Jump to content

Adropin: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
Add: pages, issue, volume. Removed proxy/dead URL that duplicated identifier. Removed parameters. | Use this bot. Report bugs. | Suggested by Kline | Category:CS1 maint: PMC embargo expired | #UCB_Category 12/13
Added Background information and citations
Line 3: Line 3:
'''Adropin''' is a [[peptide]] encoded by the energy homeostasis-associated [[gene]] ''ENHO'',<ref>{{Cite web|url=https://www.genecards.org/cgi-bin/carddisp.pl?gene=ENHO|title=ENHO Gene - GeneCards {{pipe}} ENHO Protein {{pipe}} ENHO Antibody|website=www.genecards.org}}</ref> which is highly [[Conserved sequence|conserved]] across [[mammal]]s.<ref>{{Cite web |title=ortholog_gene_375704[group] - Gene - NCBI |url=https://www.ncbi.nlm.nih.gov/gene/?Term=ortholog_gene_375704%5Bgroup%5D |access-date=2022-08-21 |website=www.ncbi.nlm.nih.gov}}</ref>
'''Adropin''' is a [[peptide]] encoded by the energy homeostasis-associated [[gene]] ''ENHO'',<ref>{{Cite web|url=https://www.genecards.org/cgi-bin/carddisp.pl?gene=ENHO|title=ENHO Gene - GeneCards {{pipe}} ENHO Protein {{pipe}} ENHO Antibody|website=www.genecards.org}}</ref> which is highly [[Conserved sequence|conserved]] across [[mammal]]s.<ref>{{Cite web |title=ortholog_gene_375704[group] - Gene - NCBI |url=https://www.ncbi.nlm.nih.gov/gene/?Term=ortholog_gene_375704%5Bgroup%5D |access-date=2022-08-21 |website=www.ncbi.nlm.nih.gov}}</ref>


Adropin's biological role was first described in mice by a group led by Andrew Butler, as a [[Protein hormone|protein]] [[hormone]], [[Secretion|secreted]] from the [[liver]] ([[hepatokine]]), in the context of [[obesity]] and energy [[homeostasis]]. They derived the name "Adropin" from the [[Latin]] "[[wiktionary:aduro#:~:text=I singe, scorch, burn|aduro]]" - to set fire to, and "[[wiktionary:pinguis|pinguis]]" - fat.<ref>{{Cite journal |last1=Kumar |first1=K. Ganesh |last2=Trevaskis |first2=James L. |last3=Lam |first3=Daniel D. |last4=Sutton |first4=Gregory M. |last5=Koza |first5=Robert A. |last6=Chouljenko |first6=Vladimir N. |last7=Kousoulas |first7=Konstantin G. |last8=Rogers |first8=Pamela M. |last9=Kesterson |first9=Robert A. |last10=Thearle |first10=Marie |last11=Ferrante |first11=Anthony W. |date=2008-12-06 |title=Identification of Adropin as a Secreted Factor Linking Dietary Macronutrient Intake with Energy Homeostasis and Lipid Metabolism |journal=Cell Metabolism |language=English |volume=8 |issue=6 |pages=468–481 |doi=10.1016/j.cmet.2008.10.011 |issn=1550-4131 |pmid=19041763|pmc=2746325 }}</ref>
Adropin's biological role was first described in mice by a group led by Andrew Butler, as a [[Protein hormone|protein]] [[hormone]], [[Secretion|secreted]] from the [[liver]] ([[hepatokine]]), in the context of [[obesity]] and energy [[homeostasis]]. They derived the name "Adropin" from the [[Latin]] "[[wiktionary:aduro#:~:text=I singe, scorch, burn|aduro]]" - to set fire to, and "[[wiktionary:pinguis|pinguis]]" - fat.<ref>{{Cite journal |last1=Kumar |first1=K. Ganesh |last2=Trevaskis |first2=James L. |last3=Lam |first3=Daniel D. |last4=Sutton |first4=Gregory M. |last5=Koza |first5=Robert A. |last6=Chouljenko |first6=Vladimir N. |last7=Kousoulas |first7=Konstantin G. |last8=Rogers |first8=Pamela M. |last9=Kesterson |first9=Robert A. |last10=Thearle |first10=Marie |last11=Ferrante |first11=Anthony W. |date=2008-12-06 |title=Identification of Adropin as a Secreted Factor Linking Dietary Macronutrient Intake with Energy Homeostasis and Lipid Metabolism |journal=Cell Metabolism |language=English |volume=8 |issue=6 |pages=468–481 |doi=10.1016/j.cmet.2008.10.011 |issn=1550-4131 |pmid=19041763|pmc=2746325 }}</ref> The hormone adropin is produced in places like the liver and brain, as well as peripheral tissues in the heart and gastrointestinal tract. <ref>{{Cite journal |last=Jasaszwili |first=Mariami |last2=Billert |first2=Maria |last3=Strowski |first3=Mathias Z. |last4=Nowak |first4=Krzysztof W. |last5=Skrzypski |first5=Marek |date=2020-01 |title=Adropin as A Fat-Burning Hormone with Multiple Functions—Review of a Decade of Research |url=https://www.mdpi.com/1420-3049/25/3/549 |journal=Molecules |language=en |volume=25 |issue=3 |pages=549 |doi=10.3390/molecules25030549 |issn=1420-3049 |pmc=PMC7036858 |pmid=32012786}}</ref>


