Jump to content

Ahsan Kareem: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
FrescoBot (talk | contribs)
Maruljay (talk | contribs)
Added more contributions along with citations
Line 18: Line 18:
}}
}}
[[File:Robert M Moran Professorship.jpg|thumb|273x273px|Father [[Edward Malloy]], President of the [[University of Notre Dame]], presenting Ahsan Kareem with the Robert Moran Professorship in 1999]]
[[File:Robert M Moran Professorship.jpg|thumb|273x273px|Father [[Edward Malloy]], President of the [[University of Notre Dame]], presenting Ahsan Kareem with the Robert Moran Professorship in 1999]]
'''Ahsan Kareem''' is the Robert M. Moran Professor of Engineering in the Department of Civil & Environmental Engineering and Earth Sciences (CEEES) at the [[University of Notre Dame]]. He is Director of the Nathaz Modeling Laboratory and served as the past Chair at the Department of CEEES at the [[University of Notre Dame]].<ref>{{cite web|url=https://engineering.nd.edu/profiles/akareem|title=Ahsan Kareem – College of Engineering|website=engineering.nd.edu}}</ref><ref>{{cite web|url=https://www.nd.edu/about/spotlight/kareem/|title=Ahsan Kareem // Spotlight // About ND // University of Notre Dame|first=ENR/PAZ // University Communications // University of Notre|last=Dame|website=University of Notre Dame}}</ref>
'''Ahsan Kareem''' is the Robert M. Moran Professor of Engineering in the Department of Civil & Environmental Engineering and Earth Sciences (CEEES) at the [[University of Notre Dame]]. He is Director of the Nathaz Modeling Laboratory and served as the past Chair at the Department of CEEES at the [[University of Notre Dame]].<ref>{{cite web|url=https://engineering.nd.edu/profiles/akareem|title=Ahsan Kareem – College of Engineering|website=engineering.nd.edu}}</ref><ref>{{cite web|url=https://www.nd.edu/about/spotlight/kareem/|title=Ahsan Kareem // Spotlight // About ND // University of Notre Dame|first=ENR/PAZ // University Communications // University of Notre|last=Dame|website=University of Notre Dame}}</ref>


The focus of his work is on quantifying load effects caused by various natural hazards on structures and to develop innovative strategies to manage and mitigate their effects. The characterization and formulation of dynamic load effects due to wind, waves and earthquakes on tall buildings, long-span bridges, offshore structures and other structures is carried out via fundamental analytical computational methods, and experiments at  laboratory, and full-scale. He directs NatHaz Group (NatHaz Modeling Laboratory) which focuses on developments in cyberspace virtual collaborative research platforms, e.g.,  virtual organizations, crowdsourcing, computational intelligence, living laboratories, sensing and actuation, citizen sensing, web-enabled analysis and design, scientific machine learning (SciML) and cloud-based computing.
His fundamental contributions to aerodynamics and aeroelasticity has led to advances in the analysis, design and performance assessment of tall buildings and long span bridges.<ref>{{Cite journal|last=Kareem|first=Ahsan|date=May 1983|title=Mitigation of wind induced motion of tall buildings|journal=Journal of Wind Engineering and Industrial Aerodynamics|volume=11|issue=1–3|pages=273–284|doi=10.1016/0167-6105(83)90106-x|issn=0167-6105}}</ref><ref>{{Cite journal|last=Kareem|first=Ahsan|date=November 1985|title=Lateral‐Torsional Motion of Tall Buildings to Wind Loads|journal=Journal of Structural Engineering|volume=111|issue=11|pages=2479–2496|doi=10.1061/(asce)0733-9445(1985)111:11(2479)|issn=0733-9445}}</ref><ref>{{Cite journal|last=Kareem|first=Ahsan|date=October 1992|title=Dynamic response of high-rise buildings to stochastic wind loads|journal=Journal of Wind Engineering and Industrial Aerodynamics|volume=42|issue=1–3|pages=1101–1112|doi=10.1016/0167-6105(92)90117-s|issn=0167-6105}}</ref><ref>{{Cite journal|last1=Kareem|first1=Ahsan|last2=Kijewski|first2=Tracy|last3=Tamura|first3=Yukio|s2cid=17107302|date=1999-09-25|title=Mitigation of motions of tall buildings with specific examples of recent applications|journal=Wind and Structures|volume=2|issue=3|pages=201–251|doi=10.12989/was.1999.2.3.201|issn=1226-6116}}</ref><ref>{{Cite journal|last1=Chen|first1=Xinzhong|last2=Kareem|first2=Ahsan|date=December 2001|title=Nonlinear response analysis of long-span bridges under turbulent winds|journal=Journal of Wind Engineering and Industrial Aerodynamics|volume=89|issue=14–15|pages=1335–1350|doi=10.1016/s0167-6105(01)00147-7|issn=0167-6105}}</ref><ref>{{Cite journal|last1=Chen|first1=Xinzhong|last2=Kareem|first2=Ahsan|last3=Matsumoto|first3=Masaru|date=June 2001|title=Multimode coupled flutter and buffeting analysis of long span bridges|journal=Journal of Wind Engineering and Industrial Aerodynamics|volume=89|issue=7–8|pages=649–664|doi=10.1016/s0167-6105(01)00064-2|issn=0167-6105}}</ref><ref>{{Cite journal|last1=Chen|first1=Xinzhong|last2=Kareem|first2=Ahsan|date=December 2003|title=New frontiers in aerodynamic tailoring of long span bridges: an advanced analysis framework|journal=Journal of Wind Engineering and Industrial Aerodynamics|volume=91|issue=12–15|pages=1511–1528|doi=10.1016/j.jweia.2003.09.005|issn=0167-6105}}</ref><ref>{{Cite journal|last1=Xu|first1=You-Lin|last2=Hu|first2=Liang|last3=Kareem|first3=Ahsan|date=January 2014|title=Conditional Simulation of Nonstationary Fluctuating Wind Speeds for Long-Span Bridges|journal=Journal of Engineering Mechanics|volume=140|issue=1|pages=61–73|doi=10.1061/(asce)em.1943-7889.0000589|issn=0733-9399}}</ref>


