Jump to content

Adropin: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
neurological
m →‎top: task, replaced: American Journal of Physiology- → American Journal of Physiology. (2)
Line 1: Line 1:
{{Short description|Peptide hormone}}
{{Short description|Peptide hormone}}
[[File:AF-Q6UWT2-F1.png|thumb|Predicted structure of Adropin ([[AlphaFold]])]]
[[File:AF-Q6UWT2-F1.png|thumb|Predicted structure of Adropin ([[AlphaFold]])]]
'''Adropin''' is a [[peptide]] encoded by the energy homeostasis-associated [[gene]] ENHO,<ref>{{Cite web|url=https://www.genecards.org/cgi-bin/carddisp.pl?gene=ENHO|title=ENHO Gene - GeneCards {{pipe}} ENHO Protein {{pipe}} ENHO Antibody|website=www.genecards.org}}</ref> which is highly [[Conserved sequence|conserved]] across [[mammal]]s.<ref>{{Cite web |title=ortholog_gene_375704[group] - Gene - NCBI |url=https://www.ncbi.nlm.nih.gov/gene/?Term=ortholog_gene_375704%5Bgroup%5D |access-date=2022-08-21 |website=www.ncbi.nlm.nih.gov}}</ref> Adropin's biological role was first described in mice by a group led by Andrew Butler, as a [[Protein hormone|protein]] [[hormone]], [[Secretion|secreted]] from the [[liver]] ([[hepatokine]]), in the context of [[obesity]] and energy [[homeostasis]]. They derived the name "Adropin" from the [[Latin]] "[[wiktionary:aduro#:~:text=I singe, scorch, burn|aduro]]" - to set fire to, and "[[wiktionary:pinguis|pinguis]]" - fat.<ref>{{Cite journal |last1=Kumar |first1=K. Ganesh |last2=Trevaskis |first2=James L. |last3=Lam |first3=Daniel D. |last4=Sutton |first4=Gregory M. |last5=Koza |first5=Robert A. |last6=Chouljenko |first6=Vladimir N. |last7=Kousoulas |first7=Konstantin G. |last8=Rogers |first8=Pamela M. |last9=Kesterson |first9=Robert A. |last10=Thearle |first10=Marie |last11=Ferrante |first11=Anthony W. |date=2008-12-06 |title=Identification of Adropin as a Secreted Factor Linking Dietary Macronutrient Intake with Energy Homeostasis and Lipid Metabolism |journal=Cell Metabolism |language=English |volume=8 |issue=6 |pages=468–481 |doi=10.1016/j.cmet.2008.10.011 |issn=1550-4131 |pmid=19041763|pmc=2746325 }}</ref> In [[Animal disease model|animals]], adropin has been shown to have a regulatory role in [[Carbohydrate metabolism|carbohydrate]]/[[lipid metabolism]],<ref name=":0">{{Cite journal |last1=Banerjee |first1=Subhashis |last2=Ghoshal |first2=Sarbani |last3=Stevens |first3=Joseph R. |last4=McCommis |first4=Kyle S. |last5=Gao |first5=Su |last6=Castro-Sepulveda |first6=Mauricio |last7=Mizgier |first7=Maria L. |last8=Girardet |first8=Clemence |last9=Kumar |first9=K. Ganesh |last10=Galgani |first10=Jose E. |last11=Niehoff |first11=Michael L. |date=2020-10-02 |title=Hepatocyte expression of the micropeptide adropin regulates the liver fasting response and is enhanced by caloric restriction |url=https://www.jbc.org/article/S0021-9258(17)49826-7/abstract |journal=Journal of Biological Chemistry |language=English |volume=295 |issue=40 |pages=13753–13768 |doi=10.1074/jbc.RA120.014381 |issn=0021-9258 |pmc=7535914 |pmid=32727846|doi-access=free }}</ref> as well as in [[Endothelial dysfunction|endothelial function]].