In [[Animal disease model|animals]], adropin has been shown to have a regulatory role in [[Carbohydrate metabolism|carbohydrate]]/[[lipid metabolism]],<ref name=":0">{{Cite journal |last1=Banerjee |first1=Subhashis |last2=Ghoshal |first2=Sarbani |last3=Stevens |first3=Joseph R. |last4=McCommis |first4=Kyle S. |last5=Gao |first5=Su |last6=Castro-Sepulveda |first6=Mauricio |last7=Mizgier |first7=Maria L. |last8=Girardet |first8=Clemence |last9=Kumar |first9=K. Ganesh |last10=Galgani |first10=Jose E. |last11=Niehoff |first11=Michael L. |date=2020-10-02 |title=Hepatocyte expression of the micropeptide adropin regulates the liver fasting response and is enhanced by caloric restriction |url=https://www.jbc.org/article/S0021-9258(17)49826-7/abstract |journal=Journal of Biological Chemistry |language=English |volume=295 |issue=40 |pages=13753–13768 |doi=10.1074/jbc.RA120.014381 |issn=0021-9258 |pmc=7535914 |pmid=32727846|doi-access=free }}</ref> as well as in [[Endothelial dysfunction|endothelial function]].<ref>{{Cite journal |last1=Lovren |first1=Fina |last2=Pan |first2=Yi |last3=Quan |first3=Adrian |last4=Singh |first4=Krishna K. |last5=Shukla |first5=Praphulla C. |last6=Gupta |first6=Milan |last7=Al-Omran |first7=Mohammed |last8=Teoh |first8=Hwee |last9=Verma |first9=Subodh |date=2010-09-14 |title=Adropin Is a Novel Regulator of Endothelial Function |journal=Circulation |volume=122 |issue=11_suppl_1 |pages=S185–S192 |doi=10.1161/CIRCULATIONAHA.109.931782|pmid=20837912 |s2cid=798093 |doi-access=free }}</ref><ref>{{Cite journal |last1=Jurrissen |first1=Thomas J. |last2=Ramirez-Perez |first2=Francisco I. |last3=Cabral-Amador |first3=Francisco J. |last4=Soares |first4=Rogerio N. |last5=Pettit-Mee |first5=Ryan J. |last6=Betancourt-Cortes |first6=Edgar E. |last7=McMillan |first7=Neil J. |last8=Sharma |first8=Neekun |last9=Rocha |first9=Helena N. M. |last10=Fujie |first10=Shumpei |last11=Morales-Quinones |first11=Mariana |last12=Lazo-Fernandez |first12=Yoskaly |last13=Butler |first13=Andrew A. |last14=Banerjee |first14=Subhashis |last15=Sacks |first15=Harold S. |date=2022-09-09 |title=Role of adropin in arterial stiffening associated with obesity and type 2 diabetes |journal=American Journal of Physiology. Heart and Circulatory Physiology |volume=323 |issue=5 |pages=H879–H891 |doi=10.1152/ajpheart.00385.2022 |pmid=36083795 |pmc=9602697 |hdl=10355/94230 |s2cid=252160224 |issn=0363-6135}}</ref> Adropin [[Gene expression|expression]] in the liver is regulated by feeding status and macronutrient content,<ref name=":0" /> as well as by the [[Circadian rhythm|biological clock]]. <ref>{{Cite journal |last1=Kolben |first1=Yotam |last2=Weksler-Zangen |first2=Sarah |last3=Ilan |first3=Yaron |date=2021-02-01 |title=Adropin as a potential mediator of the metabolic system-autonomic nervous system-chronobiology axis: Implementing a personalized signature-based platform for chronotherapy |url=https://doi.org/10.1111/obr.13108 |journal=Obesity Reviews |volume=22 |issue=2 |pages=e13108 |doi=10.1111/obr.13108 |issn=1467-789X |pmid=32720402|s2cid=220841405 }}</ref> Liver adropin is upregulated by [[estrogen]]<ref>{{Cite journal |last1=Stokar |first1=Joshua |last2=Gurt |first2=Irina |last3=Cohen-Kfir |first3=Einav |last4=Yakubovsky |first4=Oran |last5=Hallak |first5=Noa |last6=Benyamini |first6=Hadar |last7=Lishinsky |first7=Natan |last8=Offir |first8=Neta |last9=Tam |first9=Joseph |last10=Dresner-Pollak |first10=Rivka |date=2022-06-01 |title=Hepatic adropin is regulated by estrogen and contributes to adverse metabolic phenotypes in ovariectomized mice |journal=Molecular Metabolism |language=en |volume=60 |pages=101482 |doi=10.1016/j.molmet.2022.101482 |issn=2212-8778 |pmc=9044006 |pmid=35364299}}</ref> via [[Estrogen receptor alpha|ERa]].<ref>{{Cite journal |last1=Meda |first1=Clara |last2=Dolce |first2=Arianna |last3=Vegeto |first3=Elisabetta |last4=Maggi |first4=Adriana |last5=Della Torre |first5=Sara |date=January 2022 |title=ERα-Dependent Regulation of Adropin Predicts Sex Differences in Liver Homeostasis during High-Fat Diet |journal=Nutrients |language=en |volume=14 |issue=16 |pages=3262 |doi=10.3390/nu14163262 |pmid=36014766 |pmc=9416503 |issn=2072-6643|doi-access=free }}</ref>
In [[Animal disease model|animals]], adropin has been shown to have a regulatory role in [[Carbohydrate metabolism|carbohydrate]]/[[lipid metabolism]],<ref name=":0">{{Cite journal |last1=Banerjee |first1=Subhashis |last2=Ghoshal |first2=Sarbani |last3=Stevens |first3=Joseph R. |last4=McCommis |first4=Kyle S. |last5=Gao |first5=Su |last6=Castro-Sepulveda |first6=Mauricio |last7=Mizgier |first7=Maria L. |last8=Girardet |first8=Clemence |last9=Kumar |first9=K. Ganesh |last10=Galgani |first10=Jose E. |last11=Niehoff |first11=Michael L. |date=2020-10-02 |title=Hepatocyte expression of the micropeptide adropin regulates the liver fasting response and is enhanced by caloric restriction |url=https://www.jbc.org/article/S0021-9258(17)49826-7/abstract |journal=Journal of Biological Chemistry |language=English |volume=295 |issue=40 |pages=13753–13768 |doi=10.1074/jbc.RA120.014381 |issn=0021-9258 |pmc=7535914 |pmid=32727846|doi-access=free }}</ref> as well as in [[Endothelial dysfunction|endothelial function]].