are ground terms.
* '''x'''+''s''(1) and ''s''('''x''') are terms, but not ground terms;
* ''s''(0)=1 and 0+0=0 are ground formulae;
* ''s''(1) and โ'''x''': (''s''('''x''')+1=''s''(''s''('''x'''))) are ground expressions.
== Formal definition ==
What follows is a formal definition for [[first-order language]]s. Let a first-order language be given, with <math>C</math> the set of constant symbols, <math>V</math> the set of (individual) variables, <math>F</math> the set of functional operators, and <math>P</math> the set of predicate symbols.
=== Ground terms ===
Ground terms are [[term (logic)|terms]] that contain no variables. They may be defined by logical recursion (formula-recursion):
# elements of C are ground terms;
# If ''f''โ''F'' is an ''n''-ary function symbol and ฮฑ<sub>1</sub>, ฮฑ<sub>2</sub>, ..., ฮฑ<sub>n</sub> are ground terms, then ''f''(ฮฑ<sub>1</sub>, ฮฑ<sub>2</sub>, ..., ฮฑ<sub>n</sub>) is a ground term.
# Every ground term can be given by a finite application of the above two rules (there are no other ground terms; in particular, predicates cannot be ground terms).
Roughly speaking, the [[Herbrand universe]] is the set of all ground terms.
=== Ground atom ===
A '''ground predicate''' or '''ground atom''' or '''ground literal''' is an [[atomic formula]] all of whose argument terms are ground terms.
If ''p''โ''P'' is an ''n''-ary predicate symbol and ฮฑ<sub>1</sub>, ฮฑ<sub>2</sub>, ..., ฮฑ<sub>n</sub> are ground terms, then ''p''(ฮฑ<sub>1</sub>, ฮฑ<sub>2</sub>, ..., ฮฑ<sub>n</sub>) is a ground predicate or ground atom.
Roughly speaking, the [[Herbrand base]] is the set of all ground atoms, while a [[Herbrand interpretation]] assigns a [[truth value]] to each ground atom in the base.