<ref>{{Cite journal |last1=Lovren |first1=Fina |last2=Pan |first2=Yi |last3=Quan |first3=Adrian |last4=Singh |first4=Krishna K. |last5=Shukla |first5=Praphulla C. |last6=Gupta |first6=Milan |last7=Al-Omran |first7=Mohammed |last8=Teoh |first8=Hwee |last9=Verma |first9=Subodh |date=2010-09-14 |title=Adropin Is a Novel Regulator of Endothelial Function |url=https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.109.931782 |journal=Circulation |volume=122 |issue=11_suppl_1 |pages=S185–S192 |doi=10.1161/CIRCULATIONAHA.109.931782|pmid=20837912 |s2cid=798093 |doi-access=free }}</ref><ref>{{Cite journal |last1=Jurrissen |first1=Thomas J. |last2=Ramirez-Perez |first2=Francisco I. |last3=Cabral-Amador |first3=Francisco J. |last4=Soares |first4=Rogerio N. |last5=Pettit-Mee |first5=Ryan J. |last6=Betancourt-Cortes |first6=Edgar E. |last7=McMillan |first7=Neil J. |last8=Sharma |first8=Neekun |last9=Rocha |first9=Helena N. M. |last10=Fujie |first10=Shumpei |last11=Morales-Quinones |first11=Mariana |last12=Lazo-Fernandez |first12=Yoskaly |last13=Butler |first13=Andrew A. |last14=Banerjee |first14=Subhashis |last15=Sacks |first15=Harold S. |date=2022-09-09 |title=Role of adropin in arterial stiffening associated with obesity and type 2 diabetes |url=https://journals.physiology.org/doi/abs/10.1152/ajpheart.00385.2022 |journal=American Journal of Physiology-Heart and Circulatory Physiology |volume=323 |issue=5 |pages=H879–H891 |doi=10.1152/ajpheart.00385.2022 |pmid=36083795 |pmc=9602697 |s2cid=252160224 |issn=0363-6135|pmc-embargo-date=November 1, 2023 }}</ref> Adropin [[Gene expression|expression]] is regulated by feeding status,<ref name=":0" /> the [[Circadian rhythm|biological clock]],<ref>{{Cite journal |last1=Kolben |first1=Yotam |last2=Weksler-Zangen |first2=Sarah |last3=Ilan |first3=Yaron |date=2021-02-01 |title=Adropin as a potential mediator of the metabolic system-autonomic nervous system-chronobiology axis: Implementing a personalized signature-based platform for chronotherapy |url=https://doi.org/10.1111/obr.13108 |journal=Obesity Reviews |volume=22 |issue=2 |pages=e13108 |doi=10.1111/obr.13108 |issn=1467-789X |pmid=32720402|s2cid=220841405 }}</ref> as well as upregulated by [[estrogen]]<ref>{{Cite journal |last1=Stokar |first1=Joshua |last2=Gurt |first2=Irina |last3=Cohen-Kfir |first3=Einav |last4=Yakubovsky |first4=Oran |last5=Hallak |first5=Noa |last6=Benyamini |first6=Hadar |last7=Lishinsky |first7=Natan |last8=Offir |first8=Neta |last9=Tam |first9=Joseph |last10=Dresner-Pollak |first10=Rivka |date=2022-06-01 |title=Hepatic adropin is regulated by estrogen and contributes to adverse metabolic phenotypes in ovariectomized mice |journal=Molecular Metabolism |language=en |volume=60 |pages=101482 |doi=10.1016/j.molmet.2022.101482 |issn=2212-8778 |pmc=9044006 |pmid=35364299}}</ref> via [[Estrogen receptor alpha|ERa]].<ref>{{Cite journal |last1=Meda |first1=Clara |last2=Dolce |first2=Arianna |last3=Vegeto |first3=Elisabetta |last4=Maggi |first4=Adriana |last5=Della Torre |first5=Sara |date=January 2022 |title=ERα-Dependent Regulation of Adropin Predicts Sex Differences in Liver Homeostasis during High-Fat Diet |journal=Nutrients |language=en |volume=14 |issue=16 |pages=3262 |doi=10.3390/nu14163262 |pmid=36014766 |pmc=9416503 |issn=2072-6643|doi-access=free }}</ref> In humans, lower levels of [[Circulatory system|circulating]] adropin are associated with several medical conditions including [[metabolic syndrome]], obesity<ref>{{Cite journal |last1=Soltani |first1=Sepideh |last2=Kolahdouz-Mohammadi |first2=Roya |last3=Aydin |first3=Suleyman |last4=Yosaee |first4=Somaye |last5=Clark |first5=Cain C. T. |last6=Abdollahi |first6=Shima |date=2022-03-01 |title=Circulating levels of adropin and overweight/obesity: a systematic review and meta-analysis of observational studies |url=https://doi.org/10.1007/s42000-021-00331-0 |journal=Hormones |language=en |volume=21 |issue=1 |pages=15–22 |doi=10.1007/s42000-021-00331-0 |pmid=34897581 |s2cid=245119139 |issn=2520-8721}}</ref> and [[inflammatory bowel disease]].