<ref>{{Cite journal |last1=Lovren |first1=Fina |last2=Pan |first2=Yi |last3=Quan |first3=Adrian |last4=Singh |first4=Krishna K. |last5=Shukla |first5=Praphulla C. |last6=Gupta |first6=Milan |last7=Al-Omran |first7=Mohammed |last8=Teoh |first8=Hwee |last9=Verma |first9=Subodh |date=2010-09-14 |title=Adropin Is a Novel Regulator of Endothelial Function |journal=Circulation |volume=122 |issue=11_suppl_1 |pages=S185–S192 |doi=10.1161/CIRCULATIONAHA.109.931782|pmid=20837912 |s2cid=798093 |doi-access=free }}</ref><ref>{{Cite journal |last1=Jurrissen |first1=Thomas J. |last2=Ramirez-Perez |first2=Francisco I. |last3=Cabral-Amador |first3=Francisco J. |last4=Soares |first4=Rogerio N. |last5=Pettit-Mee |first5=Ryan J. |last6=Betancourt-Cortes |first6=Edgar E. |last7=McMillan |first7=Neil J. |last8=Sharma |first8=Neekun |last9=Rocha |first9=Helena N. M. |last10=Fujie |first10=Shumpei |last11=Morales-Quinones |first11=Mariana |last12=Lazo-Fernandez |first12=Yoskaly |last13=Butler |first13=Andrew A. |last14=Banerjee |first14=Subhashis |last15=Sacks |first15=Harold S. |date=2022-09-09 |title=Role of adropin in arterial stiffening associated with obesity and type 2 diabetes |journal=American Journal of Physiology. Heart and Circulatory Physiology |volume=323 |issue=5 |pages=H879–H891 |doi=10.1152/ajpheart.00385.2022 |pmid=36083795 |pmc=9602697 |hdl=10355/94230 |s2cid=252160224 |issn=0363-6135}}</ref> Adropin [[Gene expression|expression]] in the liver is regulated by feeding status and macronutrient content,<ref name=":0" /> as well as by the [[Circadian rhythm|biological clock]]. <ref>{{Cite journal |last1=Kolben |first1=Yotam |last2=Weksler-Zangen |first2=Sarah |last3=Ilan |first3=Yaron |date=2021-02-01 |title=Adropin as a potential mediator of the metabolic system-autonomic nervous system-chronobiology axis: Implementing a personalized signature-based platform for chronotherapy |url=https://doi.org/10.1111/obr.13108 |journal=Obesity Reviews |volume=22 |issue=2 |pages=e13108 |doi=10.1111/obr.13108 |issn=1467-789X |pmid=32720402|s2cid=220841405 }}</ref> Liver adropin is upregulated by [[estrogen]]<ref>{{Cite journal |last1=Stokar |first1=Joshua |last2=Gurt |first2=Irina |last3=Cohen-Kfir |first3=Einav |last4=Yakubovsky |first4=Oran |last5=Hallak |first5=Noa |last6=Benyamini |first6=Hadar |last7=Lishinsky |first7=Natan |last8=Offir |first8=Neta |last9=Tam |first9=Joseph |last10=Dresner-Pollak |first10=Rivka |date=2022-06-01 |title=Hepatic adropin is regulated by estrogen and contributes to adverse metabolic phenotypes in ovariectomized mice |journal=Molecular Metabolism |language=en |volume=60 |pages=101482 |doi=10.1016/j.molmet.2022.101482 |issn=2212-8778 |pmc=9044006 |pmid=35364299}}</ref> via [[Estrogen receptor alpha|ERa]].<ref>{{Cite journal |last1=Meda |first1=Clara |last2=Dolce |first2=Arianna |last3=Vegeto |first3=Elisabetta |last4=Maggi |first4=Adriana |last5=Della Torre |first5=Sara |date=January 2022 |title=ERα-Dependent Regulation of Adropin Predicts Sex Differences in Liver Homeostasis during High-Fat Diet |journal=Nutrients |language=en |volume=14 |issue=16 |pages=3262 |doi=10.3390/nu14163262 |pmid=36014766 |pmc=9416503 |issn=2072-6643|doi-access=free }}</ref>
Line 13: Line 13:
The [[Orphan receptor|orphan]] [[G protein-coupled receptor]] [[GPR19]], has been proposed as a [[Receptor (biochemistry)|receptor]] for adropin.<ref>{{Cite journal |last1=Stein |first1=Lauren M. |last2=Yosten |first2=Gina L. C. |last3=Samson |first3=Willis K. |date=2016-03-15 |title=Adropin acts in brain to inhibit water drinking: potential interaction with the orphan G protein-coupled receptor, GPR19 |journal=American Journal of Physiology. Regulatory, Integrative and Comparative Physiology |volume=310 |issue=6 |pages=R476–R480 |doi=10.1152/ajpregu.00511.2015 |issn=0363-6119 |pmc=4867374 |pmid=26739651}}</ref><ref>{{Cite journal |last1=Devine |first1=Robert N. |last2=Butler |first2=Andrew |last3=Chrivia |first3=John |last4=Vagner |first4=Josef |last5=Arnatt |first5=Christopher K. |date=2023-06-01 |title=Probing Adropin-Gpr19 Interactions and Signal Transduction |url=https://jpet.aspetjournals.org/content/385/S3/430 |journal=Journal of Pharmacology and Experimental Therapeutics |language=en |volume=385 |issue=S3 |page=430 |doi=10.1124/jpet.122.550630 |issn=0022-3565|doi-access=free }}</ref>
The [[Orphan receptor|orphan]] [[G protein-coupled receptor]] [[GPR19]], has been proposed as a [[Receptor (biochemistry)|receptor]] for adropin.<ref>{{Cite journal |last1=Stein |first1=Lauren M. |last2=Yosten |first2=Gina L. C. |last3=Samson |first3=Willis K. |date=2016-03-15 |title=Adropin acts in brain to inhibit water drinking: potential interaction with the orphan G protein-coupled receptor, GPR19 |journal=American Journal of Physiology. Regulatory, Integrative and Comparative Physiology |volume=310 |issue=6 |pages=R476–R480 |doi=10.1152/ajpregu.00511.2015 |issn=0363-6119 |pmc=4867374 |pmid=26739651}}</ref><ref>{{Cite journal |last1=Devine |first1=Robert N. |last2=Butler |first2=Andrew |last3=Chrivia |first3=John |last4=Vagner |first4=Josef |last5=Arnatt |first5=Christopher K. |date=2023-06-01 |title=Probing Adropin-Gpr19 Interactions and Signal Transduction |url=https://jpet.aspetjournals.org/content/385/S3/430 |journal=Journal of Pharmacology and Experimental Therapeutics |language=en |volume=385 |issue=S3 |page=430 |doi=10.1124/jpet.122.550630 |issn=0022-3565|doi-access=free }}</ref>


