Jump to content

Arithmetic combinatorics: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
OAbot (talk | contribs)
m Open access bot: doi added to citation with #oabot.
Citation bot (talk | contribs)
Alter: journal, issue. Add: arxiv. | Use this bot. Report bugs. | Suggested by SemperIocundus | #UCB_webform
Line 20: Line 20:


The Breuillard–Green–Tao theorem, proved by [[Emmanuel Breuillard]], [[Ben J. Green|Ben Green]], and [[Terence Tao]] in 2011,<ref>{{cite journal|doi=10.1007/s10240-012-0043-9|first1=Emmanuel|last1=Breuillard|author1-link=Emmanuel Breuillard|first2=Ben|last2=Green|author2-link=Ben J. Green|first3=Terence|last3=Tao|author3-link=Terence Tao|title=The structure of approximate groups
The Breuillard–Green–Tao theorem, proved by [[Emmanuel Breuillard]], [[Ben J. Green|Ben Green]], and [[Terence Tao]] in 2011,<ref>{{cite journal|doi=10.1007/s10240-012-0043-9|first1=Emmanuel|last1=Breuillard|author1-link=Emmanuel Breuillard|first2=Ben|last2=Green|author2-link=Ben J. Green|first3=Terence|last3=Tao|author3-link=Terence Tao|title=The structure of approximate groups
|journal=[[Publications mathématiques de l'IHÉS]]|volume=116|year=2012|pages=115–221|mr=3090256|arxiv=1110.5008}}.</ref> gives a complete classification of approximate groups. This result can be seen as a nonabelian version of [[Freiman's theorem]], and a generalization of [[Gromov's theorem on groups of polynomial growth]].
|journal=[[Publications Mathématiques de l'IHÉS]]|volume=116|year=2012|pages=115–221|mr=3090256|arxiv=1110.5008}}.</ref> gives a complete classification of approximate groups. This result can be seen as a nonabelian version of [[Freiman's theorem]], and a generalization of [[Gromov's theorem on groups of polynomial growth]].


==Example==
==Example==
Line 53: Line 53:


==References==
==References==
* {{cite journal | first= Izabella | last = Łaba | author-link = Izabella Łaba | title=From harmonic analysis to arithmetic combinatorics | journal=Bull. Amer. Math. Soc. | volume=45 | year=2008 | issue=01 | pages=77–115 | doi=10.1090/S0273-0979-07-01189-5 | doi-access=free }}
* {{cite journal | first= Izabella | last = Łaba | author-link = Izabella Łaba | title=From harmonic analysis to arithmetic combinatorics | journal=Bull. Amer. Math. Soc. | volume=45 | year=2008 | issue=1 | pages=77–115 | doi=10.1090/S0273-0979-07-01189-5 | doi-access=free }}
*[http://www.cs.berkeley.edu/~luca/pubs/addcomb-sigact.pdf Additive Combinatorics and Theoretical Computer Science], Luca Trevisan, SIGACT News, June 2009
*[http://www.cs.berkeley.edu/~luca/pubs/addcomb-sigact.pdf Additive Combinatorics and Theoretical Computer Science], Luca Trevisan, SIGACT News, June 2009
*{{cite book |last=Bibak|first=Khodakhast |editor-last1=Borwein |editor-first1=Jonathan M. |editor-last2=Shparlinski |editor-first2=Igor E. |editor-last3=Zudilin |editor-first3=Wadim |title=Number Theory and Related Fields: In Memory of Alf van der Poorten |publisher= Springer Proceedings in Mathematics & Statistics | volume=43 | location=New York |date=2013 |pages= 99–128|chapter=Additive combinatorics with a view towards computer science and cryptography |doi=10.1007/978-1-4614-6642-0_4 |isbn=978-1-4614-6642-0}}
*{{cite book |last=Bibak|first=Khodakhast |editor-last1=Borwein |editor-first1=Jonathan M. |editor-last2=Shparlinski |editor-first2=Igor E. |editor-last3=Zudilin |editor-first3=Wadim |title=Number Theory and Related Fields: In Memory of Alf van der Poorten |publisher= Springer Proceedings in Mathematics & Statistics | volume=43 | location=New York |date=2013 |pages= 99–128|chapter=Additive combinatorics with a view towards computer science and cryptography |doi=10.1007/978-1-4614-6642-0_4 |arxiv=1108.3790 |isbn=978-1-4614-6642-0}}
*[http://people.math.gatech.edu/~ecroot/E2S-01-11.pdf Open problems in additive combinatorics], E Croot, V Lev
*[http://people.math.gatech.edu/~ecroot/E2S-01-11.pdf Open problems in additive combinatorics], E Croot, V Lev
*[https://www.ams.org/notices/200103/fea-tao.pdf From Rotating Needles to Stability of Waves: Emerging Connections between Combinatorics, Analysis, and PDE], [[Terence Tao]], AMS Notices March 2001
*[https://www.ams.org/notices/200103/fea-tao.pdf From Rotating Needles to Stability of Waves: Emerging Connections between Combinatorics, Analysis, and PDE], [[Terence Tao]], AMS Notices March 2001