<ref>{{Cite journal |last1=Brnić |first1=Darko |last2=Martinovic |first2=Dinko |last3=Zivkovic |first3=Piero Marin |last4=Tokic |first4=Daria |last5=Tadin Hadjina |first5=Ivana |last6=Rusic |first6=Doris |last7=Vilovic |first7=Marino |last8=Supe-Domic |first8=Daniela |last9=Tonkic |first9=Ante |last10=Bozic |first10=Josko |date=2020-06-09 |title=Serum adropin levels are reduced in patients with inflammatory bowel diseases |journal=Scientific Reports |language=en |volume=10 |issue=1 |pages=9264 |doi=10.1038/s41598-020-66254-9 |pmid=32518265 |pmc=7283308 |bibcode=2020NatSR..10.9264B |issn=2045-2322}}</ref> The [[brain]] is the organ with the highest levels of adropin [[Gene expression|expression]].<ref>{{Cite web |title=Tissue expression of ENHO - Summary - The Human Protein Atlas |url=https://www.proteinatlas.org/ENSG00000168913-ENHO/tissue |access-date=2022-08-21 |website=www.proteinatlas.org}}</ref> In the brain, adropin has been shown to have a potential protective role role against neurological disease,<ref>{{Cite journal |last=Gunraj |first=Rachel E. |last2=Yang |first2=Changjun |last3=Liu |first3=Lei |last4=Larochelle |first4=Jonathan |last5=Candelario-Jalil |first5=Eduardo |date=2023-01-30 |title=Protective Roles of Adropin in Neurological Disease |url=https://journals.physiology.org/doi/10.1152/ajpcell.00318.2022 |journal=American Journal of Physiology-Cell Physiology |language=en |pages=ajpcell.00318.2022 |doi=10.1152/ajpcell.00318.2022 |issn=0363-6143}}</ref> including in the context of brain [[Ageing|aging]] and [[Cognitive skill|cognitive function]],<ref>{{Cite journal |last1=Banerjee |first1=Subhashis |last2=Ghoshal |first2=Sarbani |last3=Girardet |first3=Clemence |last4=DeMars |first4=Kelly M. |last5=Yang |first5=Changjun |last6=Niehoff |first6=Michael L. |last7=Nguyen |first7=Andrew D. |last8=Jayanth |first8=Prerana |last9=Hoelscher |first9=Brittany A. |last10=Xu |first10=Fenglian |last11=Banks |first11=William A. |date=2021-08-30 |title=Adropin correlates with aging-related neuropathology in humans and improves cognitive function in aging mice |journal=npj Aging and Mechanisms of Disease |language=en |volume=7 |issue=1 |page=23 |doi=10.1038/s41514-021-00076-5 |issn=2056-3973 |pmc=8405681 |pmid=34462439}}</ref> as well as following acute [[Stroke|ischemia]].<ref>{{Cite journal |last1=Yang |first1=Changjun |last2=Liu |first2=Lei |last3=Lavayen |first3=Bianca P. |last4=Larochelle |first4=Jonathan |last5=Gunraj |first5=Rachel E. |last6=Butler |first6=Andrew A. |last7=Candelario-Jalil |first7=Eduardo |title=Therapeutic Benefits of Adropin in Aged Mice After Transient Ischemic Stroke via Reduction of Blood-Brain Barrier Damage |url=https://www.ahajournals.org/doi/10.1161/STROKEAHA.122.039628 |journal=Stroke |year=2022 |doi=10.1161/STROKEAHA.122.039628|pmid=36305313 |s2cid=253184087 }}</ref> The [[Orphan receptor|orphan]] [[G protein-coupled receptor]] [[GPR19]], has been proposed as a [[Receptor (biochemistry)|receptor]] for adropin.<ref>{{Cite journal |last1=Stein |first1=Lauren M. |last2=Yosten |first2=Gina L. C. |last3=Samson |first3=Willis K. |date=2016-03-15 |title=Adropin acts in brain to inhibit water drinking: potential interaction with the orphan G protein-coupled receptor, GPR19 |journal=American Journal of Physiology. Regulatory, Integrative and Comparative Physiology |volume=310 |issue=6 |pages=R476–R480 |doi=10.1152/ajpregu.00511.2015 |issn=0363-6119 |pmc=4867374 |pmid=26739651}}</ref>