In the mouse [[ovary]], adropin and GPR19 are strongly detected in the granulosa cells of large antral follicles and corpus luteum.<ref>{{Cite journal |last1=Maurya |first1=Shweta |last2=Tripathi |first2=Shashank |last3=Arora |first3=Taruna |last4=Singh |first4=Ajit |date=2023-08-19 |title=Adropin may regulate corpus luteum formation and its function in adult mouse ovary |url=https://doi.org/10.1007/s42000-023-00476-0 |journal=Hormones |volume=22 |issue=4 |pages=725–739 |language=en |doi=10.1007/s42000-023-00476-0 |pmid=37597158 |s2cid=261029605 |issn=2520-8721}}</ref> An additional study suggests a role for adropin in the acceleration of pubertal development.<ref>{{Cite journal |last1=Maurya |first1=Shweta |last2=Tripathi |first2=Shashank |last3=Singh |first3=Ajit |date=2023-09-23 |title=Ontogeny of adropin and its receptor expression during postnatal development and its pro-gonadal role in the ovary of pre-pubertal mouse |journal=The Journal of Steroid Biochemistry and Molecular Biology |volume=234 |pages=106404 |doi=10.1016/j.jsbmb.2023.106404 |pmid=37743028 |s2cid=262133676 |issn=0960-0760|doi-access=free }}</ref>
In the mouse [[ovary]], adropin and GPR19 are strongly detected in the granulosa cells of large antral follicles and corpus luteum.<ref>{{Cite journal |last1=Maurya |first1=Shweta |last2=Tripathi |first2=Shashank |last3=Arora |first3=Taruna |last4=Singh |first4=Ajit |date=2023-08-19 |title=Adropin may regulate corpus luteum formation and its function in adult mouse ovary |url=https://doi.org/10.1007/s42000-023-00476-0 |journal=Hormones |volume=22 |issue=4 |pages=725–739 |language=en |doi=10.1007/s42000-023-00476-0 |pmid=37597158 |s2cid=261029605 |issn=2520-8721}}</ref> An additional study suggests a role for adropin in the acceleration of pubertal development.<ref>{{Cite journal |last1=Maurya |first1=Shweta |last2=Tripathi |first2=Shashank |last3=Singh |first3=Ajit |date=2023-09-23 |title=Ontogeny of adropin and its receptor expression during postnatal development and its pro-gonadal role in the ovary of pre-pubertal mouse |journal=The Journal of Steroid Biochemistry and Molecular Biology |volume=234 |pages=106404 |doi=10.1016/j.jsbmb.2023.106404 |pmid=37743028 |s2cid=262133676 |issn=0960-0760|doi-access=free }}</ref>

