Jump to content

Quasitriangular Hopf algebra

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Jarble (talk | contribs) at 14:02, 4 June 2012 (wikifying). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a Hopf algebra, H, is quasitriangular[1] if there exists an invertible element, R, of such that

  • for all , where is the coproduct on H, and the linear map is given by ,
  • ,
  • ,

where , , and , where , , and , are algebra morphisms determined by

R is called the R-matrix.

As a consequence of the properties of quasitriangularity, the R-matrix, R, is a solution of the Yang-Baxter equation (and so a module V of H can be used to determine quasi-invariants of braids, knots and links). Also as a consequence of the properties of quasitriangularity, ; moreover , , and . One may further show that the antipode S must be a linear isomorphism, and thus S^2 is an automorphism. In fact, S^2 is given by conjugating by an invertible element: where (cf. Ribbon Hopf algebras).

It is possible to construct a quasitriangular Hopf algebra from a Hopf algebra and its dual, using the Drinfel'd quantum double construction.

Twisting

The property of being a quasi-triangular Hopf algebra is preserved by twisting via an invertible element such that and satisfying the cocycle condition

Furthermore, is invertible and the twisted antipode is given by , with the twisted comultiplication, R-matrix and co-unit change according to those defined for the quasi-triangular Quasi-Hopf algebra. Such a twist is known as an admissible (or Drinfel'd) twist.

See also

Notes

  1. ^ Montgomery & Schneider (2002), Template:Google books quote.

References