โรโโ266546546546456.76.264462.654.6574..45/657 95797957.5/46/657978978 808.8.08 9054/./56579 0890.0070 8.07 8/0564.5787 9897000 .0000 77 7576. mllmml. m llnkb NB, ml.j b NGC hg bbl njhv chfdx x cg ๐๐๐๐๐^3^):๐ผ๐พ๐X_XโฟโขX_X<3๐โข๐<3X_Xโข๐๐๐๐โข๐๐๐๐ปโข๐๐๐X_Xโฟ๐๐พ๐พโฟ):~_~โฟ๐X_X<3~_~X_X^o^~_~O.O:/:/~_~^o^O.O~_~<3O.O~_~<3:-O>"<~_~:-O>"<~_~U_U>:(:-O>:(U_U:-O:P:-P:(:):-):D^_~:D:-):D:D^_^;-)^_^:P:P^_^:-):-P^0^:-P:P^0^:-D^0^:-):P:-P:(:-D:(:-D^0^:(;P:P>:(:(:-P:(:-OU_UO.O:[>:(:[:-O:-O>"<~_~~_~O.O^3^<3^o^:/<3^o^X_X:-S^3^=/โโโโจโโญโญ๐ค๐ง๐๐๐๐๐
๐๐
๐โญ๐๐๐
๐ง๐๐
๐๐
๐๐โญ๐๐๐
๐๐X_X^3^^3^:-S=/=/:-x:-S:-()O.O:-S):U_U;P^0^:D:-);):)^_~^_~;):):P^_^:):-P:P>:(U_U>:(:-O:-OO.O<3<3^o^:/<3^o^:/:-S^3^X_X^3^:-SX_X^o^:-()X_X^o^:-():-x:-S=/:-S:-S=/:-():-x)::-S>"<:[O.O:-P:-DU_U^_^:-)^0^^_~;-)^0^;-)^_~:)^_^:-):D^_^:-):-P:-P:-)^0^:P^0^:-):-P^0^:-D:-PU_U:-D>:(:-P;P:-P>"<;PO.O:[>"<U_U:[:(:P:-P>"<U_UO.OO.O>"<:-()^3^^o^^o^^3^^o^^3^:/^3^X_X:-S^3^:-x=/๐ชโญ๐๐๐๐๐
๐๐๐๐
๐๐๐๐๐๐๐๐ข๐๐
๐ง๐๐๐
๐๐๐๐โ๐ฅ๐ข๐ช๐ค๐จ๐ง๐ฐโ๐ช๐ช๐จ๐
ฟ๐ฐ๐ซ๐ญ๐ฉ๐
ฟ๐ฌ๐ฌ๐
ฟ๐ฉ๐ญ๐ฌ๐
ฟ๐จ๐ฉโ๐ค๐ญ๐ง๐ฉ๐๐ช๐๐ง๐๐๐๐จ๐๐๐
๐ค๐๐๐๐
๐๐๐๐๐๐๐๐๐๐๐
๐๐ง๐๐๐๐๐
ฟ๐๐๐๐ฅ๐๐ช๐ฐ๐ค๐ง๐ช๐ญ๐
ฟ๐จ๐ฐ๐ซ๐ฌ๐ฉ๐ฌ๐จ๐ช๐ข๐ข๐ขโญ๐๐๐๐ค๐๐
๐๐๐๐๐๐๐๐๐ข๐
๐๐๐๐ง๐
๐๐
ฟ๐๐๐๐โญ๐ข๐ฅ๐ชโ๐ง๐คโ๐ฐ๐ฐ๐จ๐จ๐ฐ๐
ฟ๐จ๐ฌ๐
ฟ๐ง๐ญ๐ฌ๐๐ข๐ฅ๐๐จ๐๐๐๐ค๐
๐๐๐๐๐โ๐๐๐โ๐๐๐
๐ค๐๐๐๐๐๐
ฟโ๐ฐ๐พ๐ช๐ฉโฟ:-O๐โ๐โฟ๐~_~~_~๐ฉ๐๐๐๐โฟ๐โฟ๐๐พ:-O๐๐๐ฌ๐ง):๐พ๐พ^o^^o^X_X^o^๐ช^3^^3^=/):X_X๐<3):<3๐<3๐
๐๐ช๐ง๐๐ช๐ฌ๐ช๐๐๐ฐ:-Oโ๐~_~โฟ๐~_~:-O~_~๐ฉ๐๐:-O๐๐โ๐๐ฌ~_~๐ฌ๐ง๐X_X):๐๐ฌX_X):๐^o^๐ฌ๐X_X<3)::-OX_X:-O๐จ๐๐ฌ๐๐X_X๐๐
ฟ๐ข~_~๐ง๐ข๐๐ช๐พ๐ข~_~๐๐๐๐ฉ๐ฉ๐~_~โ๐๐~_~๐โ:-O๐ฉ๐ฉ๐๐๐
<3๐^3^O.O๐ช^3^^o^=/^3^O.O^o^๐พ<3~_~):X_X~_~๐๐ช๐ง๐๐พ๐๐๐๐ฅ๐ฑ๐ฉ๐ฌ๐จ๐ฌ๐ฐ๐ฑ๐ช๐จ๐ฌ๐ฑ๐จ๐ฏ๐ช๐ญ๐จ๐ฐ๐ง๐ฎ๐ซ๐๐ก๐๐๐ก๐๐๐๐๐ค๐๐๐๐จ๐๐๐๐๐ซ๐ฃ๐ฆ๐ค๐ฅ๐ฉ๐ช๐ฏ๐ฌ๐ฐ๐ญ๐ช๐ฑ๐ญ๐ฑ๐ง๐ค๐ง๐ซ๐ข๐ข๐๐๐๐๐๐๐๐ฅ๐๐๐๐ข๐ข๐๐๐๐๐๐น๐๐๐๐น๐๐๐๐๐๐ธ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐
๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ธ๐๐๐๐น๐๐๐น๐๐๐๐น๐๐น๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ฃ๐๐๐ ๐ค๐๐ฃ๐ค๐๐๐ค๐ข๐๐๐๐ ๐ก๐๐๐ก๐๐๐๐๐๐๐๐
๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐rjesdxkccf,tu.bnpok??'nlmkl'nmokpmoklionjihvb,vvhu.tyccyguy.vrfkweahhezezr๐๐๐๐๐๐๐๐๐๐๐๐๐ค๐๐๐๐ฃ๐๐ ๐๐ค๐๐๐ฃ๐ค๐๐ ๐๐ก๐๐๐ข๐๐๐๐ค๐ค๐๐๐ ๐ ๐๐๐๐ก๐๐๐๐๐๐๐๐ก๐๐๐๐๐ค๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐
๐๐พ๐๐<3~_~<3๐๐ค๐๐ค๐ช๐๐พ๐
๐๐๐๐พ๐๐๐๐ช๐ ๐๐
๐๐ช๐๐๐๐ช๐ <3๐ค๐๐~_~๐ค๐๐๐๐พ๐):^o^X_X^3^^3^X_X^3^๐๐^3^~_~๐=/):๐~_~๐~_~๐<3๐ช๐๐ช๐๐พ๐๐พ๐๐พ๐๐
๐๐๐๐๐๐๐พ๐๐๐
๐พ๐๐๐๐๐๐๐ ๐๐๐ช๐
๐ค๐๐<3~_~๐ค๐พ๐):rrktdxkrexkdctrccr,yctv,y,yu v.ibjbno.jpk.o'nkopn.ukhbuv,vugcntdrjdrkrct,tucv..iublonk.ju.hi,tyfcejrszrzdx,drcc.yujnk'n'kl.knop.k.huvitfjtwjezrlx):๐พ๐คcfcyu.bjipkm kn,vhb vu,hvjouuvytrmcX_X=/~_~๐
X_X~_~๐ ):=/X_X๐ ~_~<3๐๐๐๐๐ก๐๐๐๐๐๐๐๐๐๐๐ค๐๐๐๐๐ก๐๐๐๐ ๐๐๐ ๐๐๐๐ฃ๐๐๐๐ก๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐
๐๐ ๐๐๐๐๐๐๐ ๐๐๐ก๐ก๐ ๐๐๐๐๐ฃ๐๐๐๐๐ค๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐
๐๐๐พ๐๐๐๐๐๐ ๐๐๐๐๐น๐๐๐๐ก๐๐๐๐๐๐ค๐๐ ๐๐๐๐๐๐๐ค๐๐๐๐๐๐ค๐๐๐๐๐๐๐ค๐๐๐ก๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐พ๐):๐=/๐ช<3๐๐<3๐
๐๐๐๐
๐๐
๐๐๐๐<3๐๐๐ช๐๐ช๐๐๐ช๐๐๐๐
๐<3๐<3๐<3๐๐๐๐ ๐^o^O.O๐๐๐๐X_X๐X_X๐ค๐๐๐ค๐ค๐พ๐๐๐พ๐๐๐๐๐พ๐๐๐~_~๐):~_~~_~<3๐๐๐๐๐๐๐
๐๐๐
๐๐๐ช๐๐๐๐๐๐๐
๐๐๐๐ช<3๐):๐=/๐๐ ๐):๐๐๐^o^๐๐O.O^o^๐๐O.O๐๐ค๐X_X๐^o^^o^O.O๐๐๐คX_XX_X๐๐๐พ๐๐ ):~_~=/<3๐๐๐๐๐๐๐๐๐๐๐๐๐ช๐=/=/๐๐~_~๐~_~๐๐๐๐๐O.O๐๐๐๐๐๐ค๐๐ค๐๐คX_X๐ค๐X_X๐คO.O๐O.O๐๐O.O^o^๐๐๐ค๐X_X๐O.O๐๐O.O๐๐พ๐X_X๐๐๐๐พ):๐๐~_~~_~):๐๐๐=/๐๐๐ช๐๐๐๐
๐๐๐๐<3๐ช๐๐๐<3๐ช๐~_~):๐พ๐X_X๐ ๐๐O.O๐๐๐๐O.O๐๐๐ค๐๐๐คX_X๐๐X_X๐พ๐X_X๐<3๐=/๐๐๐ช๐๐๐๐๐๐๐
<3๐๐๐๐๐<3=/~_~๐~_~):๐X_X๐ ๐๐O.O๐๐๐O.O๐๐๐O.O๐^o^๐^3^O.O๐๐๐ค^o^๐ค๐๐X_XX_X๐๐๐๐คX_XX_X๐๐พ๐X_X๐):~_~):<3๐<3๐=/๐๐๐ ๐โจ๐๐ ๐โโจ๐โโโณโณโโโโดโ๐ โ๐โ๐๐โ๐๐๐๐
๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐โ๐๐๐๐^3^<3~_~๐<3~_~๐พ๐๐๐ช๐๐=/๐ช๐๐
๐๐ช๐๐
๐๐๐๐๐๐๐๐~_~๐๐๐พ๐<3๐๐chf๐๐:-O๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ข๐๐๐๐๐๐๐
๐๐๐๐ fzdbk km'
=== Ground formula ===
A ground formula or ground clause is a formula without free variables.
Formulas with free variables may be defined by syntactic recursion as follows:
# The free variables of an unground atom are all variables occurring in it.
# The free variables of ยฌ''p'' are the same as those of ''p''. The free variables of ''p''โจ''q'', ''p''โง''q'', ''p''โ''q'' are those free variables of ''p'' or free variables of ''q''.
