Jump to content

Birtoxin

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by PFHLai (talk | contribs) at 16:39, 24 October 2010 (wrong page number, wrong DOI). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Birtoxin
Category Ion channel toxin, Neurotoxin
Species Parabuthus transvaalicus[1]
Target voltage-gated sodium channel [1]
Symptoms Lethal, tachypnea, convulsions, tremors
Taxonomic ID 170972 [1]
Sequence length 58 AA [1]


Birtoxin is a neurotoxin from the venom of the South African Spitting scorpion. By changing sodium channel activation, the toxin promotes spontaneous and repetitive firing.

Source

Birtoxin was isolated from the venom of the South African Spitting scorpion[1]. It is a moderately toxic but very high abundance peptide in the venom.[1] Other peptide toxins also found in the venom include: dortoxin, a lethal peptide; bestoxin, which causes writhing in mice; and altitoxin, a highly depressant peptide.[2]

Chemistry

Generally, peptide neurotoxins can be divided into two major families, the ‘long chain neurotoxin’ (LCN) with 60- to 70-residue range and known to contain eight cysteine residues; and the ‘short chain neurotoxin’ (SCN) with 30 to 40 peptides with six or eight cysteine residues. Birtoxin, together with other birtoxin-like peptides including bestoxin, is 58 amino-acid residues long closed to the ‘long chain’ family but with six cysteine residues. Birtoxin is reticulated by three disulfide bridges, instead of four, compared to other LCNs [3]. Therefore it is considered to be the evolutionary link between ‘long chain’- and ‘short chain’- family [4][5][6][7].

Mode of action

Birtoxin affects the gating mechanism of sodium channels by binding to neurotoxin receptor site 4 of the channel, resulting in the lowering of the voltage threshold of the channel and a reduction in the current amplitude. Due to the change in the activation the sodium channel will open at smaller depolarisations. This causes increased excitability, which leads to symptoms such as convulsions, continuous urination, tremors and tachypnea (faster breathing) [1][8].

Toxicity

Birtoxin only affects mammals. No effect is found on reptiles, insects or fish. In experiments performed on mice, symptoms like convulsions, continuous urination, tremors and tachypnea occurred 10 minutes after injection and increased during 30 minutes. An injection of 1 μg of birtoxin resulted in severe neurotoxic effects for 24 h, but this dose is not lethal to mice. LD99 in mice is achieved at 2 μg[1].

An antibody against the N-terminus of the birtoxin protein structure has been shown to neutralize the venom of the South African spitting scorpion and such antibodies may be useful clinically to treat envenomation. [9]

References

  1. ^ a b c d e f g h Inceoglu, B.; Lango, J.; Wu, J.; Hawkins, P.; Southern, J.; Hammock, B.D. (2001). "Isolation and characterization of a novel type of neurotoxic peptide from the venom of the South African scorpion Parabuthus transvaalicus (Buthidae)". European Journal of Biochemistry. 268: 5407–5413. doi:10.1046/j.1432-1033.2002.02940.x. PMID 11606203.
  2. ^ Inceoglu, B (2005). "Three structurally related, highly potent, peptides from the venom of possess divergent biological activity". Toxicon. 45 (6): 727–733. doi:10.1016/j.toxicon.2005.01.020. ISSN 0041-0101. PMID 15804521. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  3. ^ Martin-Eauclaire, M-F; Cearda, B.; Bosmans, F.; Rossoa, J-P.; Tytgat, J.; Bougisa, P.E. (1999). "New "Birtoxin analogs" from Androctonus australis venom". Biochemical and Biophysical Research Communications. 333 (2): 524–530. doi:10.1016/j.bbrc.2005.05.148. PMID 15963953.
  4. ^ Possani, L.D.; Becerrill, B.; Delepierre, M.; Tytgat Hammock, J. (1999). "Scorpion toxins specific for Na+-channels". European Journal of Biochemistry. 264: 287–300. doi:10.1046/j.1432-1327.1999.00625.x. PMID 10491073.
  5. ^ Lebreton, F.; Delepierre, M.; Ramirez, A.N.; Balderas, C.; Possani, L.D. (1994). "Primary and NMR three-dimensional structure determination of a novel crustacean toxin from the venom of the scorpion Centruroides limpidus limpidus Karsch". Biochemistry. 33(37): 11135–11149. doi:10.1021/bi00203a010. PMID 7727365.
  6. ^ Lebreton, F.; Delepierre, M.; Ramirez, A.N.; Balderas, C.; Possani, L.D. (1994). "Purification and primary structure of low molecular mass peptides from scorpion (Buthus sindicus) venom". Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology. 121 (4): 323–332. doi:10.1016/S1095-6433(98)10140-X.
  7. ^ Gordon, D.; Savarin, P.; Gurevitz, M.; Zinn-Justin, S. (1998). "Functional anatomy of scorpion toxins affecting sodium channels". Toxin Reviews. 17: 131–159. doi:10.3109/15569549809009247.
  8. ^ Cestèle, S.; Catterall, W.A. (2000). "Molecular mechanisms of neurotoxin action on voltage-gated sodium channels". Biochimie. 82 (9–10): 883–892. doi:10.1016/S0300-9084(00)01174-3.
  9. ^ Inceoglu, B (2006). "The neutralizing effect of a polyclonal antibody raised against the N-terminal eighteen-aminoacid residues of birtoxin towards the whole venom of Parabuthus transvaalicus". Toxicon. 47 (2): 144–149. doi:10.1016/j.toxicon.2005.08.018. ISSN 0041-0101. PMID 16356521. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)