'''Adropin''' is a [[peptide]] encoded by the energy homeostasis-associated [[gene]] ENHO,<ref>{{Cite web|url=https://www.genecards.org/cgi-bin/carddisp.pl?gene=ENHO|title=ENHO Gene - GeneCards {{pipe}} ENHO Protein {{pipe}} ENHO Antibody|website=www.genecards.org}}</ref> which is highly [[Conserved sequence|conserved]] across [[mammal]]s.<ref>{{Cite web |title=ortholog_gene_375704[group] - Gene - NCBI |url=https://www.ncbi.nlm.nih.gov/gene/?Term=ortholog_gene_375704%5Bgroup%5D |access-date=2022-08-21 |website=www.ncbi.nlm.nih.gov}}</ref> Adropin's biological role was first described in mice by a group led by Andrew Butler, as a [[Protein hormone|protein]] [[hormone]], [[Secretion|secreted]] from the [[liver]] ([[hepatokine]]), in the context of [[obesity]] and energy [[homeostasis]]. They derived the name "Adropin" from the [[Latin]] "[[wiktionary:aduro#:~:text=I singe, scorch, burn|aduro]]" - to set fire to, and "[[wiktionary:pinguis|pinguis]]" - fat.<ref>{{Cite journal |last1=Kumar |first1=K. Ganesh |last2=Trevaskis |first2=James L. |last3=Lam |first3=Daniel D. |last4=Sutton |first4=Gregory M. |last5=Koza |first5=Robert A. |last6=Chouljenko |first6=Vladimir N. |last7=Kousoulas |first7=Konstantin G. |last8=Rogers |first8=Pamela M. |last9=Kesterson |first9=Robert A. |last10=Thearle |first10=Marie |last11=Ferrante |first11=Anthony W. |date=2008-12-06 |title=Identification of Adropin as a Secreted Factor Linking Dietary Macronutrient Intake with Energy Homeostasis and Lipid Metabolism |journal=Cell Metabolism |language=English |volume=8 |issue=6 |pages=468–481 |doi=10.1016/j.cmet.2008.10.011 |issn=1550-4131 |pmid=19041763|pmc=2746325 }}</ref> In [[Animal disease model|animals]], adropin has been shown to have a regulatory role in [[Carbohydrate metabolism|carbohydrate]]/[[lipid metabolism]],<ref name=":0">{{Cite journal |last1=Banerjee |first1=Subhashis |last2=Ghoshal |first2=Sarbani |last3=Stevens |first3=Joseph R. |last4=McCommis |first4=Kyle S. |last5=Gao |first5=Su |last6=Castro-Sepulveda |first6=Mauricio |last7=Mizgier |first7=Maria L. |last8=Girardet |first8=Clemence |last9=Kumar |first9=K. Ganesh |last10=Galgani |first10=Jose E. |last11=Niehoff |first11=Michael L. |date=2020-10-02 |title=Hepatocyte expression of the micropeptide adropin regulates the liver fasting response and is enhanced by caloric restriction |url=https://www.jbc.org/article/S0021-9258(17)49826-7/abstract |journal=Journal of Biological Chemistry |language=English |volume=295 |issue=40 |pages=13753–13768 |doi=10.1074/jbc.RA120.014381 |issn=0021-9258 |pmc=7535914 |pmid=32727846|doi-access=free }}</ref> as well as in [[Endothelial dysfunction|endothelial function]].<ref>{{Cite journal |last1=Lovren |first1=Fina |last2=Pan |first2=Yi |last3=Quan |first3=Adrian |last4=Singh |first4=Krishna K. |last5=Shukla |first5=Praphulla C. |last6=Gupta |first6=Milan |last7=Al-Omran |first7=Mohammed |last8=Teoh |first8=Hwee |last9=Verma |first9=Subodh |date=2010-09-14 |title=Adropin Is a Novel Regulator of Endothelial Function |url=https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.109.931782 |journal=Circulation |volume=122 |issue=11_suppl_1 |pages=S185–S192 |doi=10.1161/CIRCULATIONAHA.109.931782|pmid=20837912 |s2cid=798093 |doi-access=free }}</ref><ref>{{Cite journal |last1=Jurrissen |first1=Thomas J. |last2=Ramirez-Perez |first2=Francisco I. |last3=Cabral-Amador |first3=Francisco J. |last4=Soares |first4=Rogerio N. |last5=Pettit-Mee |first5=Ryan J. |last6=Betancourt-Cortes |first6=Edgar E. |last7=McMillan |first7=Neil J. |last8=Sharma |first8=Neekun |last9=Rocha |first9=Helena N. M. |last10=Fujie |first10=Shumpei |last11=Morales-Quinones |first11=Mariana |last12=Lazo-Fernandez |first12=Yoskaly |last13=Butler |first13=Andrew A. |last14=Banerjee |first14=Subhashis |last15=Sacks |first15=Harold S. |date=2022-09-09 |title=Role of adropin in arterial stiffening associated with obesity and type 2 diabetes |url=https://journals.physiology.org/doi/abs/10.1152/ajpheart.00385.2022 |journal=American Journal of Physiology. Heart and Circulatory Physiology |volume=323 |issue=5 |pages=H879–H891 |doi=10.1152/ajpheart.00385.2022 |pmid=36083795 |pmc=9602697 |s2cid=252160224 |issn=0363-6135|pmc-embargo-date=November 1, 2023 }}</ref> Adropin [[Gene expression|expression]] is regulated by feeding status,<ref name=":0" /> the [[Circadian rhythm|biological clock]],<ref>{{Cite journal |last1=Kolben |first1=Yotam |last2=Weksler-Zangen |first2=Sarah |last3=Ilan |first3=Yaron |date=2021-02-01 |title=Adropin as a potential mediator of the metabolic system-autonomic nervous system-chronobiology axis: Implementing a personalized signature-based platform for chronotherapy |url=https://doi.org/10.1111/obr.13108 |journal=Obesity Reviews |volume=22 |issue=2 |pages=e13108 |doi=10.1111/obr.13108 |issn=1467-789X |pmid=32720402|s2cid=220841405 }}</ref> as well as upregulated by [[estrogen]]<ref>{{Cite journal |last1=Stokar |first1=Joshua |last2=Gurt |first2=Irina |last3=Cohen-Kfir |first3=Einav |last4=Yakubovsky |first4=Oran |last5=Hallak |first5=Noa |last6=Benyamini |first6=Hadar |last7=Lishinsky |first7=Natan |last8=Offir |first8=Neta |last9=Tam |first9=Joseph |last10=Dresner-Pollak |first10=Rivka |date=2022-06-01 |title=Hepatic adropin is regulated by estrogen and contributes to adverse metabolic phenotypes in ovariectomized mice |journal=Molecular Metabolism |language=en |volume=60 |pages=101482 |doi=10.1016/j.molmet.2022.101482 |issn=2212-8778 |pmc=9044006 |pmid=35364299}}</ref> via [[Estrogen receptor alpha|ERa]].<ref>{{Cite journal |last1=Meda |first1=Clara |last2=Dolce |first2=Arianna |last3=Vegeto |first3=Elisabetta |last4=Maggi |first4=Adriana |last5=Della Torre |first5=Sara |date=January 2022 |title=ERα-Dependent Regulation of Adropin Predicts Sex Differences in Liver Homeostasis during High-Fat Diet |journal=Nutrients |language=en |volume=14 |issue=16 |pages=3262 |doi=10.3390/nu14163262 |pmid=36014766 |pmc=9416503 |issn=2072-6643|doi-access=free }}</ref> In humans, lower levels of [[Circulatory system|circulating]] adropin are associated with several medical conditions including [[metabolic syndrome]], obesity<ref>{{Cite journal |last1=Soltani |first1=Sepideh |last2=Kolahdouz-Mohammadi |first2=Roya |last3=Aydin |first3=Suleyman |last4=Yosaee |first4=Somaye |last5=Clark |first5=Cain C. T. |last6=Abdollahi |first6=Shima |date=2022-03-01 |title=Circulating levels of adropin and overweight/obesity: a systematic review and meta-analysis of observational studies |url=https://doi.org/10.1007/s42000-021-00331-0 |journal=Hormones |language=en |volume=21 |issue=1 |pages=15–22 |doi=10.1007/s42000-021-00331-0 |pmid=34897581 |s2cid=245119139 |issn=2520-8721}}</ref> and [[inflammatory bowel disease]].