He has conducted from wind tunnel modeling<ref>{{Cite journal|last1=Hwang|first1=Jae-Seung|last2=Kareem|first2=Ahsan|last3=Kim|first3=Hongjin|date=January 2011|title=Wind load identification using wind tunnel test data by inverse analysis|journal=Journal of Wind Engineering and Industrial Aerodynamics|volume=99|issue=1|pages=18–26|doi=10.1016/j.jweia.2010.10.004|issn=0167-6105}}</ref> to stochastic and [[Computational fluid dynamics|CFD]] (Computational Fluid Dynamics) based simulations and finally to the full-scale monitoring of some of the signature buildings<ref>{{Cite journal|last1=Kijewski-Correa|first1=Tracy|last2=Kilpatrick|first2=John|last3=Kareem|first3=Ahsan|last4=Kwon|first4=Dae-Kun|last5=Bashor|first5=Rachel|last6=Kochly|first6=Michael|last7=Young|first7=Bradley S.|last8=Abdelrazaq|first8=Ahmad|last9=Galsworthy|first9=Jon|date=October 2006|title=Validating Wind-Induced Response of Tall Buildings: Synopsis of the Chicago Full-Scale Monitoring Program|journal=Journal of Structural Engineering|volume=132|issue=10|pages=1509–1523|doi=10.1061/(asce)0733-9445(2006)132:10(1509)|issn=0733-9445}}</ref><ref>{{Cite journal|last1=Bashor|first1=Rachel|last2=Bobby|first2=Sarah|last3=Kijewski-Correa|first3=Tracy|last4=Kareem|first4=Ahsan|date=May 2012|title=Full-scale performance evaluation of tall buildings under wind|journal=Journal of Wind Engineering and Industrial Aerodynamics|volume=104-106|pages=88–97|doi=10.1016/j.jweia.2012.04.007|issn=0167-6105}}</ref> around the world including more recently [[Burj Khalifa]].<ref>{{Cite journal|last1=Kijewski-Correa Tracy|last2=Kwon Dae Kun|last3=Kareem Ahsan|last4=Bentz Audrey|last5=Guo Yanlin|last6=Bobby Sarah|last7=Abdelrazaq Ahmad|date=2013-10-01|title=SmartSync: An Integrated Real-Time Structural Health Monitoring and Structural Identification System for Tall Buildings|journal=Journal of Structural Engineering|volume=139|issue=10|pages=1675–1687|doi=10.1061/(ASCE)ST.1943-541X.0000560}}</ref> It utilizes a novel “SmartSync” system featuring [[Internet of things|“Internet-of-Things” (IoT)]] concept with built in layers of intelligence for data management and analysis.<ref name="auto1">{{Cite journal|last1=Kijewski-Correa|first1=Tracy|last2=Kwon|first2=Dae Kun|last3=Kareem|first3=Ahsan|last4=Bentz|first4=Audrey|last5=Guo|first5=Yanlin|last6=Bobby|first6=Sarah|last7=Abdelrazaq|first7=Ahmad|date=October 2013|title=SmartSync: An Integrated Real-Time Structural Health Monitoring and Structural Identification System for Tall Buildings|journal=Journal of Structural Engineering|volume=139|issue=10|pages=1675–1687|doi=10.1061/(asce)st.1943-541x.0000560|issn=0733-9445}}</ref><ref>{{Cite journal|last1=Guo Yanlin|last2=Kwon Dae Kun|last3=Kareem Ahsan|date=2016-02-01|title=Near-Real-Time Hybrid System Identification Framework for Civil Structures with Application to Burj Khalifa|journal=Journal of Structural Engineering|volume=142|issue=2|pages=04015132|doi=10.1061/(ASCE)ST.1943-541X.0001402}}</ref> He has advanced models for damping in tall buildings and motion mitigation devices like tuned liquid dampers from design, prototype testing to post installation monitoring in buildings in the US and in the Pacific-rim.<ref>{{Cite journal|last1=Kareem|first1=Ahsan|last2=Kline|first2=Samuel|date=February 1995|title=Performance of Multiple Mass Dampers under Random Loading|journal=Journal of Structural Engineering|volume=121|issue=2|pages=348–361|doi=10.1061/(asce)0733-9445(1995)121:2(348)|issn=0733-9445}}</ref><ref name="auto">{{Cite journal|last1=Spence|first1=Seymour M. J.|last2=Kareem|first2=Ahsan|date=May 2014|title=Tall Buildings and Damping: A Concept-Based Data-Driven Model|journal=Journal of Structural Engineering|volume=140|issue=5|pages=04014005|doi=10.1061/(asce)st.1943-541x.0000890|issn=0733-9445}}</ref><ref>{{Cite journal|date=November 1991|title=ASCE specialty conference on probabilistic mechanics and structural & geotechnical reliability|journal=Structural Safety|volume=11|issue=1|pages=79|doi=10.1016/0167-4730(91)90031-4|issn=0167-4730}}</ref><ref>{{Cite journal|last1=Yalla|first1=Swaroop K.|last2=Kareem|first2=Ahsan|last3=Kantor|first3=Jeffrey C.|date=November 2001|title=Semi-active tuned liquid column dampers for vibration control of structures|journal=Engineering Structures|volume=23|issue=11|pages=1469–1479|doi=10.1016/s0141-0296(01)00047-5|issn=0141-0296}}</ref> His contributions towards database assisted design through a web-portal recommended in ASCE 7 is used worldwide for designing tall buildings.<ref>{{Cite journal|last1=Kareem|first1=Ahsan|last2=Kwon|first2=Dae Kun|date=2017-08-21|title=A Cyber-Based Data-Enabled Virtual Organization for Wind Load Effects on Civil Infrastructures: VORTEX-Winds|journal=Frontiers in Built Environment|volume=3|doi=10.3389/fbuil.2017.00048|issn=2297-3362|doi-access=free}}</ref> More recently, his group has embarked on shape optimization<ref>{{Cite journal|last1=Bernardini|first1=Enrica|last2=Spence|first2=Seymour M.J.|last3=Wei|first3=Daniel|last4=Kareem|first4=Ahsan|date=September 2015|title=Aerodynamic shape optimization of civil structures: A CFD-enabled Kriging-based approach|journal=Journal of Wind Engineering and Industrial Aerodynamics|volume=144|pages=154–164|doi=10.1016/j.jweia.2015.03.011|issn=0167-6105|doi-access=free}}</ref><ref>{{Cite journal|last1=Ding|first1=Fei|last2=Kareem|first2=Ahsan|date=July 2018|title=A multi-fidelity shape optimization via surrogate modeling for civil structures|journal=Journal of Wind Engineering and Industrial Aerodynamics|volume=178|pages=49–56|doi=10.1016/j.jweia.2018.04.022|issn=0167-6105}}</ref> of tall buildings based on CFD with embedded topology optimization<ref>{{Cite journal|last1=Bobby|first1=Sarah|last2=Spence|first2=Seymour M.J.|last3=Bernardini|first3=Enrica|last4=Kareem|first4=Ahsan|date=September 2014|title=Performance-based topology optimization for wind-excited tall buildings: A framework|journal=Engineering Structures|volume=74|pages=242–255|doi=10.1016/j.engstruct.2014.05.043|issn=0141-0296}}</ref><ref>{{Cite journal|last1=Bobby|first1=Sarah|last2=Spence|first2=Seymour M. J.|last3=Kareem|first3=Ahsan|date=2016-05-11|title=Data-driven performance-based topology optimization of uncertain wind-excited tall buildings|journal=Structural and Multidisciplinary Optimization|volume=54|issue=6|pages=1379–1402|doi=10.1007/s00158-016-1474-6|issn=1615-147X}}</ref> to configure efficient and optimal structural system for super tall buildings and long span bridges.<ref>{{Cite journal|last1=Ding|first1=Fei|last2=Kareem|first2=Ahsan|last3=Wan|first3=Jiawei|date=2019-01-02|title=Aerodynamic Tailoring of Structures Using Computational Fluid Dynamics|journal=Structural Engineering International|volume=29|issue=1|pages=26–39|doi=10.1080/10168664.2018.1522936|issn=1016-8664}}</ref>
His fundamental contributions to aerodynamics and aeroelasticity has led to advances in the analysis, design and performance assessment of tall buildings and long span bridges,<ref>{{Cite journal|last=Kareem|first=Ahsan|date=May 1983|title=Mitigation of wind induced motion of tall buildings|journal=Journal of Wind Engineering and Industrial Aerodynamics|volume=11|issue=1–3|pages=273–284|doi=10.1016/0167-6105(83)90106-x|issn=0167-6105}}</ref><ref>{{Cite journal|last=Kareem|first=Ahsan|date=November 1985|title=Lateral‐Torsional Motion of Tall Buildings to Wind Loads|journal=Journal of Structural Engineering|volume=111|issue=11|pages=2479–2496|doi=10.1061/(asce)0733-9445(1985)111:11(2479)|issn=0733-9445}}</ref><ref>{{Cite journal|last=Kareem|first=Ahsan|date=October 1992|title=Dynamic response of high-rise buildings to stochastic wind loads|journal=Journal of Wind Engineering and Industrial Aerodynamics|volume=42|issue=1–3|pages=1101–1112|doi=10.1016/0167-6105(92)90117-s|issn=0167-6105}}</ref><ref>{{Cite journal|last1=Kareem|first1=Ahsan|last2=Kijewski|first2=Tracy|last3=Tamura|first3=Yukio|s2cid=17107302|date=1999-09-25|title=Mitigation of motions of tall buildings with specific examples of recent applications|journal=Wind and Structures|volume=2|issue=3|pages=201–251|doi=10.12989/was.1999.2.3.201|issn=1226-6116}}</ref><ref>{{Cite journal|last1=Chen|first1=Xinzhong|last2=Kareem|first2=Ahsan|date=December 2001|title=Nonlinear response analysis of long-span bridges under turbulent winds|journal=Journal of Wind Engineering and Industrial Aerodynamics|volume=89|issue=14–15|pages=1335–1350|doi=10.1016/s0167-6105(01)00147-7|issn=0167-6105}}</ref><ref>{{Cite journal|last1=Chen|first1=Xinzhong|last2=Kareem|first2=Ahsan|last3=Matsumoto|first3=Masaru|date=June 2001|title=Multimode coupled flutter and buffeting analysis of long span bridges|journal=Journal of Wind Engineering and Industrial Aerodynamics|volume=89|issue=7–8|pages=649–664|doi=10.1016/s0167-6105(01)00064-2|issn=0167-6105}}</ref><ref>{{Cite journal|last1=Chen|first1=Xinzhong|last2=Kareem|first2=Ahsan|date=December 2003|title=New frontiers in aerodynamic tailoring of long span bridges: an advanced analysis framework|journal=Journal of Wind Engineering and Industrial Aerodynamics|volume=91|issue=12–15|pages=1511–1528|doi=10.1016/j.jweia.2003.09.005|issn=0167-6105}}</ref><ref>{{Cite journal|last1=Xu|first1=You-Lin|last2=Hu|first2=Liang|last3=Kareem|first3=Ahsan|date=January 2014|title=Conditional Simulation of Nonstationary Fluctuating Wind Speeds for Long-Span Bridges|journal=Journal of Engineering Mechanics|volume=140|issue=1|pages=61–73|doi=10.1061/(asce)em.1943-7889.0000589|issn=0733-9399}}</ref><ref>{{Cite journal|last=Cid Montoya|first=M.|last2=Nieto|first2=F.|last3=Hernández|first3=S.|last4=Fontán|first4=A.|last5=Jurado|first5=J. Á.|last6=Kareem|first6=A.