== Background Adropin Biology ==
Adropin was initially discovered in 2008 by Kumar et. al through microarray screening for differentially expressed genes in melanocortin-3 receptor-deficient (Mc3r−/−) mice with hypothalamic obesity. <ref>{{Cite journal |last=Mushala |first=Bellina A. S. |last2=Scott |first2=Iain |date=2021-01-01 |title=Adropin: a hepatokine modulator of vascular function and cardiac fuel metabolism |url=https://journals.physiology.org/doi/10.1152/ajpheart.00449.2020 |journal=American Journal of Physiology-Heart and Circulatory Physiology |language=en |volume=320 |issue=1 |pages=H238–H244 |doi=10.1152/ajpheart.00449.2020 |issn=0363-6135 |pmc=PMC7847067 |pmid=33216612}}</ref>.
Adropin is a 76- amino acid peptide which binds to plasma membranes, which interacts with the Notch signaling pathway in neurons regulate communication between cells during the development of the nervous system.<ref>{{Cite journal |last=Mushala |first=Bellina A. S. |last2=Scott |first2=Iain |date=2021-01-01 |title=Adropin: a hepatokine modulator of vascular function and cardiac fuel metabolism |url=https://journals.physiology.org/doi/10.1152/ajpheart.00449.2020 |journal=American Journal of Physiology-Heart and Circulatory Physiology |language=en |volume=320 |issue=1 |pages=H238–H244 |doi=10.1152/ajpheart.00449.2020 |issn=0363-6135 |pmc=PMC7847067 |pmid=33216612}}</ref>