# The free variables of {{all}} ''x'' ''p'' and {{exist}} ''x'' ''p'' are the free variables of ''p'' except ''x''.
== References ==
* {{Citation
| title = Handbook of discrete and combinatorial mathematics
| contribution = Logic-based computer programming paradigms
| year = 2000
| editor1-last = Rosen
| editor1-first = K.H.
| editor2-last = Michaels
| editor2-first = J.G.
| last = Dalal
| first = M.
| page = 68
}}
* {{Citation | last1=Hodges | first1=Wilfrid | author1-link=Wilfrid Hodges | title=A shorter model theory | publisher=[[Cambridge University Press]] | isbn=978-0-521-58713-6 | year=1997}}
* [http://web.engr.oregonstate.edu/~afern/classes/cs532/notes/fo-ss.pdf First-Order Logic: Syntax and Semantics]
<!-- these references are essentially random; Hodges is a standard reference but does not define all the terms used in this article -->
[[Category:Mathematical logic]]
[[Category:Logical expressions]]' |
Unified diff of changes made by edit (edit_diff ) | '@@ -31,6 +31,7 @@
If ''p''โ''P'' is an ''n''-ary predicate symbol and ฮฑ<sub>1</sub>, ฮฑ<sub>2</sub>, ..., ฮฑ<sub>n</sub> are ground terms, then ''p''(ฮฑ<sub>1</sub>, ฮฑ<sub>2</sub>, ..., ฮฑ<sub>n</sub>) is a ground predicate or ground atom.
Roughly speaking, the [[Herbrand base]] is the set of all ground atoms, while a [[Herbrand interpretation]] assigns a [[truth value]] to each ground atom in the base.
+โรโโ266546546546456.76.264462.654.6574..45/657 95797957.5/46/657978978 808.8.08 9054/./56579 0890.0070 8.07 8/0564.5787 9897000 .0000 77 7576. mllmml. m llnkb NB, ml.j b NGC hg bbl njhv chfdx x cg ๐๐๐๐๐^3^):๐ผ๐พ๐X_XโฟโขX_X<3๐โข๐<3X_Xโข๐๐๐๐โข๐๐๐๐ปโข๐๐๐X_Xโฟ๐๐พ๐พโฟ):~_~โฟ๐X_X<3~_~X_X^o^~_~O.O:/:/~_~^o^O.O~_~<3O.O~_~<3:-O>"<~_~:-O>"<~_~U_U>:(:-O>:(U_U:-O:P:-P:(:):-):D^_~:D:-):D:D^_^;-)^_^:P:P^_^:-):-P^0^:-P:P^0^:-D^0^:-):P:-P:(:-D:(:-D^0^:(;P:P>:(:(:-P:(:-OU_UO.O:[>:(:[:-O:-O>"<~_~~_~O.O^3^<3^o^:/<3^o^X_X:-S^3^=/โโโโจโโญโญ๐ค๐ง๐๐๐๐๐