|date=2021-06|title=Aero-structural Optimization of Streamlined Twin-Box Deck Bridges with Short Gap Considering Flutter|url=http://dx.doi.org/10.1061/(asce)be.1943-5592.0001705|journal=Journal of Bridge Engineering|volume=26|issue=6|doi=10.1061/(asce)be.1943-5592.0001705|issn=1084-0702}}</ref><ref>{{Cite journal|last=Wu|first=Teng|last2=Kareem|first2=Ahsan|date=2015-11|title=A low-dimensional model for nonlinear bluff-body aerodynamics: A peeling-an-onion analogy|url=http://dx.doi.org/10.1016/j.jweia.2015.08.009|journal=Journal of Wind Engineering and Industrial Aerodynamics|volume=146|pages=128–138|doi=10.1016/j.jweia.2015.08.009|issn=0167-6105}}</ref> high speed train aerodynamics<ref>{{Cite journal|last=He|first=Xuhui|last2=Li|first2=Huan|last3=Hu|first3=Liang|last4=Wang|first4=Hanfeng|last5=Kareem|first5=Ahsan|date=2020-05|title=Crosswind aerodynamic characteristics of a stationary interior railway carriage through a long-span truss-girder bridge|url=http://dx.doi.org/10.1016/j.engstruct.2020.110350|journal=Engineering Structures|volume=210|pages=110350|doi=10.1016/j.engstruct.2020.110350|issn=0141-0296}}</ref><ref>{{Cite journal|last=He|first=Xuhui|last2=Li|first2=Huan|last3=Hu|first3=Liang|last4=Wang|first4=Hanfeng|last5=Kareem|first5=Ahsan|date=2020-05|title=Crosswind aerodynamic characteristics of a stationary interior railway carriage through a long-span truss-girder bridge|url=http://dx.doi.org/10.1016/j.engstruct.2020.110350|journal=Engineering Structures|volume=210|pages=110350|doi=10.1016/j.engstruct.2020.110350|issn=0141-0296}}</ref><ref>{{Cite journal|last=Li|first=Huan|last2=He|first2=Xuhui|last3=Wang|first3=Hanfeng|last4=Kareem|first4=Ahsan|date=2019-11|title=Aerodynamics of a scale model of a high-speed train on a streamlined deck in cross winds|url=http://dx.doi.org/10.1016/j.jfluidstructs.2019.102717|journal=Journal of Fluids and Structures|volume=91|pages=102717|doi=10.1016/j.jfluidstructs.2019.102717|issn=0889-9746}}</ref> and land based floating wind turbines<ref>{{Cite journal|last=Xin Chen|last2=Ahsan Kareem|last3=Guoji Xu|last4=Hao Wang|last5=Yong Sun|last6=Liang Hu|date=2021-01-05|title=Author response for "Optimal tuned mass dampers for wind turbines using a Sigmoid satisfaction function‐based multiobjective optimization during earthquakes"|url=http://dx.doi.org/10.1002/we.2623/v3/response1|doi=10.1002/we.2623/v3/response1}}</ref><ref>{{Cite journal|last=Rendon|first=Erica A.|last2=Manuel|first2=Lance|date=2012-12-13|title=Long-term loads for a monopile-supported offshore wind turbine|url=http://dx.doi.org/10.1002/we.1569|journal=Wind Energy|volume=17|issue=2|pages=209–223|doi=10.1002/we.1569|issn=1095-4244}}</ref>. He has conducted from wind tunnel modeling<ref>{{Cite journal|last1=Hwang|first1=Jae-Seung|last2=Kareem|first2=Ahsan|last3=Kim|first3=Hongjin|date=January 2011|title=Wind load identification using wind tunnel test data by inverse analysis|journal=Journal of Wind Engineering and Industrial Aerodynamics|volume=99|issue=1|pages=18–26|doi=10.1016/j.jweia.2010.10.004|issn=0167-6105}}</ref> to stochastic and [[Computational fluid dynamics|CFD]] (Computational Fluid Dynamics)<ref>{{Cite journal|last=Kareem|first=Ahsan|date=2020-11|title=Emerging frontiers in wind engineering: Computing, stochastics, machine learning and beyond|url=http://dx.doi.org/10.1016/j.jweia.2020.104320|journal=Journal of Wind Engineering and Industrial Aerodynamics|volume=206|pages=104320|doi=10.1016/j.jweia.2020.104320|issn=0167-6105}}</ref><ref>{{Cite journal|last=Ding|first=Fei|last2=Kareem|first2=Ahsan|last3=Wan|first3=Jiawei|date=2019-01-02|title=Aerodynamic Tailoring of Structures Using Computational Fluid Dynamics|url=http://dx.doi.org/10.1080/10168664.2018.1522936|journal=Structural Engineering International|volume=29|issue=1|pages=26–39|doi=10.1080/10168664.2018.1522936|issn=1016-8664}}</ref> based simulations and finally to the full-scale monitoring of some of the signature buildings<ref>{{Cite journal|last1=Kijewski-Correa|first1=Tracy|last2=Kilpatrick|first2=John|last3=Kareem|first3=Ahsan|last4=Kwon|first4=Dae-Kun|last5=Bashor|first5=Rachel|last6=Kochly|first6=Michael|last7=Young|first7=Bradley S.|last8=Abdelrazaq|first8=Ahmad|last9=Galsworthy|first9=Jon|date=October 2006|title=Validating Wind-Induced Response of Tall Buildings: Synopsis of the Chicago Full-Scale Monitoring Program|journal=Journal of Structural Engineering|volume=132|issue=10|pages=1509–1523|doi=10.1061/(asce)0733-9445(2006)132:10(1509)|issn=0733-9445}}</ref><ref>{{Cite journal|last1=Bashor|first1=Rachel|last2=Bobby|first2=Sarah|last3=Kijewski-Correa|first3=Tracy|last4=Kareem|first4=Ahsan|date=May 2012|title=Full-scale performance evaluation of tall buildings under wind|journal=Journal of Wind Engineering and Industrial Aerodynamics|volume=104-106|pages=88–97|doi=10.1016/j.jweia.2012.04.007|issn=0167-6105}}</ref> around the world including more recently [[Burj Khalifa]].<ref>{{Cite journal|last1=Kijewski-Correa Tracy|last2=Kwon Dae Kun|last3=Kareem Ahsan|last4=Bentz Audrey|last5=Guo Yanlin|last6=Bobby Sarah|last7=Abdelrazaq Ahmad|date=2013-10-01|title=SmartSync: An Integrated Real-Time Structural Health Monitoring and Structural Identification System for Tall Buildings|journal=Journal of Structural Engineering|volume=139|issue=10|pages=1675–1687|doi=10.1061/(ASCE)ST.1943-541X.0000560}}</ref> It utilizes a novel “SmartSync” system featuring [[Internet of things|“Internet-of-Things” (IoT)]] concept with built in layers of intelligence for data management and analysis.<ref name="auto1">{{Cite journal|last1=Kijewski-Correa|first1=Tracy|last2=Kwon|first2=Dae Kun|last3=Kareem|first3=Ahsan|last4=Bentz|first4=Audrey|last5=Guo|first5=Yanlin|last6=Bobby|first6=Sarah|last7=Abdelrazaq|first7=Ahmad|date=October 2013|title=SmartSync: An Integrated Real-Time Structural Health Monitoring and Structural Identification System for Tall Buildings|journal=Journal of Structural Engineering|volume=139|issue=10|pages=1675–1687|doi=10.1061/(asce)st.1943-541x.0000560|issn=0733-9445}}</ref><ref>{{Cite journal|last1=Guo Yanlin|last2=Kwon Dae Kun|last3=Kareem Ahsan|date=2016-02-01|title=Near-Real-Time Hybrid System Identification Framework for Civil Structures with Application to Burj Khalifa|journal=Journal of Structural Engineering|volume=142|issue=2|pages=04015132|doi=10.1061/(ASCE)ST.1943-541X.0001402}}</ref><ref>{{Cite journal|last=Guo|first=Yanlin|last2=Kareem|first2=Ahsan|date=2016-05|title=Non-stationary frequency domain system identification using time–frequency representations|url=http://dx.doi.org/10.1016/j.ymssp.2015.10.031|journal=Mechanical Systems and Signal Processing|volume=72-73|pages=712–726|doi=10.1016/j.ymssp.2015.10.031|issn=0888-3270}}</ref> He has advanced models for damping in tall buildings and motion mitigation devices like tuned liquid dampers from design, prototype testing to post installation monitoring in buildings in the US and in the Pacific-rim.<ref>{{Cite journal|last1=Kareem|first1=Ahsan|last2=Kline|first2=Samuel|date=February 1995|title=Performance of Multiple Mass Dampers under Random Loading|journal=Journal of Structural Engineering|volume=121|issue=2|pages=348–361|doi=10.1061/(asce)0733-9445(1995)121:2(348)|issn=0733-9445}}</ref><ref name="auto">{{Cite journal|last1=Spence|first1=Seymour M. J.|last2=Kareem|first2=Ahsan|date=May 2014|title=Tall Buildings and Damping: A Concept-Based Data-Driven Model|journal=Journal of Structural Engineering|volume=140|issue=5|pages=04014005|doi=10.1061/(asce)st.1943-541x.0000890|issn=0733-9445}}</ref><ref>{{Cite journal|date=November 1991|title=ASCE specialty conference on probabilistic mechanics and structural & geotechnical reliability|journal=Structural Safety|volume=11|issue=1|pages=79|doi=10.1016/0167-4730(91)90031-4|issn=0167-4730}}</ref><ref>{{Cite journal|last1=Yalla|first1=Swaroop K.|last2=Kareem|first2=Ahsan|last3=Kantor|first3=Jeffrey C.|date=November 2001|title=Semi-active tuned liquid column dampers for vibration control of structures|journal=Engineering Structures|volume=23|issue=11|pages=1469–1479|doi=10.1016/s0141-0296(01)00047-5|issn=0141-0296}}</ref><ref>{{Cite journal|last=Kwon|first=Dae Kun|last2=Kareem|first2=Ahsan|date=2020-07-14|title=Hybrid simulation of a tall building with a double‐decker tuned sloshing damper system under wind loads|url=http://dx.doi.org/10.1002/tal.1790|journal=The Structural Design of Tall and Special Buildings|doi=10.1002/tal.1790|issn=1541-7794}}</ref> His contributions towards database assisted design through a web-portal recommended in ASCE 7 is used worldwide for designing tall buildings.<ref>{{Cite journal|last1=Kareem|first1=Ahsan|last2=Kwon|first2=Dae Kun|date=2017-08-21|title=A Cyber-Based Data-Enabled Virtual Organization for Wind Load Effects on Civil Infrastructures: VORTEX-Winds|journal=Frontiers in Built Environment|volume=3|doi=10.3389/fbuil.2017.00048|issn=2297-3362|doi-access=free}}</ref> More recently, his group has embarked on shape optimization<ref>{{Cite journal|last1=Bernardini|first1=Enrica|last2=Spence|first2=Seymour M.J.|last3=Wei|first3=Daniel|last4=Kareem|first4=Ahsan|date=September 2015|title=Aerodynamic shape optimization of civil structures: A CFD-enabled Kriging-based approach|journal=Journal of Wind Engineering and Industrial Aerodynamics|volume=144|pages=154–164|doi=10.1016/j.jweia.2015.03.011|issn=0167-6105|doi-access=free}}</ref><ref>{{Cite journal|last1=Ding|first1=Fei|last2=Kareem|first2=Ahsan|date=July 2018|title=A multi-fidelity shape optimization via surrogate modeling for civil structures|journal=Journal of Wind Engineering and Industrial Aerodynamics|volume=178|pages=49–56|doi=10.1016/j.jweia.2018.04.022|issn=0167-6105}}</ref> of tall buildings based on CFD with embedded topology optimization<ref>{{Cite journal|last1=Bobby|first1=Sarah|last2=Spence|first2=Seymour M.J.|last3=Bernardini|first3=Enrica|last4=Kareem|first4=Ahsan|date=September 2014|title=Performance-based topology optimization for wind-excited tall buildings: A framework|journal=Engineering Structures|volume=74|pages=242–255|doi=10.1016/j.engstruct.2014.05.043|issn=0141-0296}}</ref><ref>{{Cite journal|last1=Bobby|first1=Sarah|last2=Spence|first2=Seymour M. J.|last3=Kareem|first3=Ahsan|date=2016-05-11|title=Data-driven performance-based topology optimization of uncertain wind-excited tall buildings|journal=Structural and Multidisciplinary Optimization|volume=54|issue=6|pages=1379–1402|doi=10.1007/s00158-016-1474-6|issn=1615-147X}}</ref> to configure efficient and optimal structural system for super tall buildings and long span bridges.<ref>{{Cite journal|last1=Ding|first1=Fei|last2=Kareem|first2=Ahsan|last3=Wan|first3=Jiawei|date=2019-01-02|title=Aerodynamic Tailoring of Structures Using Computational Fluid Dynamics|journal=Structural Engineering International|volume=29|issue=1|pages=26–39|doi=10.1080/10168664.2018.1522936|issn=1016-8664}}</ref>He has developed prediction methods for quantifying hydrodynamic load effects and the attendant evaluating the response of complaint offshore structures under extreme environments and service loads. He has also contributed to a wide range of topics in the areas of offshore dynamics.<ref>{{Cite journal|last=Kareem|first=Ahsan|last2=Zhao|first2=Jun|last3=Tognarelli|first3=Michael A.|date=1995-01|title=Surge response statistics of tension leg platforms under wind and wave loads: a statistical quadratization approach|url=http://dx.doi.org/10.1016/0266-8920(95)00018-6|journal=Probabilistic Engineering Mechanics|volume=10|issue=4|pages=225–240|doi=10.1016/0266-8920(95)00018-6|issn=0266-8920}}</ref>