== References ==
== References ==

Revision as of 08:31, 28 November 2023

Predicted structure of Adropin (AlphaFold)

Adropin is a peptide encoded by the energy homeostasis-associated gene ENHO,[1] which is highly conserved across mammals.[2]

Adropin's biological role was first described in mice by a group led by Andrew Butler, as a protein hormone, secreted from the liver (hepatokine), in the context of obesity and energy homeostasis. They derived the name "Adropin" from the Latin "aduro" - to set fire to, and "pinguis" - fat.[3] The hormone adropin is produced in places like the liver and brain, as well as peripheral tissues in the heart and gastrointestinal tract. [4]

In animals, adropin has been shown to have a regulatory role in carbohydrate/lipid metabolism,[5] as well as in endothelial function.[6][7] Adropin expression in the liver is regulated by feeding status and macronutrient content,[5] as well as by the biological clock. [8] Liver adropin is upregulated by estrogen[9] via ERa.[10]

In humans, lower levels of circulating adropin are associated with several medical conditions including metabolic syndrome, obesity[11] and inflammatory bowel disease.[12]

The brain is the organ with the highest levels of adropin expression.[13] In the brain, adropin has been shown to have a potential protective role role against neurological disease,[14] including in the context of brain aging and cognitive function,[15][16] as well as following acute ischemia.[17]

The orphan G protein-coupled receptor GPR19, has been proposed as a receptor for adropin.[18][19]

In the mouse ovary, adropin and GPR19 are strongly detected in the granulosa cells of large antral follicles and corpus luteum.[20] An additional study suggests a role for adropin in the acceleration of pubertal development.[21]

Background Adropin Biology

Adropin was initially discovered in 2008 by Kumar et. al through microarray screening for differentially expressed genes in melanocortin-3 receptor-deficient (Mc3r−/−) mice with hypothalamic obesity. [22]. Adropin is a 76- amino acid peptide which binds to plasma membranes, which interacts with the Notch signaling pathway in neurons regulate communication between cells during the development of the nervous system.[23]