<ref>{{Cite journal |last1=Brnić |first1=Darko |last2=Martinovic |first2=Dinko |last3=Zivkovic |first3=Piero Marin |last4=Tokic |first4=Daria |last5=Tadin Hadjina |first5=Ivana |last6=Rusic |first6=Doris |last7=Vilovic |first7=Marino |last8=Supe-Domic |first8=Daniela |last9=Tonkic |first9=Ante |last10=Bozic |first10=Josko |date=2020-06-09 |title=Serum adropin levels are reduced in patients with inflammatory bowel diseases |journal=Scientific Reports |language=en |volume=10 |issue=1 |pages=9264 |doi=10.1038/s41598-020-66254-9 |pmid=32518265 |pmc=7283308 |bibcode=2020NatSR..10.9264B |issn=2045-2322}}</ref> The [[brain]] is the organ with the highest levels of adropin [[Gene expression|expression]].<ref>{{Cite web |title=Tissue expression of ENHO - Summary - The Human Protein Atlas |url=https://www.proteinatlas.org/ENSG00000168913-ENHO/tissue |access-date=2022-08-21 |website=www.proteinatlas.org}}</ref> In the brain, adropin has been shown to have a potential protective role role against neurological disease,<ref>{{Cite journal |last=Gunraj |first=Rachel E. |last2=Yang |first2=Changjun |last3=Liu |first3=Lei |last4=Larochelle |first4=Jonathan |last5=Candelario-Jalil |first5=Eduardo |date=2023-01-30 |title=Protective Roles of Adropin in Neurological Disease |url=https://journals.physiology.org/doi/10.1152/ajpcell.00318.2022 |journal=American Journal of Physiology. Cell Physiology |language=en |pages=ajpcell.00318.2022 |doi=10.1152/ajpcell.00318.2022 |issn=0363-6143}}</ref> including in the context of brain [[Ageing|aging]] and [[Cognitive skill|cognitive function]],<ref>{{Cite journal |last1=Banerjee |first1=Subhashis |last2=Ghoshal |first2=Sarbani |last3=Girardet |first3=Clemence |last4=DeMars |first4=Kelly M. |last5=Yang |first5=Changjun |last6=Niehoff |first6=Michael L. |last7=Nguyen |first7=Andrew D. |last8=Jayanth |first8=Prerana |last9=Hoelscher |first9=Brittany A. |last10=Xu |first10=Fenglian |last11=Banks |first11=William A. |date=2021-08-30 |title=Adropin correlates with aging-related neuropathology in humans and improves cognitive function in aging mice |journal=npj Aging and Mechanisms of Disease |language=en |volume=7 |issue=1 |page=23 |doi=10.1038/s41514-021-00076-5 |issn=2056-3973 |pmc=8405681 |pmid=34462439}}</ref> as well as following acute [[Stroke|ischemia]].<ref>{{Cite journal |last1=Yang |first1=Changjun |last2=Liu |first2=Lei |last3=Lavayen |first3=Bianca P. |last4=Larochelle |first4=Jonathan |last5=Gunraj |first5=Rachel E. |last6=Butler |first6=Andrew A. |last7=Candelario-Jalil |first7=Eduardo |title=Therapeutic Benefits of Adropin in Aged Mice After Transient Ischemic Stroke via Reduction of Blood-Brain Barrier Damage |url=https://www.ahajournals.org/doi/10.1161/STROKEAHA.122.039628 |journal=Stroke |year=2022 |doi=10.1161/STROKEAHA.122.039628|pmid=36305313 |s2cid=253184087 }}</ref> The [[Orphan receptor|orphan]] [[G protein-coupled receptor]] [[GPR19]], has been proposed as a [[Receptor (biochemistry)|receptor]] for adropin.<ref>{{Cite journal |last1=Stein |first1=Lauren M. |last2=Yosten |first2=Gina L. C. |last3=Samson |first3=Willis K. |date=2016-03-15 |title=Adropin acts in brain to inhibit water drinking: potential interaction with the orphan G protein-coupled receptor, GPR19 |journal=American Journal of Physiology. Regulatory, Integrative and Comparative Physiology |volume=310 |issue=6 |pages=R476–R480 |doi=10.1152/ajpregu.00511.2015 |issn=0363-6119 |pmc=4867374 |pmid=26739651}}</ref>


== References ==
== References ==

Revision as of 18:35, 27 February 2023

Predicted structure of Adropin (AlphaFold)