He introduced the use of the Wavelet<ref>{{Cite journal|last=Gurley, Kareem|first=Kurt, Ahsan|date=1999|title=ns of wavelet transforms in earthquake, wind and ocean engineering|journal=Engineering structures|volume=21(2)|pages=149-167}}</ref><ref>{{Cite journal|last=Wang|first=Lijuan|last2=McCullough|first2=Megan|last3=Kareem|first3=Ahsan|date=2014-02|title=Modeling and Simulation of Nonstationary Processes Utilizing Wavelet and Hilbert Transforms|url=http://dx.doi.org/10.1061/(asce)em.1943-7889.0000666|journal=Journal of Engineering Mechanics|volume=140|issue=2|pages=345–360|doi=10.1061/(asce)em.1943-7889.0000666|issn=0733-9399}}</ref><ref>{{Cite journal|last=Kijewski-Correa|first=T.|last2=Kareem|first2=A.|date=2007-07|title=Performance of Wavelet Transform and Empirical Mode Decomposition in Extracting Signals Embedded in Noise|url=http://dx.doi.org/10.1061/(asce)0733-9399(2007)133:7(849)|journal=Journal of Engineering Mechanics|volume=133|issue=7|pages=849–852|doi=10.1061/(asce)0733-9399(2007)133:7(849)|issn=0733-9399}}</ref> and Shapelet<ref>{{Cite journal|last=Arul|first=Monica|last2=Kareem|first2=Ahsan|date=2021-02|title=Applications of shapelet transform to time series classification of earthquake, wind and wave data|url=http://dx.doi.org/10.1016/j.engstruct.2020.111564|journal=Engineering Structures|volume=228|pages=111564|doi=10.1016/j.engstruct.2020.111564|issn=0141-0296}}</ref> transforms to signal processing and feature extractions and advanced the use of Volterra systems, POD, ICA, PCA and DMD<ref>{{Cite journal|last=Luo|first=Xihaier|last2=Kareem|first2=Ahsan|date=2021-04|title=Dynamic Mode Decomposition of Random Pressure Fields over Bluff Bodies|url=http://dx.doi.org/10.1061/(asce)em.1943-7889.0001904|journal=Journal of Engineering Mechanics|volume=147|issue=4|pages=04021007|doi=10.1061/(asce)em.1943-7889.0001904|issn=0733-9399}}</ref><ref>{{Cite journal|last=Chen|first=Xinzhong|last2=Kareem|first2=Ahsan|date=2005-04|title=Proper Orthogonal Decomposition-Based Modeling, Analysis, and Simulation of Dynamic Wind Load Effects on Structures|url=http://dx.doi.org/10.1061/(asce)0733-9399(2005)131:4(325)|journal=Journal of Engineering Mechanics|volume=131|issue=4|pages=325–339|doi=10.1061/(asce)0733-9399(2005)131:4(325)|issn=0733-9399}}</ref> for data analysis and modeling.  He developed efficient simulation schemes for random vector processes: stationary/non-stationary; Gaussian/Non-Gaussian; Conditional/Un-Conditional utilizing spectral and time-series methods in conjunction with a novel scheme named “Stochastic Decomposition<ref>{{Cite journal|last=Zhao|first=Ning|last2=Huang|first2=Guoqing|last3=Kareem|first3=Ahsan|last4=Li|first4=Yongle|last5=Peng|first5=Liuliu|date=2021-12|title=Simulation of ergodic multivariate stochastic processes: An enhanced spectral representation method|url=http://dx.doi.org/10.1016/j.ymssp.2021.107949|journal=Mechanical Systems and Signal Processing|volume=161|pages=107949|doi=10.1016/j.ymssp.2021.107949|issn=0888-3270}}</ref><ref>{{Cite journal|last=Li|first=Yousun|last2=Kareem|first2=Ahsan|date=1997-12|title=Simulation of Multivariate Nonstationary Random Processes: Hybrid DFT and Digital Filtering Approach|url=http://dx.doi.org/10.1061/(asce)0733-9399(1997)123:12(1302)|journal=Journal of Engineering Mechanics|volume=123|issue=12|pages=1302–1310|doi=10.1061/(asce)0733-9399(1997)123:12(1302)|issn=0733-9399}}</ref>. He developed wind load models for non-synoptic winds like thunderstorms and downbursts and introduced the concept of Gust Front Factor<ref>{{Citation|last=Hangan|first=Horia|title=Introduction|date=2021-02-10|url=http://dx.doi.org/10.1093/oxfordhb/9780190670252.013.18|work=The Oxford Handbook of Non-Synoptic Wind Storms|pages=1–8|publisher=Oxford University Press|access-date=2021-08-18|last2=Kareem|first2=Ahsan}}</ref><ref>{{Cite journal|last=Kareem|first=Ahsan|last2=Hu|first2=Liang|last3=Guo|first3=Yanlin|last4=Kwon|first4=Dae-Kun|date=2019-10|title=Generalized Wind Loading Chain: Time-Frequency Modeling Framework for Nonstationary Wind Effects on Structures|url=http://dx.doi.org/10.1061/(asce)st.1943-541x.0002376|journal=Journal of Structural Engineering|volume=145|issue=10|pages=04019092|doi=10.1061/(asce)st.1943-541x.0002376|issn=0733-9445}}</ref> and also developed models for hurricane wind field kinematics and dynamics<ref>{{Cite journal|last=Li|first=Lixiao|last2=Kareem|first2=Ahsan|last3=Hunt|first3=Julian|last4=Xing|first4=Feng|last5=Chan|first5=Pakwai|last6=Xiao|first6=Yiqing|last7=Li|first7=Chao|date=2019-07|title=Observed sub-hectometer-scale low level jets in surface-layer velocity profiles of landfalling typhoons|url=http://dx.doi.org/10.1016/j.jweia.2019.04.016|journal=Journal of Wind Engineering and Industrial Aerodynamics|volume=190|pages=151–165|doi=10.1016/j.jweia.2019.04.016|issn=0167-6105}}</ref><ref>{{Cite journal|last=Hu|first=Liang|last2=Xu|first2=You-Lin|last3=Zhu|first3=Qing|last4=Guo|first4=Anna|last5=Kareem|first5=Ahsan|date=2017-06|title=Tropical Storm–Induced Buffeting Response of Long-Span Bridges: Enhanced Nonstationary Buffeting Force Model|url=http://dx.doi.org/10.1061/(asce)st.1943-541x.0001745|journal=Journal of Structural Engineering|volume=143|issue=6|pages=04017027|doi=10.1061/(asce)st.1943-541x.0001745|issn=0733-9445}}</ref>. He developed safety and risk assessment schemes<ref>{{Cite journal|last=Yin|first=Chao|last2=Luo|first2=Xihaier|last3=Kareem|first3=Ahsan|date=2021-03|title=Probabilistic evolution of stochastic dynamical systems: A meso-scale perspective|url=http://dx.doi.org/10.1016/j.strusafe.2020.102045|journal=Structural Safety|volume=89|pages=102045|doi=10.1016/j.strusafe.2020.102045|issn=0167-4730}}</ref>, performance-based design approach for wind effects and impact of climate change<ref>{{Cite journal|last=Kareem|first=Ahsan|date=1993|title=“Preparing for Global Warming|journal=Civil Engineering|volume=63}}</ref>. In the area of Data Analytics and Machine Learning, he has contributed to data analytics, supervised, unsupervised and reinforcement learning; Bayesian Deep Convolution Neural Networks for random fields; Bayesian Deep learning; Dynamic mode decomposition; Surrogate Modeling with applications to structural engineering and dynamic loading; digital virtual twins;  Fusion of CFD, Stochastics, Machine Learning and beyond; Autonomous morphing of structures through sensing, computations and actuation.<ref>{{Cite journal|last=Arul|first=Monica|last2=Kareem|first2=Ahsan|last3=Kwon|first3=Dae Kun|date=2020-11|title=Identification of Vortex-Induced Vibration of Tall Building Pinnacle Using Cluster Analysis for Fatigue Evaluation: Application to Burj Khalifa|url=http://dx.doi.org/10.1061/(asce)st.1943-541x.0002799|journal=Journal of Structural Engineering|volume=146|issue=11|pages=04020234|doi=10.1061/(asce)st.1943-541x.0002799|issn=0733-9445}}</ref><ref>{{Cite journal|last=Xu|first=Guoji|last2=Kareem|first2=Ahsan|last3=Shen|first3=Lian|date=2020-07|title=Surrogate Modeling with Sequential Updating: Applications to Bridge Deck–Wave and Bridge Deck–Wind Interactions|url=http://dx.doi.org/10.1061/(asce)cp.1943-5487.0000904|journal=Journal of Computing in Civil Engineering|volume=34|issue=4|pages=04020023|doi=10.1061/(asce)cp.1943-5487.0000904|issn=0887-3801}}</ref><ref>{{Cite journal|last=Luo|first=Xihaier|last2=Kareem|first2=Ahsan|date=2020-05|title=Bayesian deep learning with hierarchical prior: Predictions from limited and noisy data|url=http://dx.doi.org/10.1016/j.strusafe.2019.101918|journal=Structural Safety|volume=84|pages=101918|doi=10.1016/j.strusafe.2019.101918|issn=0167-4730}}</ref><ref>{{Cite journal|last=Luo|first=Xihaier|last2=Kareem|first2=Ahsan|date=2019-11-05|title=Deep convolutional neural networks for uncertainty propagation in random fields|url=http://dx.doi.org/10.1111/mice.12510|journal=Computer-Aided Civil and Infrastructure Engineering|volume=34|issue=12|pages=1043–1054|doi=10.1111/mice.12510|issn=1093-9687}}</ref><ref>{{Cite journal|last=Gibbs|first=Maria M.|last2=Kwon|first2=Dae Kun|last3=Kareem|first3=Ahsan|date=2019-03-28|title=Data-Enabled Prediction Framework of Dynamic Characteristics of Rural Footbridges Using Novel Citizen Sensing Approach|url=http://dx.doi.org/10.3389/fbuil.2019.00038|journal=Frontiers in Built Environment|volume=5|doi=10.3389/fbuil.2019.00038|issn=2297-3362}}</ref><ref>{{Cite journal|last=Ding|first=Fei|last2=Kareem|first2=Ahsan|date=2020-12|title=Tall Buildings with Dynamic Facade Under Winds|url=http://dx.doi.org/10.1016/j.eng.2020.07.020|journal=Engineering|volume=6|issue=12|pages=1443–1453|doi=10.1016/j.eng.2020.07.020|issn=2095-8099}}</ref><ref>{{Cite journal|last=Ding|first=Fei|last2=Kareem|first2=Ahsan|date=2018-07|title=A multi-fidelity shape optimization via surrogate modeling for civil structures|url=http://dx.doi.org/10.1016/j.jweia.2018.04.022|journal=Journal of Wind Engineering and Industrial Aerodynamics|volume=178|pages=49–56|doi=10.1016/j.jweia.2018.04.022|issn=0167-6105}}</ref>
In 2009, Kareem was elected a member of the [[National Academy of Engineering]] for contributions to analyses and designs to account for wind effects on tall buildings, long-span bridges, and other structures.