๐๐
๐โญ๐๐๐
๐ง๐๐
๐๐
๐๐โญ๐๐๐
๐๐X_X^3^^3^:-S=/=/:-x:-S:-()O.O:-S):U_U;P^0^:D:-);):)^_~^_~;):):P^_^:):-P:P>:(U_U>:(:-O:-OO.O<3<3^o^:/<3^o^:/:-S^3^X_X^3^:-SX_X^o^:-()X_X^o^:-():-x:-S=/:-S:-S=/:-():-x)::-S>"<:[O.O:-P:-DU_U^_^:-)^0^^_~;-)^0^;-)^_~:)^_^:-):D^_^:-):-P:-P:-)^0^:P^0^:-):-P^0^:-D:-PU_U:-D>:(:-P;P:-P>"<;PO.O:[>"<U_U:[:(:P:-P>"<U_UO.OO.O>"<:-()^3^^o^^o^^3^^o^^3^:/^3^X_X:-S^3^:-x=/๐ชโญ๐๐๐๐๐
๐๐๐๐
๐๐๐๐๐๐๐๐ข๐๐
๐ง๐๐๐
๐๐๐๐โ๐ฅ๐ข๐ช๐ค๐จ๐ง๐ฐโ๐ช๐ช๐จ๐
ฟ๐ฐ๐ซ๐ญ๐ฉ๐
ฟ๐ฌ๐ฌ๐
ฟ๐ฉ๐ญ๐ฌ๐
ฟ๐จ๐ฉโ๐ค๐ญ๐ง๐ฉ๐๐ช๐๐ง๐๐๐๐จ๐๐๐
๐ค๐๐๐๐
๐๐๐๐๐๐๐๐๐๐๐
๐๐ง๐๐๐๐๐
ฟ๐๐๐๐ฅ๐๐ช๐ฐ๐ค๐ง๐ช๐ญ๐
ฟ๐จ๐ฐ๐ซ๐ฌ๐ฉ๐ฌ๐จ๐ช๐ข๐ข๐ขโญ๐๐๐๐ค๐๐
๐๐๐๐๐๐๐๐๐ข๐
๐๐๐๐ง๐
๐๐
ฟ๐๐๐๐โญ๐ข๐ฅ๐ชโ๐ง๐คโ๐ฐ๐ฐ๐จ๐จ๐ฐ๐
ฟ๐จ๐ฌ๐
ฟ๐ง๐ญ๐ฌ๐๐ข๐ฅ๐๐จ๐๐๐๐ค๐
๐๐๐๐๐โ๐๐๐โ๐๐๐
๐ค๐๐๐๐๐๐
ฟโ๐ฐ๐พ๐ช๐ฉโฟ:-O๐โ๐โฟ๐~_~~_~๐ฉ๐๐๐๐โฟ๐โฟ๐๐พ:-O๐๐๐ฌ๐ง):๐พ๐พ^o^^o^X_X^o^๐ช^3^^3^=/):X_X๐<3):<3๐<3๐
๐๐ช๐ง๐๐ช๐ฌ๐ช๐๐๐ฐ:-Oโ๐~_~โฟ๐~_~:-O~_~๐ฉ๐๐:-O๐๐โ๐๐ฌ~_~๐ฌ๐ง๐X_X):๐๐ฌX_X):๐^o^๐ฌ๐X_X<3)::-OX_X:-O๐จ๐๐ฌ๐๐X_X๐๐
ฟ๐ข~_~๐ง๐ข๐๐ช๐พ๐ข~_~๐๐๐๐ฉ๐ฉ๐~_~โ๐๐~_~๐โ:-O๐ฉ๐ฉ๐๐๐
<3๐^3^O.O๐ช^3^^o^=/^3^O.O^o^๐พ<3~_~):X_X~_~๐๐ช๐ง๐๐พ๐๐๐๐ฅ๐ฑ๐ฉ๐ฌ๐จ๐ฌ๐ฐ๐ฑ๐ช๐จ๐ฌ๐ฑ๐จ๐ฏ๐ช๐ญ๐จ๐ฐ๐ง๐ฎ๐ซ๐๐ก๐๐๐ก๐๐๐๐๐ค๐๐๐๐จ๐๐๐๐๐ซ๐ฃ๐ฆ๐ค๐ฅ๐ฉ๐ช๐ฏ๐ฌ๐ฐ๐ญ๐ช๐ฑ๐ญ๐ฑ๐ง๐ค๐ง๐ซ๐ข๐ข๐๐๐๐๐๐๐๐ฅ๐๐๐๐ข๐ข๐๐๐๐๐๐น๐๐๐๐น๐๐๐๐๐๐ธ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐
๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ธ๐๐๐๐น๐๐๐น๐๐๐๐น๐๐น๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ฃ๐๐๐ ๐ค๐๐ฃ๐ค๐๐๐ค๐ข๐๐๐๐ ๐ก๐๐๐ก๐๐๐๐๐๐๐๐
๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐rjesdxkccf,tu.bnpok??'nlmkl'nmokpmoklionjihvb,vvhu.tyccyguy.vrfkweahhezezr๐๐๐๐๐๐๐๐๐๐๐๐๐ค๐๐๐๐ฃ๐๐ ๐๐ค๐๐๐ฃ๐ค๐๐ ๐๐ก๐๐๐ข๐๐๐๐ค๐ค๐๐๐ ๐ ๐๐๐๐ก๐๐๐๐๐๐๐๐ก๐๐๐๐๐ค๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐
๐๐พ๐๐<3~_~<3๐๐ค๐๐ค๐ช๐๐พ๐
๐๐๐๐พ๐๐๐๐ช๐ ๐๐
๐๐ช๐๐๐๐ช๐ <3๐ค๐๐~_~๐ค๐๐๐๐พ๐):^o^X_X^3^^3^X_X^3^๐๐^3^~_~๐=/):๐~_~๐~_~๐<3๐ช๐๐ช๐๐พ๐๐พ๐๐พ๐๐