Adropin is a peptide encoded by the energy homeostasis-associated gene ENHO,[1] which is highly conserved across mammals.[2] Adropin's biological role was first described in mice by a group led by Andrew Butler, as a protein hormone, secreted from the liver (hepatokine), in the context of obesity and energy homeostasis. They derived the name "Adropin" from the Latin "aduro" - to set fire to, and "pinguis" - fat.[3] In animals, adropin has been shown to have a regulatory role in carbohydrate/lipid metabolism,[4] as well as in endothelial function.[5][6] Adropin expression is regulated by feeding status,[4] the biological clock,[7] as well as upregulated by estrogen[8] via ERa.[9] In humans, lower levels of circulating adropin are associated with several medical conditions including metabolic syndrome, obesity[10] and inflammatory bowel disease.[11] The brain is the organ with the highest levels of adropin expression.[12] In the brain, adropin has been shown to have a potential protective role role against neurological disease,[13] including in the context of brain aging and cognitive function,[14] as well as following acute ischemia.[15] The orphan G protein-coupled receptor GPR19, has been proposed as a receptor for adropin.[16]

References

  1. ^ "ENHO Gene - GeneCards | ENHO Protein | ENHO Antibody". www.genecards.org.
  2. ^ "ortholog_gene_375704[group] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2022-08-21.
  3. ^ Kumar, K. Ganesh; Trevaskis, James L.; Lam, Daniel D.; Sutton, Gregory M.; Koza, Robert A.; Chouljenko, Vladimir N.; Kousoulas, Konstantin G.; Rogers, Pamela M.; Kesterson, Robert A.; Thearle, Marie; Ferrante, Anthony W. (2008-12-06). "Identification of Adropin as a Secreted Factor Linking Dietary Macronutrient Intake with Energy Homeostasis and Lipid Metabolism". Cell Metabolism. 8 (6): 468–481. doi:10.1016/j.cmet.2008.10.011. ISSN 1550-4131. PMC 2746325. PMID 19041763.
  4. ^ a b Banerjee, Subhashis; Ghoshal, Sarbani; Stevens, Joseph R.; McCommis, Kyle S.; Gao, Su; Castro-Sepulveda, Mauricio; Mizgier, Maria L.; Girardet, Clemence; Kumar, K. Ganesh; Galgani, Jose E.; Niehoff, Michael L. (2020-10-02). "Hepatocyte expression of the micropeptide adropin regulates the liver fasting response and is enhanced by caloric restriction". Journal of Biological Chemistry. 295 (40): 13753–13768. doi:10.1074/jbc.RA120.014381. ISSN 0021-9258. PMC 7535914. PMID 32727846.
  5. ^ Lovren, Fina; Pan, Yi; Quan, Adrian; Singh, Krishna K.; Shukla, Praphulla C.; Gupta, Milan; Al-Omran, Mohammed; Teoh, Hwee; Verma, Subodh (2010-09-14). "Adropin Is a Novel Regulator of Endothelial Function". Circulation. 122 (11_suppl_1): S185–S192. doi:10.1161/CIRCULATIONAHA.109.931782. PMID 20837912. S2CID 798093.
  6. ^ Jurrissen, Thomas J.; Ramirez-Perez, Francisco I.; Cabral-Amador, Francisco J.; Soares, Rogerio N.; Pettit-Mee, Ryan J.; Betancourt-Cortes, Edgar E.; McMillan, Neil J.; Sharma, Neekun; Rocha, Helena N. M.; Fujie, Shumpei; Morales-Quinones, Mariana; Lazo-Fernandez, Yoskaly; Butler, Andrew A.; Banerjee, Subhashis; Sacks, Harold S. (2022-09-09). "Role of adropin in arterial stiffening associated with obesity and type 2 diabetes". American Journal of Physiology. Heart and Circulatory Physiology. 323 (5): H879–H891. doi:10.1152/ajpheart.00385.2022. ISSN 0363-6135. PMC 9602697. PMID 36083795. S2CID 252160224.{{cite journal}}: CS1 maint: PMC embargo expired (link)
  7. ^ Kolben, Yotam; Weksler-Zangen, Sarah; Ilan, Yaron (2021-02-01). "Adropin as a potential mediator of the metabolic system-autonomic nervous system-chronobiology axis: Implementing a personalized signature-based platform for chronotherapy". Obesity Reviews. 22 (2): e13108. doi:10.1111/obr.13108. ISSN 1467-789X. PMID 32720402. S2CID 220841405.
