Jump to content

Methylammonium lead halide: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 13: Line 13:
The resulting crystals are metastable and dissolve in the growth solution when cooled to room temperature. They have [[bandgap]]s of 2.18 eV for CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub> and 1.51 eV for CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>, while their respective carrier mobilities are 24 and 67 cm<sup>2</sup>/(V·s).<ref name=r1/> Their [[thermal conductivity]] is exceptionally low, ~0.5 W/(K·m) at room temperature for CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>.<ref name=r2/>
The resulting crystals are metastable and dissolve in the growth solution when cooled to room temperature. They have [[bandgap]]s of 2.18 eV for CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub> and 1.51 eV for CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>, while their respective carrier mobilities are 24 and 67 cm<sup>2</sup>/(V·s).<ref name=r1/> Their [[thermal conductivity]] is exceptionally low, ~0.5 W/(K·m) at room temperature for CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>.<ref name=r2/>



== Photodecomposition and thermal decomposition of CH<sub>3</sub>NH<sub>3</sub>PbX<sub>3</sub>==
Thermal decomposition of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> gives [[methyl iodide]] (CH<sub>3</sub>I) and [[ammonia]] (NH<sub>3</sub>).<ref name="Juarez-PerezHawash2016">{{cite journal|last1=Juarez-Perez|first1=Emilio J.|last2=Hawash|first2=Zafer|last3=Raga|first3=Sonia R.|last4=Ono|first4=Luis K.|last5=Qi|first5=Yabing|title=Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis|journal=Energy Environ. Sci.|volume=9|issue=11|year=2016|pages=3406–3410|issn=1754-5692|doi=10.1039/C6EE02016J|doi-access=free}}</ref>
Thermal decomposition of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> gives [[methyl iodide]] (CH<sub>3</sub>I) and [[ammonia]] (NH<sub>3</sub>).<ref name="Juarez-PerezHawash2016">{{cite journal|last1=Juarez-Perez|first1=Emilio J.|last2=Hawash|first2=Zafer|last3=Raga|first3=Sonia R.|last4=Ono|first4=Luis K.|last5=Qi|first5=Yabing|title=Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis|journal=Energy Environ. Sci.|volume=9|issue=11|year=2016|pages=3406–3410|issn=1754-5692|doi=10.1039/C6EE02016J|doi-access=free}}</ref>
<ref name="WilliamsHolliman2014">{{cite journal|last1=Williams|first1=Alice E.|last2=Holliman|first2=Peter J.|last3=Carnie|first3=Matthew J.|last4=Davies|first4=Matthew L.|last5=Worsley|first5=David A.|last6=Watson|first6=Trystan M.|title=Perovskite processing for photovoltaics: a spectro-thermal evaluation|journal=J. Mater. Chem. A|volume=2|issue=45|year=2014|pages=19338–19346|issn=2050-7488|doi=10.1039/C4TA04725G}}</ref>
<ref name="WilliamsHolliman2014">{{cite journal|last1=Williams|first1=Alice E.|last2=Holliman|first2=Peter J.|last3=Carnie|first3=Matthew J.|last4=Davies|first4=Matthew L.|last5=Worsley|first5=David A.|last6=Watson|first6=Trystan M.|title=Perovskite processing for photovoltaics: a spectro-thermal evaluation|journal=J. Mater. Chem. A|volume=2|issue=45|year=2014|pages=19338–19346|issn=2050-7488|doi=10.1039/C4TA04725G}}</ref>

Revision as of 14:24, 10 January 2023

CH3NH3PbX3 crystal structure.[1]

Methylammonium lead halides (MALHs) are solid compounds with perovskite structure and a chemical formula of CH3NH3PbX3, where X = I, Br or Cl. They have potential applications in solar cells,[2] lasers, light-emitting diodes, photodetectors, radiation detectors,[3][4] scintillator,[5] magneto-optical data storage[6] and hydrogen production.[7]