He currently serves as the President of the International Association for Wind Engineering. He was also the former President of the American Association for Wind Engineering.<ref>{{cite web|url=https://engineering.nd.edu/news-publications/pressreleases/kareem-elected-president-of-iawe|title=Kareem Elected President of IAWE – College of Engineering|website=engineering.nd.edu}}</ref><ref>{{cite web|url=http://iawe.org/pcorner.html|title=-- IAWE International Associations for Wind Engineering --|website=iawe.org}}</ref>
In 2009, Kareem was elected a member of the [[National Academy of Engineering]] for contributions to analyses and designs to account for wind effects on tall buildings, long-span bridges, and other structures. He currently serves as the President of the International Association for Wind Engineering. He was also the former President of the American Association for Wind Engineering.<ref>{{cite web|url=https://engineering.nd.edu/news-publications/pressreleases/kareem-elected-president-of-iawe|title=Kareem Elected President of IAWE – College of Engineering|website=engineering.nd.edu}}</ref><ref>{{cite web|url=http://iawe.org/pcorner.html|title=-- IAWE International Associations for Wind Engineering --|website=iawe.org}}</ref>
[[File:2009 Notre Dame Research achievement award .jpg|thumb|250x250px|Father [[John I. Jenkins|John Jenkins]], President of the [[University of Notre Dame]], presenting the Notre Dame Research Achievement Award to Ahsan Kareem in 2009]]
[[File:Ernest Howard Medal.jpg|thumb|250x250px|Ahsan Kareem receiving the Ernest E. Howard Award from ASCE President, Robin Kemper (left), for his contributions to modeling, analysis and design of flexible structures for wind loadings.]]