๐๐๐๐๐๐๐พ๐๐๐
๐พ๐๐๐๐๐๐๐ ๐๐๐ช๐
๐ค๐๐<3~_~๐ค๐พ๐):rrktdxkrexkdctrccr,yctv,y,yu v.ibjbno.jpk.o'nkopn.ukhbuv,vugcntdrjdrkrct,tucv..iublonk.ju.hi,tyfcejrszrzdx,drcc.yujnk'n'kl.knop.k.huvitfjtwjezrlx):๐พ๐คcfcyu.bjipkm kn,vhb vu,hvjouuvytrmcX_X=/~_~๐
X_X~_~๐ ):=/X_X๐ ~_~<3๐๐๐๐๐ก๐๐๐๐๐๐๐๐๐๐๐ค๐๐๐๐๐ก๐๐๐๐ ๐๐๐ ๐๐๐๐ฃ๐๐๐๐ก๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐
๐๐ ๐๐๐๐๐๐๐ ๐๐๐ก๐ก๐ ๐๐๐๐๐ฃ๐๐๐๐๐ค๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐
๐๐๐พ๐๐๐๐๐๐ ๐๐๐๐๐น๐๐๐๐ก๐๐๐๐๐๐ค๐๐ ๐๐๐๐๐๐๐ค๐๐๐๐๐๐ค๐๐๐๐๐๐๐ค๐๐๐ก๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐พ๐):๐=/๐ช<3๐๐<3๐
๐๐๐๐
๐๐
๐๐๐๐<3๐๐๐ช๐๐ช๐๐๐ช๐๐๐๐
๐<3๐<3๐<3๐๐๐๐ ๐^o^O.O๐๐๐๐X_X๐X_X๐ค๐๐๐ค๐ค๐พ๐๐๐พ๐๐๐๐๐พ๐๐๐~_~๐):~_~~_~<3๐๐๐๐๐๐๐
๐๐๐
๐๐๐ช๐๐๐๐๐๐๐
๐๐๐๐ช<3๐):๐=/๐๐ ๐):๐๐๐^o^๐๐O.O^o^๐๐O.O๐๐ค๐X_X๐^o^^o^O.O๐๐๐คX_XX_X๐๐๐พ๐๐ ):~_~=/<3๐๐๐๐๐๐๐๐๐๐๐๐๐ช๐=/=/๐๐~_~๐~_~๐๐๐๐๐O.O๐๐๐๐๐๐ค๐๐ค๐๐คX_X๐ค๐X_X๐คO.O๐O.O๐๐O.O^o^๐๐๐ค๐X_X๐O.O๐๐O.O๐๐พ๐X_X๐๐๐๐พ):๐๐~_~~_~):๐๐๐=/๐๐๐ช๐๐๐๐
๐๐๐๐<3๐ช๐๐๐<3๐ช๐~_~):๐พ๐X_X๐ ๐๐O.O๐๐๐๐O.O๐๐๐ค๐๐๐คX_X๐๐X_X๐พ๐X_X๐<3๐=/๐๐๐ช๐๐๐๐๐๐๐
<3๐๐๐๐๐<3=/~_~๐~_~):๐X_X๐ ๐๐O.O๐๐๐O.O๐๐๐O.O๐^o^๐^3^O.O๐๐๐ค^o^๐ค๐๐X_XX_X๐๐๐๐คX_XX_X๐๐พ๐X_X๐):~_~):<3๐<3๐=/๐๐๐ ๐โจ๐๐ ๐โโจ๐โโโณโณโโโโดโ๐ โ๐โ๐๐โ๐๐๐๐
๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐โ๐๐๐๐^3^<3~_~๐<3~_~๐พ๐๐๐ช๐๐=/๐ช๐๐
๐๐ช๐๐
๐๐๐๐๐๐๐๐~_~๐๐๐พ๐<3๐๐chf๐๐:-O๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ข๐๐๐๐๐๐๐
๐๐๐๐ fzdbk km'
=== Ground formula ===
A ground formula or ground clause is a formula without free variables.
' |
New page size (new_size ) | 10634 |
Old page size (old_size ) | 3992 |
Size change in edit (edit_delta ) | 6642 |
Lines added in edit (added_lines ) | [
