Jump to content

Quasitriangular Hopf algebra: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 30: Line 30:
The property of being a [[quasi-triangular Hopf algebra]] is preserved by [[Quasi-bialgebra#Twisting|twisting]] via an invertible element <math> F = \sum_i f^i \otimes f_i \in \mathcal{A \otimes A} </math> such that <math> (\varepsilon \otimes id )F = (id \otimes \varepsilon)F = 1 </math> and satisfying the cocycle condition
The property of being a [[quasi-triangular Hopf algebra]] is preserved by [[Quasi-bialgebra#Twisting|twisting]] via an invertible element <math> F = \sum_i f^i \otimes f_i \in \mathcal{A \otimes A} </math> such that <math> (\varepsilon \otimes id )F = (id \otimes \varepsilon)F = 1 </math> and satisfying the cocycle condition


:<math> (F \otimes 1) \dot (\Delta \otimes id)( F) = (1 \otimes F) \dot (id \otimes \Delta)( F) </math>
:<math> (F \otimes 1) \cdot (\Delta \otimes id)( F) = (1 \otimes F) \cdot (id \otimes \Delta)( F) </math>


Furthermore, <math> u = \sum_i f^i S(f_i)</math> is invertible and the twisted antipode is given by <math>S'(a) = u S(a)u^{-1}</math>, with the twisted comultiplication, R-matrix and co-unit change according to those defined for the [[quasi-triangular quasi-Hopf algebra]]. Such a twist is known as an admissible (or Drinfeld) twist.
Furthermore, <math> u = \sum_i f^i S(f_i)</math> is invertible and the twisted antipode is given by <math>S'(a) = u S(a)u^{-1}</math>, with the twisted comultiplication, R-matrix and co-unit change according to those defined for the [[quasi-triangular quasi-Hopf algebra]]. Such a twist is known as an admissible (or Drinfeld) twist.

Revision as of 09:45, 3 March 2022

In mathematics, a Hopf algebra, H, is quasitriangular[1] if there exists an invertible element, R, of such that

  • for all , where is the coproduct on H, and the linear map is given by ,
  • ,
  • ,

where , , and , where , , and , are algebra morphisms determined by

R is called the R-matrix.

As a consequence of the properties of quasitriangularity, the R-matrix, R, is a solution of the Yang–Baxter equation (and so a module V of H can be used to determine quasi-invariants of braids, knots and links). Also as a consequence of the properties of quasitriangularity, ; moreover , , and . One may further show that the antipode S must be a linear isomorphism, and thus S2 is an automorphism. In fact, S2 is given by conjugating by an invertible element: where (cf. Ribbon Hopf algebras).

It is possible to construct a quasitriangular Hopf algebra from a Hopf algebra and its dual, using the Drinfeld quantum double construction.

If the Hopf algebra H is quasitriangular, then the category of modules over H is braided with braiding

.

Twisting

The property of being a quasi-triangular Hopf algebra is preserved by twisting via an invertible element such that and satisfying the cocycle condition

Furthermore, is invertible and the twisted antipode is given by , with the twisted comultiplication, R-matrix and co-unit change according to those defined for the quasi-triangular quasi-Hopf algebra. Such a twist is known as an admissible (or Drinfeld) twist.

See also

Notes

  1. ^ Montgomery & Schneider (2002), p. 72.

References

  • Montgomery, Susan (1993). Hopf algebras and their actions on rings. Regional Conference Series in Mathematics. Vol. 82. Providence, RI: American Mathematical Society. ISBN 0-8218-0738-2. Zbl 0793.16029.
  • Montgomery, Susan; Schneider, Hans-Jürgen (2002). New directions in Hopf algebras. Mathematical Sciences Research Institute Publications. Vol. 43. Cambridge University Press. ISBN 978-0-521-81512-3. Zbl 0990.00022.