Magnetorquer: Difference between revisions
Line 10: | Line 10: | ||
|title = Magnetic actuators for nanosatellite attitude control |
|title = Magnetic actuators for nanosatellite attitude control |
||
|author = Niccolò Bellini |
|author = Niccolò Bellini |
||
|date = 9 |
|date = 9-10-2014 |
||
}}</ref>: |
}}</ref>: |
||
*'''Air-core magnetorquer''': this consist in the basic concept of ''magnetorquer'', a conductive wire wrapped around a non-conductive support anchored to the satellite. This kind of ''magnetorquer'' can provide a consistent magnetic dipole with an acceptable mass and encumbrance. |
*'''Air-core magnetorquer''': this consist in the basic concept of ''magnetorquer'', a conductive wire wrapped around a non-conductive support anchored to the satellite. This kind of ''magnetorquer'' can provide a consistent magnetic dipole with an acceptable mass and encumbrance. |
Revision as of 09:35, 4 July 2018
A magnetorquer or magnetic torquer (also known as torque rod) is a satellite system for attitude control, detumbling, and stabilization built from electromagnetic coils. The magnetorquer creates a magnetic field that interfaces with an ambient magnetic field, usually Earth's, so that the counter-forces produced provide useful torque. It is used in space ships.
Construction
Magnetorquers are essentially sets of electromagnets which are laid out to yield a rotationally asymmetric (anisotropic) magnetic field over an extended area. That field is controlled by switching current flow through the coils on or off, usually under computerized feedback control. The magnets themselves are mechanically anchored to the craft, so that any magnetic force they exert on the surrounding magnetic field will lead to a magnetic reverse force and result in mechanical torque about the vessel's center of gravity. This makes it possible to freely pivot the craft around in a known local gradient of the magnetic field by only using electrical energy.
According to the construction strategy it is possible to find three type of magnetorquer, apparently very different from each other but based on the same concept [1]:
- Air-core magnetorquer: this consist in the basic concept of magnetorquer, a conductive wire wrapped around a non-conductive support anchored to the satellite. This kind of magnetorquer can provide a consistent magnetic dipole with an acceptable mass and encumbrance.
- Embedded coil: this kind of magnetorquer are constructed creating a spiral trace inside the pcb of solar panels which generates the effect of the coil. This solution is the one with the least impact on the satellite as it is entirely contained within the solar panels. However, due to the phisical limit in the board thickness and the presence of other circuits and electronic components, it is not possible to reach high value of the magnetic dipole.
- Torquerod: this kind of magnetorquer is the most performant solution. A conductive wire is wrapped around a ferromagnetic core which is magnetized when excited by the coil generating thus a dipole considerably greater than the other solutions. The disadvantage of this solution is the presence of a residual magnetic flux that remains even when the coil is turned off. It is therefore necessary to demagnetize the core with a proper demagnetizing procedure. Normally, the presence of the core (generally consisting of heavy metal) increases the mass of the system.
Typically three coils are used, although reduced configurations of two or even one magnet can suffice where full attitude control is not needed or external forces like asymmetric drag allow underactuated control. The three coil assembly usually takes the form of three perpendicular coils, because this setup equalizes the rotational symmetry of the fields which can be generated; no matter how the external field and the craft are placed with respect to each other, approximately the same torque can always be generated simply by using different amounts of current on the three different coils.
As long as current is passing through the coils and the spacecraft hasn't yet stabilized in a fixed orientation with respect to the external field, the craft's spinning will continue.[citation needed]
Very small satellites may use permanent magnets instead of coils.
Advantages
Magnetorquers are lightweight, reliable, and energy-efficient. Unlike thrusters, they do not require expendable propellant either, so they could in theory work indefinitely as long as sufficient power is available to match the resistive load of the coils. In Earth orbit, sunlight is one such practically inexhaustible energy source, using solar panels.
A further advantage over momentum wheels and control moment gyroscopes is the absence of moving parts and therefore significantly higher reliability.
Disadvantages
The main disadvantage of magnetorquers is that very high magnetic flux densities are needed if large craft have to be turned very fast. This either necessitates a very high current in the coils, or much higher ambient flux densities than are available in Earth orbit. Subsequently, the torques provided are very limited and only serve to accelerate or decelerate the change in a spacecraft's attitude by minute amounts. Over time active control can produce very fast spinning even here, but for accurate attitude control and stabilization the torques provided often aren't enough.
A broader disadvantage is the dependence on Earth's magnetic field strength, making this approach unsuitable for deep space missions, and also more suitable for low Earth orbits as opposed to higher ones like the geosynchronous. The dependence on the highly variable intensity of Earth's magnetic field is also problematic because then the attitude control problem becomes highly nonlinear. It is also impossible to control attitude in all three axes even if the full three coils are used, because the torque can be generated only perpendicular to the Earth's magnetic field vector.[2][3]
Any spinning satellite made of a conductive material will lose rotational momentum in Earth's magnetic field due to generation of eddy currents in its body and the corresponding braking force proportional to its spin rate.[4] Aerodynamic friction losses can also play a part. This means that the magnetorquer will have to be continuously operated, and at a power level which is enough to counter the resistive forces present. This is not always possible within the energy constraints of the vessel.
The Michigan Exploration Laboratory (MXL) suspects that the M-Cubed CubeSat, a joint project run by MXL and JPL, became magnetically conjoined to Explorer-1 Prime, a second CubeSat released at the same time, via strong onboard magnets used for passive attitude control, after deploying on October 28, 2011.[5] This is the first non-destructive latching of two satellites.[citation needed]
See also
References
- ^ Niccolò Bellini (9-10-2014). "Magnetic actuators for nanosatellite attitude control" (Document).
{{cite document}}
: Check date values in:|date=
(help); Cite document requires|publisher=
(help); Unknown parameter|format=
ignored (help); Unknown parameter|url=
ignored (help) - ^ Vincent Francois-Lavet (2010-05-31). "Attitude and Determination Control Systems for the OUFTI nanosatellites" (pdf).
- ^ Ping Wang; et al. (21–26 Jun 1998). "Satellite attitude control using only magnetorquers" (PDF). American Control Conference. 1: 222–226. doi:10.1109/ACC.1998.694663. Archived from the original (pdf) on 2011-08-21.
{{cite journal}}
: Unknown parameter|deadurl=
ignored (|url-status=
suggested) (help) - ^ "Magnetorquers". Amsat.org. 2002-11-24. Retrieved 2010-02-08.
- ^ "Michigan Exploration Laboratory". Michigan Exploration Laboratory. 2011-12-06. Retrieved 2012-12-14.