  8. ^ Stokar, Joshua; Gurt, Irina; Cohen-Kfir, Einav; Yakubovsky, Oran; Hallak, Noa; Benyamini, Hadar; Lishinsky, Natan; Offir, Neta; Tam, Joseph; Dresner-Pollak, Rivka (2022-06-01). "Hepatic adropin is regulated by estrogen and contributes to adverse metabolic phenotypes in ovariectomized mice". Molecular Metabolism. 60: 101482. doi:10.1016/j.molmet.2022.101482. ISSN 2212-8778. PMC 9044006. PMID 35364299.
  9. ^ Meda, Clara; Dolce, Arianna; Vegeto, Elisabetta; Maggi, Adriana; Della Torre, Sara (January 2022). "ERα-Dependent Regulation of Adropin Predicts Sex Differences in Liver Homeostasis during High-Fat Diet". Nutrients. 14 (16): 3262. doi:10.3390/nu14163262. ISSN 2072-6643. PMC 9416503. PMID 36014766.
  10. ^ Soltani, Sepideh; Kolahdouz-Mohammadi, Roya; Aydin, Suleyman; Yosaee, Somaye; Clark, Cain C. T.; Abdollahi, Shima (2022-03-01). "Circulating levels of adropin and overweight/obesity: a systematic review and meta-analysis of observational studies". Hormones. 21 (1): 15–22. doi:10.1007/s42000-021-00331-0. ISSN 2520-8721. PMID 34897581. S2CID 245119139.
  11. ^ Brnić, Darko; Martinovic, Dinko; Zivkovic, Piero Marin; Tokic, Daria; Tadin Hadjina, Ivana; Rusic, Doris; Vilovic, Marino; Supe-Domic, Daniela; Tonkic, Ante; Bozic, Josko (2020-06-09). "Serum adropin levels are reduced in patients with inflammatory bowel diseases". Scientific Reports. 10 (1): 9264. Bibcode:2020NatSR..10.9264B. doi:10.1038/s41598-020-66254-9. ISSN 2045-2322. PMC 7283308. PMID 32518265.
  12. ^ "Tissue expression of ENHO - Summary - The Human Protein Atlas". www.proteinatlas.org. Retrieved 2022-08-21.
  13. ^ Gunraj, Rachel E.; Yang, Changjun; Liu, Lei; Larochelle, Jonathan; Candelario-Jalil, Eduardo (2023-01-30). "Protective Roles of Adropin in Neurological Disease". American Journal of Physiology. Cell Physiology: ajpcell.00318.2022. doi:10.1152/ajpcell.00318.2022. ISSN 0363-6143.
  14. ^ Banerjee, Subhashis; Ghoshal, Sarbani; Girardet, Clemence; DeMars, Kelly M.; Yang, Changjun; Niehoff, Michael L.; Nguyen, Andrew D.; Jayanth, Prerana; Hoelscher, Brittany A.; Xu, Fenglian; Banks, William A. (2021-08-30). "Adropin correlates with aging-related neuropathology in humans and improves cognitive function in aging mice". npj Aging and Mechanisms of Disease. 7 (1): 23. doi:10.1038/s41514-021-00076-5. ISSN 2056-3973. PMC 8405681. PMID 34462439.
  15. ^ Yang, Changjun; Liu, Lei; Lavayen, Bianca P.; Larochelle, Jonathan; Gunraj, Rachel E.; Butler, Andrew A.; Candelario-Jalil, Eduardo (2022). "Therapeutic Benefits of Adropin in Aged Mice After Transient Ischemic Stroke via Reduction of Blood-Brain Barrier Damage". Stroke. doi:10.1161/STROKEAHA.122.039628. PMID 36305313. S2CID 253184087.
  16. ^ Stein, Lauren M.; Yosten, Gina L. C.; Samson, Willis K. (2016-03-15). "Adropin acts in brain to inhibit water drinking: potential interaction with the orphan G protein-coupled receptor, GPR19". American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 310 (6): R476–R480. doi:10.1152/ajpregu.00511.2015. ISSN 0363-6119. PMC 4867374. PMID 26739651.