==Awards and Honors==
==Awards and Honors==
Line 45: Line 47:
*2015: James Croes Medal, ASCE<ref>{{cite web|url=http://www.asce.org/templates/award-detail.aspx?id=409&all_recipients=1|title=J. James R. Croes Medal - ASCE - Past Award Winners|website=Asce.org}}</ref>
*2015: James Croes Medal, ASCE<ref>{{cite web|url=http://www.asce.org/templates/award-detail.aspx?id=409&all_recipients=1|title=J. James R. Croes Medal - ASCE - Past Award Winners|website=Asce.org}}</ref>
*2017: [[Masanobu Shinozuka]] Medal, ASCE<ref>{{Cite web|url=https://engineering.nd.edu/news-publications/engineering-newswire/kareem-received-masanobu-shinozuka-medal|title=Kareem Receives Masanobu Shinozuka Medal — College of Engineering|website=engineering.nd.edu|access-date=2019-01-16}}</ref>
*2017: [[Masanobu Shinozuka]] Medal, ASCE<ref>{{Cite web|url=https://engineering.nd.edu/news-publications/engineering-newswire/kareem-received-masanobu-shinozuka-medal|title=Kareem Receives Masanobu Shinozuka Medal — College of Engineering|website=engineering.nd.edu|access-date=2019-01-16}}</ref>
*2019: [https://www.asce.org/templates/award-detail.aspx?id=624 Earnest Howard Medal] by American Society of Civil Engineers (ASCE)<ref>{{Cite web|title=Kareem receives ASCE's Howard Award — College of Engineering|url=https://engineering.nd.edu/news-publications/pressreleases/kareem-receives-asce2019s-howard-award|access-date=2019-07-15|website=engineering.nd.edu}}</ref><ref>{{Cite web|title=Kareem ASCE Award {{!}} DesignSafe-CI|url=https://simcenter.designsafe-ci.org/news/2019/june/kareem-asce-award/|access-date=2019-07-15|website=simcenter.designsafe-ci.org}}</ref>
*2019: [https://www.asce.org/templates/award-detail.aspx?id=624 Earnest Howard Medal],ASCE<ref>{{Cite web|title=Kareem receives ASCE's Howard Award — College of Engineering|url=https://engineering.nd.edu/news-publications/pressreleases/kareem-receives-asce2019s-howard-award|access-date=2019-07-15|website=engineering.nd.edu}}</ref><ref>{{Cite web|title=Kareem ASCE Award {{!}} DesignSafe-CI|url=https://simcenter.designsafe-ci.org/news/2019/june/kareem-asce-award/|access-date=2019-07-15|website=simcenter.designsafe-ci.org}}</ref>
*2021: [[Nathan M. Newmark]] Medal, ASCE<ref>{{Cite web|title=Nathan M. Newmark Medal|url=https://www.asce.org/career-growth/awards-and-honors/nathan-m-newmark-medal|access-date=2021-08-18|website=www.asce.org|language=en-US}}</ref>


=== Other prizes and awards ===
=== Other prizes and awards ===

Revision as of 08:27, 18 August 2021

Ahsan Kareem
File:Dr.Ahsan Kareem.jpg
Alma mater
Scientific career
Institutions
Websiteengineering.nd.edu/profiles/akareem
File:Robert M Moran Professorship.jpg
Father Edward Malloy, President of the University of Notre Dame, presenting Ahsan Kareem with the Robert Moran Professorship in 1999

Ahsan Kareem is the Robert M. Moran Professor of Engineering in the Department of Civil & Environmental Engineering and Earth Sciences (CEEES) at the University of Notre Dame. He is Director of the Nathaz Modeling Laboratory and served as the past Chair at the Department of CEEES at the University of Notre Dame.[1][2]

The focus of his work is on quantifying load effects caused by various natural hazards on structures and to develop innovative strategies to manage and mitigate their effects. The characterization and formulation of dynamic load effects due to wind, waves and earthquakes on tall buildings, long-span bridges, offshore structures and other structures is carried out via fundamental analytical computational methods, and experiments at  laboratory, and full-scale. He directs NatHaz Group (NatHaz Modeling Laboratory) which focuses on developments in cyberspace virtual collaborative research platforms, e.g.,  virtual organizations, crowdsourcing, computational intelligence, living laboratories, sensing and actuation, citizen sensing, web-enabled analysis and design, scientific machine learning (SciML) and cloud-based computing.