Properties and synthesis

The first MALHs to be synthesized were the methylammonium derivatives CH3NH3SnX3 and CH3NH3PbX3. Their potential in the area of energy conversion wasn't realized until decades later.[8] In the CH3NH3PbX3 cubic crystal structure the methylammonium cation (CH3NH3+) is surrounded by PbX6 octahedra. The X ions are not fixed and can migrate through the crystal with an activation energy of 0.6 eV; the migration is vacancy assisted.[1] The methylammonium cations can rotate within their cages. At room temperature the ions have the CN axis aligned towards the face directions of the unit cells and the molecules randomly change to another of the six face directions on a 3 ps time scale.[9]

Growth of a CH3NH3PbI3 single crystal in gamma-butyrolactone at 110 °C. The yellow color originates from the lead(II) iodide precursor.[7]
Growth of a CH3NH3PbBr3 single crystal in dimethylformamide at 80 °C.[7]

The solubility of MALHs strongly decreases with increased temperature: from 0.8 g/mL at 20 °C to 0.3 g/mL at 80 °C for CH3NH3PbBr3 in dimethylformamide. This property is used in the growth of MALH single crystals and films from solution, using a mixture of CH3NH3X and PbX2 powders as the precursor. The growth rates are 3–20 mm3/hour for CH3NH3PbI3 and reach 38 mm3/hour for CH3NH3PbBr3 crystals.[7]

The resulting crystals are metastable and dissolve in the growth solution when cooled to room temperature. They have bandgaps of 2.18 eV for CH3NH3PbBr3 and 1.51 eV for CH3NH3PbI3, while their respective carrier mobilities are 24 and 67 cm2/(V·s).[7] Their thermal conductivity is exceptionally low, ~0.5 W/(K·m) at room temperature for CH3NH3PbI3.[10]


Thermal decomposition of CH3NH3PbI3 gives methyl iodide (CH3I) and ammonia (NH3).[11] [12]

Applications

MALHs have potential applications in solar cells, lasers,[13] light-emitting diodes, photodetectors, radiation detectors,[4] scintillator[5] and hydrogen production.[7] The power conversion efficiency of MALH solar cells exceeds 19%.[14][15]

Historic references

  • Weber, Dieter (1978). "CH3NH3SnBrxI3-x (x = 0-3), ein Sn(II)-System mit kubischer Perowskitstruktur / CH3NH3SnBrxI3-x (x = 0-3), a Sn(II)-System with Cubic Perovskite Structure". Zeitschrift für Naturforschung B. 33 (8): 862–865. doi:10.1515/znb-1978-0809. ISSN 1865-7117.
  • Weber, Dieter (1978-12-01). "CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3 , a Pb(II)-System with Cubic Perovskite Structure". Zeitschrift für Naturforschung B. 33 (12): 1443–1445. doi:10.1515/znb-1978-1214. ISSN 1865-7117.*Grätzel, Michael (2014). "The light and shade of perovskite solar cells". Nature Materials. 13 (9): 838–842. doi:10.1038/nmat4065. ISSN 1476-1122.