References

  1. ^ "ENHO Gene - GeneCards | ENHO Protein | ENHO Antibody". www.genecards.org.
  2. ^ "ortholog_gene_375704[group] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2022-08-21.
  3. ^ Kumar, K. Ganesh; Trevaskis, James L.; Lam, Daniel D.; Sutton, Gregory M.; Koza, Robert A.; Chouljenko, Vladimir N.; Kousoulas, Konstantin G.; Rogers, Pamela M.; Kesterson, Robert A.; Thearle, Marie; Ferrante, Anthony W. (2008-12-06). "Identification of Adropin as a Secreted Factor Linking Dietary Macronutrient Intake with Energy Homeostasis and Lipid Metabolism". Cell Metabolism. 8 (6): 468–481. doi:10.1016/j.cmet.2008.10.011. ISSN 1550-4131. PMC 2746325. PMID 19041763.
  4. ^ Jasaszwili, Mariami; Billert, Maria; Strowski, Mathias Z.; Nowak, Krzysztof W.; Skrzypski, Marek (2020-01). "Adropin as A Fat-Burning Hormone with Multiple Functions—Review of a Decade of Research". Molecules. 25 (3): 549. doi:10.3390/molecules25030549. ISSN 1420-3049. PMC 7036858. PMID 32012786. {{cite journal}}: Check date values in: |date= (help)CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  5. ^ a b Banerjee, Subhashis; Ghoshal, Sarbani; Stevens, Joseph R.; McCommis, Kyle S.; Gao, Su; Castro-Sepulveda, Mauricio; Mizgier, Maria L.; Girardet, Clemence; Kumar, K. Ganesh; Galgani, Jose E.; Niehoff, Michael L. (2020-10-02). "Hepatocyte expression of the micropeptide adropin regulates the liver fasting response and is enhanced by caloric restriction". Journal of Biological Chemistry. 295 (40): 13753–13768. doi:10.1074/jbc.RA120.014381. ISSN 0021-9258. PMC 7535914. PMID 32727846.
  6. ^ Lovren, Fina; Pan, Yi; Quan, Adrian; Singh, Krishna K.; Shukla, Praphulla C.; Gupta, Milan; Al-Omran, Mohammed; Teoh, Hwee; Verma, Subodh (2010-09-14). "Adropin Is a Novel Regulator of Endothelial Function". Circulation. 122 (11_suppl_1): S185–S192. doi:10.1161/CIRCULATIONAHA.109.931782. PMID 20837912. S2CID 798093.
  7. ^ Jurrissen, Thomas J.; Ramirez-Perez, Francisco I.; Cabral-Amador, Francisco J.; Soares, Rogerio N.; Pettit-Mee, Ryan J.; Betancourt-Cortes, Edgar E.; McMillan, Neil J.; Sharma, Neekun; Rocha, Helena N. M.; Fujie, Shumpei; Morales-Quinones, Mariana; Lazo-Fernandez, Yoskaly; Butler, Andrew A.; Banerjee, Subhashis; Sacks, Harold S. (2022-09-09). "Role of adropin in arterial stiffening associated with obesity and type 2 diabetes". American Journal of Physiology. Heart and Circulatory Physiology. 323 (5): H879–H891. doi:10.1152/ajpheart.00385.2022. hdl:10355/94230. ISSN 0363-6135. PMC 9602697. PMID 36083795. S2CID 252160224.
  8. ^ Kolben, Yotam; Weksler-Zangen, Sarah; Ilan, Yaron (2021-02-01). "Adropin as a potential mediator of the metabolic system-autonomic nervous system-chronobiology axis: Implementing a personalized signature-based platform for chronotherapy". Obesity Reviews. 22 (2): e13108. doi:10.1111/obr.13108. ISSN 1467-789X. PMID 32720402. S2CID 220841405.
  9. ^ Stokar, Joshua; Gurt, Irina; Cohen-Kfir, Einav; Yakubovsky, Oran; Hallak, Noa; Benyamini, Hadar; Lishinsky, Natan; Offir, Neta; Tam, Joseph; Dresner-Pollak, Rivka (2022-06-01). "Hepatic adropin is regulated by estrogen and contributes to adverse metabolic phenotypes in ovariectomized mice". Molecular Metabolism. 60: 101482. doi:10.1016/j.molmet.2022.101482. ISSN 2212-8778. PMC 9044006. PMID 35364299.
  10. ^ Meda, Clara; Dolce, Arianna; Vegeto, Elisabetta; Maggi, Adriana; Della Torre, Sara (January 2022). "ERα-Dependent Regulation of Adropin Predicts Sex Differences in Liver Homeostasis during High-Fat Diet". Nutrients. 14 (16): 3262. doi:10.3390/nu14163262. ISSN 2072-6643. PMC 9416503. PMID 36014766.
  11. ^ Soltani, Sepideh; Kolahdouz-Mohammadi, Roya; Aydin, Suleyman; Yosaee, Somaye; Clark, Cain C. T.; Abdollahi, Shima (2022-03-01). "Circulating levels of adropin and overweight/obesity: a systematic review and meta-analysis of observational studies". Hormones. 21 (1): 15–22. doi:10.1007/s42000-021-00331-0. ISSN 2520-8721. PMID 34897581. S2CID 245119139.