His fundamental contributions to aerodynamics and aeroelasticity has led to advances in the analysis, design and performance assessment of tall buildings and long span bridges,[3][4][5][6][7][8][9][10][11][12] high speed train aerodynamics[13][14][15] and land based floating wind turbines[16][17]. He has conducted from wind tunnel modeling[18] to stochastic and CFD (Computational Fluid Dynamics)[19][20] based simulations and finally to the full-scale monitoring of some of the signature buildings[21][22] around the world including more recently Burj Khalifa.[23] It utilizes a novel “SmartSync” system featuring “Internet-of-Things” (IoT) concept with built in layers of intelligence for data management and analysis.[24][25][26] He has advanced models for damping in tall buildings and motion mitigation devices like tuned liquid dampers from design, prototype testing to post installation monitoring in buildings in the US and in the Pacific-rim.[27][28][29][30][31] His contributions towards database assisted design through a web-portal recommended in ASCE 7 is used worldwide for designing tall buildings.[32] More recently, his group has embarked on shape optimization[33][34] of tall buildings based on CFD with embedded topology optimization[35][36] to configure efficient and optimal structural system for super tall buildings and long span bridges.[37]He has developed prediction methods for quantifying hydrodynamic load effects and the attendant evaluating the response of complaint offshore structures under extreme environments and service loads. He has also contributed to a wide range of topics in the areas of offshore dynamics.[38]

He introduced the use of the Wavelet[39][40][41] and Shapelet[42] transforms to signal processing and feature extractions and advanced the use of Volterra systems, POD, ICA, PCA and DMD[43][44] for data analysis and modeling.  He developed efficient simulation schemes for random vector processes: stationary/non-stationary; Gaussian/Non-Gaussian; Conditional/Un-Conditional utilizing spectral and time-series methods in conjunction with a novel scheme named “Stochastic Decomposition[45][46]. He developed wind load models for non-synoptic winds like thunderstorms and downbursts and introduced the concept of Gust Front Factor[47][48] and also developed models for hurricane wind field kinematics and dynamics[49][50]. He developed safety and risk assessment schemes[51], performance-based design approach for wind effects and impact of climate change[52]. In the area of Data Analytics and Machine Learning, he has contributed to data analytics, supervised, unsupervised and reinforcement learning; Bayesian Deep Convolution Neural Networks for random fields; Bayesian Deep learning; Dynamic mode decomposition; Surrogate Modeling with applications to structural engineering and dynamic loading; digital virtual twins;  Fusion of CFD, Stochastics, Machine Learning and beyond; Autonomous morphing of structures through sensing, computations and actuation.[53][54][55][56][57][58][59]

In 2009, Kareem was elected a member of the National Academy of Engineering for contributions to analyses and designs to account for wind effects on tall buildings, long-span bridges, and other structures. He currently serves as the President of the International Association for Wind Engineering. He was also the former President of the American Association for Wind Engineering.[60][61]

File:2009 Notre Dame Research achievement award .jpg
Father John Jenkins, President of the University of Notre Dame, presenting the Notre Dame Research Achievement Award to Ahsan Kareem in 2009
File:Ernest Howard Medal.jpg
Ahsan Kareem receiving the Ernest E. Howard Award from ASCE President, Robin Kemper (left), for his contributions to modeling, analysis and design of flexible structures for wind loadings.

Awards and Honors

Membership to Academies of Engineering

File:National Academy of Engineering (NAE) induction.jpg
Ahsan Kareem at the 2009 US National Academy of Engineering (NAE) induction flanked by NAE Chair Irwin M. Jacobs (left) and NAE President Charles M. Vest (right)

Medals

Other prizes and awards

  • 1984: Presidential Young Investigator Award[75][76]
  • 2008: ASCE Civil Engineering State-of-the-Art Award[77]
  • 2009: Research Achievement Award, 9th Annual University of Notre Dame Research Achievement Award[78]
  • 2010: Elected Distinguished Member of ASCE[79]
  • 2011: Inducted to the Offshore Technology Conference Hall of Fame, ASCE/COPRI[80]
  • 2012: Inducted Honorary Member of the Japan Association for Wind Engineering[81]
  • 2013: Distinguished Research Award, International Association of Structural Safety and Reliability[82]
  • 2016: Alfred Noble Prize, ASME, IEEE, ASCE[83]
  • 2020: The International Award of Merit in Structural Engineering, IABSE[84]