See also

References

  1. ^ a b Eames, Christopher; Frost, Jarvist M.; Barnes, Piers R. F.; o'Regan, Brian C.; Walsh, Aron; Islam, M. Saiful (2015). "Ionic transport in hybrid lead iodide perovskite solar cells". Nature Communications. 6: 7497. Bibcode:2015NatCo...6.7497E. doi:10.1038/ncomms8497. PMC 4491179. PMID 26105623.
  2. ^ Kojima, Akihiro; Teshima, Kenjiro; Shirai, Yasuo; Miyasaka, Tsutomu (2009-05-06). "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells". Journal of the American Chemical Society. 131 (17): 6050–6051. doi:10.1021/ja809598r. ISSN 0002-7863. PMID 19366264.
  3. ^ Náfrádi, Bálint (October 16, 2015). "Methylammonium Lead Iodide for Efficient X-ray Energy Conversion". J. Phys. Chem. C. 2015 (119): 25204–25208. doi:10.1021/acs.jpcc.5b07876.
  4. ^ a b Yakunin, S.; Dirin, D.; Shynkarenko, Y.; Morad, V.; Cherniukh, I.; Nazarenko, O.; Kreil, D.; Nauser, T.; Kovalenko, M. (2016). "Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites". Nature Photonics. 10 (9): 585–589. Bibcode:2016NaPho..10..585Y. doi:10.1038/nphoton.2016.139. hdl:20.500.11850/118934.
  5. ^ a b Birowosuto, M. D. (16 November 2016). "X-ray Scintillation in Lead Halide Perovskite Crystals". Sci. Rep. 6: 37254. arXiv:1611.05862. Bibcode:2016NatSR...637254B. doi:10.1038/srep37254. PMC 5111063. PMID 27849019.
  6. ^ Náfrádi, Bálint (24 November 2016). "Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3". Nature Communications. 7: 13406. arXiv:1611.08205. Bibcode:2016NatCo...713406N. doi:10.1038/ncomms13406. PMC 5123013. PMID 27882917.
  7. ^ a b c d e f Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Murali, Banavoth; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; MacUlan, Giacomo; Goriely, Alain; Wu, Tom; Mohammed, Omar F.; Bakr, Osman M. (2015). "High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization". Nature Communications. 6: 7586. Bibcode:2015NatCo...6.7586S. doi:10.1038/ncomms8586. PMC 4544059. PMID 26145157.
  8. ^ Cheetham, Anthony K.; Seshadri, Ram; Wudl, Fred (2022-06-30). "Chemical synthesis and materials discovery". Nature Synthesis. 1 (7): 514–520. doi:10.1038/s44160-022-00096-3. ISSN 2731-0582.
  9. ^ Bakulin, A.A.; Selig, O.; Bakker, H.J.; Rezus, Y.L.A.; Muller, C.; Glaser, T.; Lovrincic, R.; Sun, Z.; Chen, Z.; Walsh, A.; Frost, J.M.; Jansen, T.L.C. (2015). "Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites" (PDF). J. Phys. Chem. Lett. 6 (18): 3663–3669. doi:10.1021/acs.jpclett.5b01555. hdl:10044/1/48952. PMID 26722739.
  10. ^ Pisoni, Andrea; Jaćimović, Jaćim; Barišić, Osor S.; Spina, Massimo; Gaál, Richard; Forró, László; Horváth, Endre (2014). "Ultra-Low Thermal Conductivity in Organic–Inorganic Hybrid Perovskite CH3NH3PbI3". The Journal of Physical Chemistry Letters. 5 (14): 2488–2492. arXiv:1407.4931. doi:10.1021/jz5012109. PMID 26277821. S2CID 33371327.
  11. ^ Juarez-Perez, Emilio J.; Hawash, Zafer; Raga, Sonia R.; Ono, Luis K.; Qi, Yabing (2016). "Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis". Energy Environ. Sci. 9 (11): 3406–3410. doi:10.1039/C6EE02016J. ISSN 1754-5692.
  12. ^ Williams, Alice E.; Holliman, Peter J.; Carnie, Matthew J.; Davies, Matthew L.; Worsley, David A.; Watson, Trystan M. (2014). "Perovskite processing for photovoltaics: a spectro-thermal evaluation". J. Mater. Chem. A. 2 (45): 19338–19346. doi:10.1039/C4TA04725G. ISSN 2050-7488.
  13. ^ Deschler, Felix; Price, Michael; Pathak, Sandeep; Klintberg, Lina E.; Jarausch, David-Dominik; Higler, Ruben; Hüttner, Sven; Leijtens, Tomas; Stranks, Samuel D.; Snaith, Henry J.; Atatüre, Mete; Phillips, Richard T.; Friend, Richard H. (2 April 2014). "High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors". The Journal of Physical Chemistry Letters. 5 (8): 1421–1426. doi:10.1021/jz5005285. PMID 26269988.
  14. ^ Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. (2014). "Interface engineering of highly efficient perovskite solar cells". Science. 345 (6196): 542–6. Bibcode:2014Sci...345..542Z. doi:10.1126/science.1254050. PMID 25082698. S2CID 32378923.
  15. ^ Heo, Jin Hyuck; Song, Dae Ho; Han, Hye Ji; Kim, Seong Yeon; Kim, Jun Ho; Kim, Dasom; Shin, Hee Won; Ahn, Tae Kyu; Wolf, Christoph; Lee, Tae-Woo; Im, Sang Hyuk (2015). "Planar CH3NH3PbI3 Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate". Advanced Materials. 27 (22): 3424–30. doi:10.1002/adma.201500048. PMID 25914242.