0 => 'โรโโ266546546546456.76.264462.654.6574..45/657 95797957.5/46/657978978 808.8.08 9054/./56579 0890.0070 8.07 8/0564.5787 9897000 .0000 77 7576. mllmml. m llnkb NB, ml.j b NGC hg bbl njhv chfdx x cg ๐๐๐๐๐^3^):๐ผ๐พ๐X_XโฟโขX_X<3๐โข๐<3X_Xโข๐๐๐๐โข๐๐๐๐ปโข๐๐๐X_Xโฟ๐๐พ๐พโฟ):~_~โฟ๐X_X<3~_~X_X^o^~_~O.O:/:/~_~^o^O.O~_~<3O.O~_~<3:-O>"<~_~:-O>"<~_~U_U>:(:-O>:(U_U:-O:P:-P:(:):-):D^_~:D:-):D:D^_^;-)^_^:P:P^_^:-):-P^0^:-P:P^0^:-D^0^:-):P:-P:(:-D:(:-D^0^:(;P:P>:(:(:-P:(:-OU_UO.O:[>:(:[:-O:-O>"<~_~~_~O.O^3^<3^o^:/<3^o^X_X:-S^3^=/โโโโจโโญโญ๐ค๐ง๐๐๐๐๐
๐๐
๐โญ๐๐๐
๐ง๐๐
๐๐
๐๐โญ๐๐๐
๐๐X_X^3^^3^:-S=/=/:-x:-S:-()O.O:-S):U_U;P^0^:D:-);):)^_~^_~;):):P^_^:):-P:P>:(U_U>:(:-O:-OO.O<3<3^o^:/<3^o^:/:-S^3^X_X^3^:-SX_X^o^:-()X_X^o^:-():-x:-S=/:-S:-S=/:-():-x)::-S>"<:[O.O:-P:-DU_U^_^:-)^0^^_~;-)^0^;-)^_~:)^_^:-):D^_^:-):-P:-P:-)^0^:P^0^:-):-P^0^:-D:-PU_U:-D>:(:-P;P:-P>"<;PO.O:[>"<U_U:[:(:P:-P>"<U_UO.OO.O>"<:-()^3^^o^^o^^3^^o^^3^:/^3^X_X:-S^3^:-x=/๐ชโญ๐๐๐๐๐
๐๐๐๐
๐๐๐๐๐๐๐๐ข๐๐
๐ง๐๐๐
๐๐๐๐โ๐ฅ๐ข๐ช๐ค๐จ๐ง๐ฐโ๐ช๐ช๐จ๐
ฟ๐ฐ๐ซ๐ญ๐ฉ๐
ฟ๐ฌ๐ฌ๐
ฟ๐ฉ๐ญ๐ฌ๐
ฟ๐จ๐ฉโ๐ค๐ญ๐ง๐ฉ๐๐ช๐๐ง๐๐๐๐จ๐๐๐
๐ค๐๐๐๐
๐๐๐๐๐๐๐๐๐๐๐
๐๐ง๐๐๐๐๐
ฟ๐๐๐๐ฅ๐๐ช๐ฐ๐ค๐ง๐ช๐ญ๐
ฟ๐จ๐ฐ๐ซ๐ฌ๐ฉ๐ฌ๐จ๐ช๐ข๐ข๐ขโญ๐๐๐๐ค๐๐
๐๐๐๐๐๐๐๐๐ข๐
๐๐๐๐ง๐
๐๐
ฟ๐๐๐๐โญ๐ข๐ฅ๐ชโ๐ง๐คโ๐ฐ๐ฐ๐จ๐จ๐ฐ๐
ฟ๐จ๐ฌ๐
ฟ๐ง๐ญ๐ฌ๐๐ข๐ฅ๐๐จ๐๐๐๐ค๐
๐๐๐๐๐โ๐๐๐โ๐๐๐
๐ค๐๐๐๐๐๐
ฟโ๐ฐ๐พ๐ช๐ฉโฟ:-O๐โ๐โฟ๐~_~~_~๐ฉ๐๐๐๐โฟ๐โฟ๐๐พ:-O๐๐๐ฌ๐ง):๐พ๐พ^o^^o^X_X^o^๐ช^3^^3^=/):X_X๐<3):<3๐<3๐
๐๐ช๐ง๐๐ช๐ฌ๐ช๐๐๐ฐ:-Oโ๐~_~โฟ๐~_~:-O~_~๐ฉ๐๐:-O๐๐โ๐๐ฌ~_~๐ฌ๐ง๐X_X):๐๐ฌX_X):๐^o^๐ฌ๐X_X<3)::-OX_X:-O๐จ๐๐ฌ๐๐X_X๐๐
ฟ๐ข~_~๐ง๐ข๐๐ช๐พ๐ข~_~๐๐๐๐ฉ๐ฉ๐~_~โ๐๐~_~๐โ:-O๐ฉ๐ฉ๐๐๐
<3๐^3^O.O๐ช^3^^o^=/^3^O.O^o^๐พ<3~_~):X_X~_~๐๐ช๐ง๐๐พ๐๐๐๐ฅ๐ฑ๐ฉ๐ฌ๐จ๐ฌ๐ฐ๐ฑ๐ช๐จ๐ฌ๐ฑ๐จ๐ฏ๐ช๐ญ๐จ๐ฐ๐ง๐ฎ๐ซ๐๐ก๐๐๐ก๐๐๐๐๐ค๐๐๐๐จ๐๐๐๐๐ซ๐ฃ๐ฆ๐ค๐ฅ๐ฉ๐ช๐ฏ๐ฌ๐ฐ๐ญ๐ช๐ฑ๐ญ๐ฑ๐ง๐ค๐ง๐ซ๐ข๐ข๐๐๐๐๐๐๐๐ฅ๐๐๐๐ข๐ข๐๐๐๐๐๐น๐๐๐๐น๐๐๐๐๐๐ธ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐
๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ธ๐๐๐๐น๐๐๐น๐๐๐๐น๐๐น๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ฃ๐๐๐ ๐ค๐๐ฃ๐ค๐๐๐ค๐ข๐๐๐๐ ๐ก๐๐๐ก๐๐๐๐๐๐๐๐
๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐rjesdxkccf,tu.bnpok??'nlmkl'nmokpmoklionjihvb,vvhu.tyccyguy.vrfkweahhezezr๐๐๐๐๐๐๐๐๐๐๐๐๐ค๐๐๐๐ฃ๐๐ ๐๐ค๐๐๐ฃ๐ค๐๐ ๐๐ก๐๐๐ข๐๐๐๐ค๐ค๐๐๐ ๐ ๐๐๐๐ก๐๐๐๐๐๐๐๐ก๐๐๐๐๐ค๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐
๐๐พ๐๐<3~_~<3๐๐ค๐๐ค๐ช๐๐พ๐
๐๐๐๐พ๐๐๐๐ช๐ ๐๐
๐๐ช๐๐๐๐ช๐ <3๐ค๐๐~_~๐ค๐๐๐๐พ๐):^o^X_X^3^^3^X_X^3^๐๐^3^~_~๐=/):๐~_~๐~_~๐<3๐ช๐๐ช๐๐พ๐๐พ๐๐พ๐๐
๐๐๐๐๐๐๐พ๐๐๐
๐พ๐๐๐๐๐๐๐ ๐๐๐ช๐
๐ค๐๐<3~_~๐ค๐พ๐):rrktdxkrexkdctrccr,yctv,y,yu v.ibjbno.jpk.o'nkopn.ukhbuv,vugcntdrjdrkrct,tucv..iublonk.ju.hi,tyfcejrszrzdx,drcc.yujnk'n'kl.knop.k.huvitfjtwjezrlx):๐พ๐คcfcyu.bjipkm kn,vhb vu,hvjouuvytrmcX_X=/~_~๐
X_X~_~๐ ):=/X_X๐ ~_~<3๐๐๐๐๐ก๐๐๐๐๐๐๐๐๐๐๐ค๐๐๐๐๐ก๐๐๐๐ ๐๐๐ ๐๐๐๐ฃ๐๐๐๐ก๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐
๐๐ ๐๐๐๐๐๐๐ ๐๐๐ก๐ก๐ ๐๐๐๐๐ฃ๐๐๐๐๐ค๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐
๐๐๐พ๐๐๐๐๐๐ ๐๐๐๐๐น๐๐๐๐ก๐๐๐๐๐๐ค๐๐ ๐๐๐๐๐๐๐ค๐๐๐๐๐๐ค๐๐๐๐๐๐๐ค๐๐๐ก๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐พ๐):๐=/๐ช<3๐๐<3๐
๐๐๐๐
๐๐
๐๐๐๐<3๐๐๐ช๐๐ช๐๐๐ช๐๐๐๐
๐<3๐<3๐<3๐๐๐๐ ๐^o^O.O๐๐๐๐X_X๐X_X๐ค๐๐๐ค๐ค๐พ๐๐๐พ๐๐๐๐๐พ๐๐๐~_~๐):~_~~_~<3๐๐๐๐๐๐๐
๐๐๐
๐๐๐ช๐๐๐๐๐๐๐
๐๐๐๐ช<3๐):๐=/๐๐ ๐):๐๐๐^o^๐๐O.O^o^๐๐O.O๐๐ค๐X_X๐^o^^o^O.O๐๐๐คX_XX_X๐๐๐พ๐๐ ):~_~=/<3๐๐๐๐๐๐๐๐๐๐๐๐๐ช๐=/=/๐๐~_~๐~_~๐๐๐๐๐O.O๐๐๐๐๐๐ค๐๐ค๐๐คX_X๐ค๐X_X๐คO.O๐O.O๐๐O.O^o^๐๐๐ค๐X_X๐O.O๐๐O.O๐๐พ๐X_X๐๐๐๐พ):๐๐~_~~_~):๐๐๐=/๐๐๐ช๐๐๐๐
๐๐๐๐<3๐ช๐๐๐<3๐ช๐~_~):๐พ๐X_X๐ ๐๐O.O๐๐๐๐O.O๐๐๐ค๐๐๐คX_X๐๐X_X๐พ๐X_X๐<3๐=/๐๐๐ช๐๐๐๐๐๐๐
<3๐๐๐๐๐<3=/~_~๐~_~):๐X_X๐ ๐๐O.O๐๐๐O.O๐๐๐O.O๐^o^๐^3^O.O๐๐๐ค^o^๐ค๐๐X_XX_X๐๐๐๐คX_XX_X๐๐พ๐X_X๐):~_~):<3๐<3๐=/๐๐๐ ๐โจ๐๐ ๐โโจ๐โโโณโณโโโโดโ๐ โ๐โ๐๐โ๐๐๐๐
๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐โ๐๐๐๐^3^<3~_~๐<3~_~๐พ๐๐๐ช๐๐=/๐ช๐๐
๐๐ช๐๐
๐๐๐๐๐๐๐๐~_~๐๐๐พ๐<3๐๐chf๐๐:-O๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ข๐๐๐๐๐๐๐
๐๐๐๐ fzdbk km''
] |
Lines removed in edit (removed_lines ) | [] |
Whether or not the change was made through a Tor exit node (tor_exit_node ) | 0 |
Unix timestamp of change (timestamp ) | 1426439880 |