  12. ^ Brnić, Darko; Martinovic, Dinko; Zivkovic, Piero Marin; Tokic, Daria; Tadin Hadjina, Ivana; Rusic, Doris; Vilovic, Marino; Supe-Domic, Daniela; Tonkic, Ante; Bozic, Josko (2020-06-09). "Serum adropin levels are reduced in patients with inflammatory bowel diseases". Scientific Reports. 10 (1): 9264. Bibcode:2020NatSR..10.9264B. doi:10.1038/s41598-020-66254-9. ISSN 2045-2322. PMC 7283308. PMID 32518265.
  13. ^ "Tissue expression of ENHO - Summary - The Human Protein Atlas". www.proteinatlas.org. Retrieved 2022-08-21.
  14. ^ Gunraj, Rachel E.; Yang, Changjun; Liu, Lei; Larochelle, Jonathan; Candelario-Jalil, Eduardo (2023-01-30). "Protective Roles of Adropin in Neurological Disease". American Journal of Physiology. Cell Physiology. 324 (3): C674–C678. doi:10.1152/ajpcell.00318.2022. ISSN 0363-6143. PMC 10027081. PMID 36717106.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  15. ^ Banerjee, Subhashis; Ghoshal, Sarbani; Girardet, Clemence; DeMars, Kelly M.; Yang, Changjun; Niehoff, Michael L.; Nguyen, Andrew D.; Jayanth, Prerana; Hoelscher, Brittany A.; Xu, Fenglian; Banks, William A. (2021-08-30). "Adropin correlates with aging-related neuropathology in humans and improves cognitive function in aging mice". npj Aging and Mechanisms of Disease. 7 (1): 23. doi:10.1038/s41514-021-00076-5. ISSN 2056-3973. PMC 8405681. PMID 34462439.
  16. ^ Aggarwal, Geetika; Morley, John E.; Vellas, Bruno; Nguyen, Andrew D.; Butler, Andrew A.; Guyonnet, Sophie; Carrié, Isabelle; Brigitte, Lauréane; Faisant, Catherine; Lala, Françoise; Delrieu, Julien; Villars, Hélène; Combrouze, Emeline; Badufle, Carole; Zueras, Audrey (2023-05-26). "Low circulating adropin concentrations predict increased risk of cognitive decline in community-dwelling older adults". GeroScience. doi:10.1007/s11357-023-00824-3. ISSN 2509-2723. PMID 37233882.
  17. ^ Yang, Changjun; Liu, Lei; Lavayen, Bianca P.; Larochelle, Jonathan; Gunraj, Rachel E.; Butler, Andrew A.; Candelario-Jalil, Eduardo (2022). "Therapeutic Benefits of Adropin in Aged Mice After Transient Ischemic Stroke via Reduction of Blood-Brain Barrier Damage". Stroke. 54 (1): 234–244. doi:10.1161/STROKEAHA.122.039628. PMC 9780180. PMID 36305313. S2CID 253184087.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  18. ^ Stein, Lauren M.; Yosten, Gina L. C.; Samson, Willis K. (2016-03-15). "Adropin acts in brain to inhibit water drinking: potential interaction with the orphan G protein-coupled receptor, GPR19". American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 310 (6): R476–R480. doi:10.1152/ajpregu.00511.2015. ISSN 0363-6119. PMC 4867374. PMID 26739651.
  19. ^ Devine, Robert N.; Butler, Andrew; Chrivia, John; Vagner, Josef; Arnatt, Christopher K. (2023-06-01). "Probing Adropin-Gpr19 Interactions and Signal Transduction". Journal of Pharmacology and Experimental Therapeutics. 385 (S3): 430. doi:10.1124/jpet.122.550630. ISSN 0022-3565.
  20. ^ Maurya, Shweta; Tripathi, Shashank; Arora, Taruna; Singh, Ajit (2023-08-19). "Adropin may regulate corpus luteum formation and its function in adult mouse ovary". Hormones. 22 (4): 725–739. doi:10.1007/s42000-023-00476-0. ISSN 2520-8721. PMID 37597158. S2CID 261029605.
  21. ^ Maurya, Shweta; Tripathi, Shashank; Singh, Ajit (2023-09-23). "Ontogeny of adropin and its receptor expression during postnatal development and its pro-gonadal role in the ovary of pre-pubertal mouse". The Journal of Steroid Biochemistry and Molecular Biology. 234: 106404. doi:10.1016/j.jsbmb.2023.106404. ISSN 0960-0760. PMID 37743028. S2CID 262133676.
  22. ^ Mushala, Bellina A. S.; Scott, Iain (2021-01-01). "Adropin: a hepatokine modulator of vascular function and cardiac fuel metabolism". American Journal of Physiology-Heart and Circulatory Physiology. 320 (1): H238–H244. doi:10.1152/ajpheart.00449.2020. ISSN 0363-6135. PMC 7847067. PMID 33216612.{{cite journal}}: CS1 maint: PMC format (link)
  23. ^ Mushala, Bellina A. S.; Scott, Iain (2021-01-01). "Adropin: a hepatokine modulator of vascular function and cardiac fuel metabolism". American Journal of Physiology-Heart and Circulatory Physiology. 320 (1): H238–H244. doi:10.1152/ajpheart.00449.2020. ISSN 0363-6135. PMC 7847067. PMID 33216612.{{cite journal}}: CS1 maint: PMC format (link)