Honorary and guest professorships

References

  1. ^ "Ahsan Kareem – College of Engineering". engineering.nd.edu.
  2. ^ Dame, ENR/PAZ // University Communications // University of Notre. "Ahsan Kareem // Spotlight // About ND // University of Notre Dame". University of Notre Dame.
  3. ^ Kareem, Ahsan (May 1983). "Mitigation of wind induced motion of tall buildings". Journal of Wind Engineering and Industrial Aerodynamics. 11 (1–3): 273–284. doi:10.1016/0167-6105(83)90106-x. ISSN 0167-6105.
  4. ^ Kareem, Ahsan (November 1985). "Lateral‐Torsional Motion of Tall Buildings to Wind Loads". Journal of Structural Engineering. 111 (11): 2479–2496. doi:10.1061/(asce)0733-9445(1985)111:11(2479). ISSN 0733-9445.
  5. ^ Kareem, Ahsan (October 1992). "Dynamic response of high-rise buildings to stochastic wind loads". Journal of Wind Engineering and Industrial Aerodynamics. 42 (1–3): 1101–1112. doi:10.1016/0167-6105(92)90117-s. ISSN 0167-6105.
  6. ^ Kareem, Ahsan; Kijewski, Tracy; Tamura, Yukio (1999-09-25). "Mitigation of motions of tall buildings with specific examples of recent applications". Wind and Structures. 2 (3): 201–251. doi:10.12989/was.1999.2.3.201. ISSN 1226-6116. S2CID 17107302.
  7. ^ Chen, Xinzhong; Kareem, Ahsan (December 2001). "Nonlinear response analysis of long-span bridges under turbulent winds". Journal of Wind Engineering and Industrial Aerodynamics. 89 (14–15): 1335–1350. doi:10.1016/s0167-6105(01)00147-7. ISSN 0167-6105.
  8. ^ Chen, Xinzhong; Kareem, Ahsan; Matsumoto, Masaru (June 2001). "Multimode coupled flutter and buffeting analysis of long span bridges". Journal of Wind Engineering and Industrial Aerodynamics. 89 (7–8): 649–664. doi:10.1016/s0167-6105(01)00064-2. ISSN 0167-6105.
  9. ^ Chen, Xinzhong; Kareem, Ahsan (December 2003). "New frontiers in aerodynamic tailoring of long span bridges: an advanced analysis framework". Journal of Wind Engineering and Industrial Aerodynamics. 91 (12–15): 1511–1528. doi:10.1016/j.jweia.2003.09.005. ISSN 0167-6105.
  10. ^ Xu, You-Lin; Hu, Liang; Kareem, Ahsan (January 2014). "Conditional Simulation of Nonstationary Fluctuating Wind Speeds for Long-Span Bridges". Journal of Engineering Mechanics. 140 (1): 61–73. doi:10.1061/(asce)em.1943-7889.0000589. ISSN 0733-9399.
  11. ^ Cid Montoya, M.; Nieto, F.; Hernández, S.; Fontán, A.; Jurado, J. Á.; Kareem, A. (2021-06). "Aero-structural Optimization of Streamlined Twin-Box Deck Bridges with Short Gap Considering Flutter". Journal of Bridge Engineering. 26 (6). doi:10.1061/(asce)be.1943-5592.0001705. ISSN 1084-0702. {{cite journal}}: Check date values in: |date= (help)
  12. ^ Wu, Teng; Kareem, Ahsan (2015-11). "A low-dimensional model for nonlinear bluff-body aerodynamics: A peeling-an-onion analogy". Journal of Wind Engineering and Industrial Aerodynamics. 146: 128–138. doi:10.1016/j.jweia.2015.08.009. ISSN 0167-6105. {{cite journal}}: Check date values in: |date= (help)
  13. ^ He, Xuhui; Li, Huan; Hu, Liang; Wang, Hanfeng; Kareem, Ahsan (2020-05). "Crosswind aerodynamic characteristics of a stationary interior railway carriage through a long-span truss-girder bridge". Engineering Structures. 210: 110350. doi:10.1016/j.engstruct.2020.110350. ISSN 0141-0296. {{cite journal}}: Check date values in: |date= (help)
  14. ^ He, Xuhui; Li, Huan; Hu, Liang; Wang, Hanfeng; Kareem, Ahsan (2020-05). "Crosswind aerodynamic characteristics of a stationary interior railway carriage through a long-span truss-girder bridge". Engineering Structures. 210: 110350. doi:10.1016/j.engstruct.2020.110350. ISSN 0141-0296. {{cite journal}}: Check date values in: |date= (help)
  15. ^ Li, Huan; He, Xuhui; Wang, Hanfeng; Kareem, Ahsan (2019-11). "Aerodynamics of a scale model of a high-speed train on a streamlined deck in cross winds". Journal of Fluids and Structures. 91: 102717. doi:10.1016/j.jfluidstructs.2019.102717. ISSN 0889-9746. {{cite journal}}: Check date values in: |date= (help)
  16. ^ Xin Chen; Ahsan Kareem; Guoji Xu; Hao Wang; Yong Sun; Liang Hu (2021-01-05). "Author response for "Optimal tuned mass dampers for wind turbines using a Sigmoid satisfaction function‐based multiobjective optimization during earthquakes"". doi:10.1002/we.2623/v3/response1. {{cite journal}}: Cite journal requires |journal= (help)
  17. ^ Rendon, Erica A.; Manuel, Lance (2012-12-13). "Long-term loads for a monopile-supported offshore wind turbine". Wind Energy. 17 (2): 209–223. doi:10.1002/we.1569. ISSN 1095-4244.
  18. ^ Hwang, Jae-Seung; Kareem, Ahsan; Kim, Hongjin (January 2011). "Wind load identification using wind tunnel test data by inverse analysis". Journal of Wind Engineering and Industrial Aerodynamics. 99 (1): 18–26. doi:10.1016/j.jweia.2010.10.004. ISSN 0167-6105.
  19. ^ Kareem, Ahsan (2020-11). "Emerging frontiers in wind engineering: Computing, stochastics, machine learning and beyond". Journal of Wind Engineering and Industrial Aerodynamics. 206: 104320. doi:10.1016/j.jweia.2020.104320. ISSN 0167-6105. {{cite journal}}: Check date values in: |date= (help)
  20. ^ Ding, Fei; Kareem, Ahsan; Wan, Jiawei (2019-01-02). "Aerodynamic Tailoring of Structures Using Computational Fluid Dynamics". Structural Engineering International. 29 (1): 26–39. doi:10.1080/10168664.2018.1522936. ISSN 1016-8664.
  21. ^ Kijewski-Correa, Tracy; Kilpatrick, John; Kareem, Ahsan; Kwon, Dae-Kun; Bashor, Rachel; Kochly, Michael; Young, Bradley S.; Abdelrazaq, Ahmad; Galsworthy, Jon (October 2006). "Validating Wind-Induced Response of Tall Buildings: Synopsis of the Chicago Full-Scale Monitoring Program". Journal of Structural Engineering. 132 (10): 1509–1523. doi:10.1061/(asce)0733-9445(2006)132:10(1509). ISSN 0733-9445.
  22. ^ Bashor, Rachel; Bobby, Sarah; Kijewski-Correa, Tracy; Kareem, Ahsan (May 2012). "Full-scale performance evaluation of tall buildings under wind". Journal of Wind Engineering and Industrial Aerodynamics. 104–106: 88–97. doi:10.1016/j.jweia.2012.04.007. ISSN 0167-6105.
  23. ^ Kijewski-Correa Tracy; Kwon Dae Kun; Kareem Ahsan; Bentz Audrey; Guo Yanlin; Bobby Sarah; Abdelrazaq Ahmad (2013-10-01). "SmartSync: An Integrated Real-Time Structural Health Monitoring and Structural Identification System for Tall Buildings". Journal of Structural Engineering. 139 (10): 1675–1687. doi:10.1061/(ASCE)ST.1943-541X.0000560.
  24. ^ Kijewski-Correa, Tracy; Kwon, Dae Kun; Kareem, Ahsan; Bentz, Audrey; Guo, Yanlin; Bobby, Sarah; Abdelrazaq, Ahmad (October 2013). "SmartSync: An Integrated Real-Time Structural Health Monitoring and Structural Identification System for Tall Buildings". Journal of Structural Engineering. 139 (10): 1675–1687. doi:10.1061/(asce)st.1943-541x.0000560. ISSN 0733-9445.
  25. ^ Guo Yanlin; Kwon Dae Kun; Kareem Ahsan (2016-02-01). "Near-Real-Time Hybrid System Identification Framework for Civil Structures with Application to Burj Khalifa". Journal of Structural Engineering. 142 (2): 04015132. doi:10.1061/(ASCE)ST.1943-541X.0001402.
  26. ^ Guo, Yanlin; Kareem, Ahsan (2016-05). "Non-stationary frequency domain system identification using time–frequency representations". Mechanical Systems and Signal Processing. 72–73: 712–726. doi:10.1016/j.ymssp.2015.10.031. ISSN 0888-3270. {{cite journal}}: Check date values in: |date= (help)
  27. ^ Kareem, Ahsan; Kline, Samuel (February 1995). "Performance of Multiple Mass Dampers under Random Loading". Journal of Structural Engineering. 121 (2): 348–361. doi:10.1061/(asce)0733-9445(1995)121:2(348). ISSN 0733-9445.
  28. ^ Spence, Seymour M. J.; Kareem, Ahsan (May 2014). "Tall Buildings and Damping: A Concept-Based Data-Driven Model". Journal of Structural Engineering. 140 (5): 04014005. doi:10.1061/(asce)st.1943-541x.0000890. ISSN 0733-9445.
  29. ^ "ASCE specialty conference on probabilistic mechanics and structural & geotechnical reliability". Structural Safety. 11 (1): 79. November 1991. doi:10.1016/0167-4730(91)90031-4. ISSN 0167-4730.
  30. ^ Yalla, Swaroop K.; Kareem, Ahsan; Kantor, Jeffrey C. (November 2001). "Semi-active tuned liquid column dampers for vibration control of structures". Engineering Structures. 23 (11): 1469–1479. doi:10.1016/s0141-0296(01)00047-5. ISSN 0141-0296.
  31. ^ Kwon, Dae Kun; Kareem, Ahsan (2020-07-14). "Hybrid simulation of a tall building with a double‐decker tuned sloshing damper system under wind loads". The Structural Design of Tall and Special Buildings. doi:10.1002/tal.1790. ISSN 1541-7794.
  32. ^ Kareem, Ahsan; Kwon, Dae Kun (2017-08-21). "A Cyber-Based Data-Enabled Virtual Organization for Wind Load Effects on Civil Infrastructures: VORTEX-Winds". Frontiers in Built Environment. 3. doi:10.3389/fbuil.2017.00048. ISSN 2297-3362.
  33. ^ Bernardini, Enrica; Spence, Seymour M.J.; Wei, Daniel; Kareem, Ahsan (September 2015). "Aerodynamic shape optimization of civil structures: A CFD-enabled Kriging-based approach". Journal of Wind Engineering and Industrial Aerodynamics. 144: 154–164. doi:10.1016/j.jweia.2015.03.011. ISSN 0167-6105.
  34. ^ Ding, Fei; Kareem, Ahsan (July 2018). "A multi-fidelity shape optimization via surrogate modeling for civil structures". Journal of Wind Engineering and Industrial Aerodynamics. 178: 49–56. doi:10.1016/j.jweia.2018.04.022. ISSN 0167-6105.
  35. ^ Bobby, Sarah; Spence, Seymour M.J.; Bernardini, Enrica; Kareem, Ahsan (September 2014). "Performance-based topology optimization for wind-excited tall buildings: A framework". Engineering Structures. 74: 242–255. doi:10.1016/j.engstruct.2014.05.043. ISSN 0141-0296.
  36. ^ Bobby, Sarah; Spence, Seymour M. J.; Kareem, Ahsan (2016-05-11). "Data-driven performance-based topology optimization of uncertain wind-excited tall buildings". Structural and Multidisciplinary Optimization. 54 (6): 1379–1402. doi:10.1007/s00158-016-1474-6. ISSN 1615-147X.
  37. ^ Ding, Fei; Kareem, Ahsan; Wan, Jiawei (2019-01-02). "Aerodynamic Tailoring of Structures Using Computational Fluid Dynamics". Structural Engineering International. 29 (1): 26–39. doi:10.1080/10168664.2018.1522936. ISSN 1016-8664.
  38. ^ Kareem, Ahsan; Zhao, Jun; Tognarelli, Michael A. (1995-01). "Surge response statistics of tension leg platforms under wind and wave loads: a statistical quadratization approach". Probabilistic Engineering Mechanics. 10 (4): 225–240. doi:10.1016/0266-8920(95)00018-6. ISSN 0266-8920. {{cite journal}}: Check date values in: |date= (help)
  39. ^ Gurley, Kareem, Kurt, Ahsan (1999). "ns of wavelet transforms in earthquake, wind and ocean engineering". Engineering structures. 21(2): 149–167.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  40. ^ Wang, Lijuan; McCullough, Megan; Kareem, Ahsan (2014-02). "Modeling and Simulation of Nonstationary Processes Utilizing Wavelet and Hilbert Transforms". Journal of Engineering Mechanics. 140 (2): 345–360. doi:10.1061/(asce)em.1943-7889.0000666. ISSN 0733-9399. {{cite journal}}: Check date values in: |date= (help)
  41. ^ Kijewski-Correa, T.; Kareem, A. (2007-07). "Performance of Wavelet Transform and Empirical Mode Decomposition in Extracting Signals Embedded in Noise". Journal of Engineering Mechanics. 133 (7): 849–852. doi:10.1061/(asce)0733-9399(2007)133:7(849). ISSN 0733-9399. {{cite journal}}: Check date values in: |date= (help)
  42. ^ Arul, Monica; Kareem, Ahsan (2021-02). "Applications of shapelet transform to time series classification of earthquake, wind and wave data". Engineering Structures. 228: 111564. doi:10.1016/j.engstruct.2020.111564. ISSN 0141-0296. {{cite journal}}: Check date values in: |date= (help)
  43. ^ Luo, Xihaier; Kareem, Ahsan (2021-04). "Dynamic Mode Decomposition of Random Pressure Fields over Bluff Bodies". Journal of Engineering Mechanics. 147 (4): 04021007. doi:10.1061/(asce)em.1943-7889.0001904. ISSN 0733-9399. {{cite journal}}: Check date values in: |date= (help)
  44. ^ Chen, Xinzhong; Kareem, Ahsan (2005-04). "Proper Orthogonal Decomposition-Based Modeling, Analysis, and Simulation of Dynamic Wind Load Effects on Structures". Journal of Engineering Mechanics. 131 (4): 325–339. doi:10.1061/(asce)0733-9399(2005)131:4(325). ISSN 0733-9399. {{cite journal}}: Check date values in: |date= (help)
  45. ^ Zhao, Ning; Huang, Guoqing; Kareem, Ahsan; Li, Yongle; Peng, Liuliu (2021-12). "Simulation of ergodic multivariate stochastic processes: An enhanced spectral representation method". Mechanical Systems and Signal Processing. 161: 107949. doi:10.1016/j.ymssp.2021.107949. ISSN 0888-3270. {{cite journal}}: Check date values in: |date= (help)
  46. ^ Li, Yousun; Kareem, Ahsan (1997-12). "Simulation of Multivariate Nonstationary Random Processes: Hybrid DFT and Digital Filtering Approach". Journal of Engineering Mechanics. 123 (12): 1302–1310. doi:10.1061/(asce)0733-9399(1997)123:12(1302). ISSN 0733-9399. {{cite journal}}: Check date values in: |date= (help)
  47. ^ Hangan, Horia; Kareem, Ahsan (2021-02-10), "Introduction", The Oxford Handbook of Non-Synoptic Wind Storms, Oxford University Press, pp. 1–8, retrieved 2021-08-18
  48. ^ Kareem, Ahsan; Hu, Liang; Guo, Yanlin; Kwon, Dae-Kun (2019-10). "Generalized Wind Loading Chain: Time-Frequency Modeling Framework for Nonstationary Wind Effects on Structures". Journal of Structural Engineering. 145 (10): 04019092. doi:10.1061/(asce)st.1943-541x.0002376. ISSN 0733-9445. {{cite journal}}: Check date values in: |date= (help)
  49. ^ Li, Lixiao; Kareem, Ahsan; Hunt, Julian; Xing, Feng; Chan, Pakwai; Xiao, Yiqing; Li, Chao (2019-07). "Observed sub-hectometer-scale low level jets in surface-layer velocity profiles of landfalling typhoons". Journal of Wind Engineering and Industrial Aerodynamics. 190: 151–165. doi:10.1016/j.jweia.2019.04.016. ISSN 0167-6105. {{cite journal}}: Check date values in: |date= (help)
  50. ^ Hu, Liang; Xu, You-Lin; Zhu, Qing; Guo, Anna; Kareem, Ahsan (2017-06). "Tropical Storm–Induced Buffeting Response of Long-Span Bridges: Enhanced Nonstationary Buffeting Force Model". Journal of Structural Engineering. 143 (6): 04017027. doi:10.1061/(asce)st.1943-541x.0001745. ISSN 0733-9445. {{cite journal}}: Check date values in: |date= (help)
  51. ^ Yin, Chao; Luo, Xihaier; Kareem, Ahsan (2021-03). "Probabilistic evolution of stochastic dynamical systems: A meso-scale perspective". Structural Safety. 89: 102045. doi:10.1016/j.strusafe.2020.102045. ISSN 0167-4730. {{cite journal}}: Check date values in: |date= (help)
  52. ^ Kareem, Ahsan (1993). ""Preparing for Global Warming". Civil Engineering. 63.
  53. ^ Arul, Monica; Kareem, Ahsan; Kwon, Dae Kun (2020-11). "Identification of Vortex-Induced Vibration of Tall Building Pinnacle Using Cluster Analysis for Fatigue Evaluation: Application to Burj Khalifa". Journal of Structural Engineering. 146 (11): 04020234. doi:10.1061/(asce)st.1943-541x.0002799. ISSN 0733-9445. {{cite journal}}: Check date values in: |date= (help)
  54. ^ Xu, Guoji; Kareem, Ahsan; Shen, Lian (2020-07). "Surrogate Modeling with Sequential Updating: Applications to Bridge Deck–Wave and Bridge Deck–Wind Interactions". Journal of Computing in Civil Engineering. 34 (4): 04020023. doi:10.1061/(asce)cp.1943-5487.0000904. ISSN 0887-3801. {{cite journal}}: Check date values in: |date= (help)
  55. ^ Luo, Xihaier; Kareem, Ahsan (2020-05). "Bayesian deep learning with hierarchical prior: Predictions from limited and noisy data". Structural Safety. 84: 101918. doi:10.1016/j.strusafe.2019.101918. ISSN 0167-4730. {{cite journal}}: Check date values in: |date= (help)
  56. ^ Luo, Xihaier; Kareem, Ahsan (2019-11-05). "Deep convolutional neural networks for uncertainty propagation in random fields". Computer-Aided Civil and Infrastructure Engineering. 34 (12): 1043–1054. doi:10.1111/mice.12510. ISSN 1093-9687.
  57. ^ Gibbs, Maria M.; Kwon, Dae Kun; Kareem, Ahsan (2019-03-28). "Data-Enabled Prediction Framework of Dynamic Characteristics of Rural Footbridges Using Novel Citizen Sensing Approach". Frontiers in Built Environment. 5. doi:10.3389/fbuil.2019.00038. ISSN 2297-3362.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  58. ^ Ding, Fei; Kareem, Ahsan (2020-12). "Tall Buildings with Dynamic Facade Under Winds". Engineering. 6 (12): 1443–1453. doi:10.1016/j.eng.2020.07.020. ISSN 2095-8099. {{cite journal}}: Check date values in: |date= (help)
  59. ^ Ding, Fei; Kareem, Ahsan (2018-07). "A multi-fidelity shape optimization via surrogate modeling for civil structures". Journal of Wind Engineering and Industrial Aerodynamics. 178: 49–56. doi:10.1016/j.jweia.2018.04.022. ISSN 0167-6105. {{cite journal}}: Check date values in: |date= (help)
  60. ^ "Kareem Elected President of IAWE – College of Engineering". engineering.nd.edu.
  61. ^ "-- IAWE International Associations for Wind Engineering --". iawe.org.
  62. ^ Dame, Marketing Communications: Web // University of Notre. "Kareem elected to National Academy of Engineering". Notre Dame News. Retrieved 2019-01-16.
  63. ^ Dame, Marketing Communications: Web // University of Notre. "Professor Kareem Elected as Foreign Member of the Chinese Academy of Engineering // Liu Institute for Asia and Asian Studies // University of Notre Dame". Liu Institute for Asia and Asian Studies. Retrieved 2019-01-16.
  64. ^ "Foreign Associates". The Engineering Academy of Japan. 2020-03-31. Retrieved 2020-08-20.
  65. ^ Dame, Marketing Communications: Web // University of Notre. "Kareem named to Indian Academy of Engineering". Notre Dame News. Retrieved 2019-01-16.
  66. ^ "Jack E. Cermak Medal - ASCE - Past Award Winners". Asce.org.
  67. ^ "Robert H. Scanlan Medal - ASCE - Past Award Winners". Asce.org.
  68. ^ Dame, ENR/PAZ // University Communications: Web // University of Notre. "Kareem receives inaugural Davenport Medal // News // Notre Dame News // University of Notre Dame". news.nd.edu.
  69. ^ "Kareem to Receive Von Karman Medal — College of Engineering". engineering.nd.edu. Retrieved 2019-01-16.
  70. ^ "J. James R. Croes Medal - ASCE - Past Award Winners". Asce.org.
  71. ^ "Kareem Receives Masanobu Shinozuka Medal — College of Engineering". engineering.nd.edu. Retrieved 2019-01-16.
  72. ^ "Kareem receives ASCE's Howard Award — College of Engineering". engineering.nd.edu. Retrieved 2019-07-15.
  73. ^ "Kareem ASCE Award | DesignSafe-CI". simcenter.designsafe-ci.org. Retrieved 2019-07-15.
  74. ^ "Nathan M. Newmark Medal". www.asce.org. Retrieved 2021-08-18.
  75. ^ "NSF Award Search: Award#9096274 - Presidential Young Investigator Award: Dynamic Modeling of Wind-Induced Lateral-Torsional Motion of Structures". Nsf.gov.
  76. ^ 9:45 - 10:30. "Prof. Ahsan Kareem". Iconhic2016.com. Archived from the original on 2017-12-05. Retrieved 2017-05-31. {{cite web}}: |author= has numeric name (help)
  77. ^ "ASCE State-of-the-Art of Civil Engineering Award - ASCE - Past Award Winners". Asce.org.
  78. ^ "Research Achievement Award // ND Report // University of Notre Dame". ndreport.nd.edu.
  79. ^ Dame, Marketing Communications: Web // University of Notre. "Kareem named distinguished member of ASCE". Notre Dame News. Retrieved 2019-01-16.
  80. ^ Dame, Marketing Communications: Web // University of Notre. "Kareem named to offshore technology conference hall of fame". Notre Dame News. Retrieved 2019-01-16.
  81. ^ "Ahsan Kareem Named Honorary Member of JAWE — College of Engineering". engineering.nd.edu. Retrieved 2019-01-16.
  82. ^ Deodatis, George; R. Ellingwood, Bruce; M. Frangopol, Dan (2014-02-10). Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures. CRC Press, 2014. p. XLIX. ISBN 978-1315884882. Retrieved 30 May 2017.
  83. ^ Dame, Marketing Communications: Web // University of Notre. "2016 Alfred Noble Prize". Notre Dame News. Retrieved 2019-01-16.
  84. ^ "IABSE Awards 2020 - Merit". www.iabse.org. Retrieved 2020-06-17.
  85. ^ Dame, Marketing Communications: Web // University of Notre. "Tongi University names Kareem honorary professor". Notre Dame News. Retrieved 2019-01-16.
  86. ^ "Kareem Appointed Honorary Professor by The Hong Kong Polytechnic University — College of Engineering". engineering.nd.edu. Retrieved 2019-01-16.
  87. ^ "Beijing Jiaotong University". en.njtu.edu.cn. Retrieved 2019-01-16.
  88. ^ "Kareem Named Honorary Professor by China's Central South University — College of Engineering". engineering.nd.edu. Retrieved 2019-01-16.
  89. ^ "Professor Ahsan Kareem Appointed as a Visiting Professor of CQU-Chonqqing University". english.cqu.edu.cn. Retrieved 2019-01-16.

Template:Members of the Chinese Academy of Engineering (2017)