Revision as of 10:33, 25 May 2021

In mathematics, arithmetic combinatorics is a field in the intersection of number theory, combinatorics, ergodic theory and harmonic analysis.

Scope

Arithmetic combinatorics is about combinatorial estimates associated with arithmetic operations (addition, subtraction, multiplication, and division). Additive combinatorics is the special case when only the operations of addition and subtraction are involved.

Ben Green explains arithmetic combinatorics in his review of "Additive Combinatorics" by Tao and Vu.[1]

Important results

Szemerédi's theorem

Szemerédi's theorem is a result in arithmetic combinatorics concerning arithmetic progressions in subsets of the integers. In 1936, Erdős and Turán conjectured[2] that every set of integers A with positive natural density contains a k term arithmetic progression for every k. This conjecture, which became Szemerédi's theorem, generalizes the statement of van der Waerden's theorem.

Green–Tao theorem and extensions

The Green–Tao theorem, proved by Ben Green and Terence Tao in 2004,[3] states that the sequence of prime numbers contains arbitrarily long arithmetic progressions. In other words there exist arithmetic progressions of primes, with k terms, where k can be any natural number. The proof is an extension of Szemerédi's theorem.

In 2006, Terence Tao and Tamar Ziegler extended the result to cover polynomial progressions.[4] More precisely, given any integer-valued polynomials P1,..., Pk in one unknown m all with constant term 0, there are infinitely many integers x, m such that x + P1(m), ..., x + Pk(m) are simultaneously prime. The special case when the polynomials are m, 2m, ..., km implies the previous result that there are length k arithmetic progressions of primes.

Breuillard–Green–Tao theorem

The Breuillard–Green–Tao theorem, proved by Emmanuel Breuillard, Ben Green, and Terence Tao in 2011,[5] gives a complete classification of approximate groups. This result can be seen as a nonabelian version of Freiman's theorem, and a generalization of Gromov's theorem on groups of polynomial growth.

Example

If A is a set of N integers, how large or small can the sumset

the difference set

and the product set

be, and how are the sizes of these sets related? (Not to be confused: the terms difference set and product set can have other meanings.)

Extensions

The sets being studied may also be subsets of algebraic structures other than the integers, for example, groups, rings and fields.[6]

See also

Notes

  1. ^ Green, Ben (July 2009). "Book Reviews: Additive combinatorics, by Terence C. Tao and Van H. Vu" (PDF). Bulletin of the American Mathematical Society. 46 (3): 489–497. doi:10.1090/s0273-0979-09-01231-2.
  2. ^ Erdős, Paul; Turán, Paul (1936). "On some sequences of integers" (PDF). Journal of the London Mathematical Society. 11 (4): 261–264. doi:10.1112/jlms/s1-11.4.261. MR 1574918..
  3. ^ Green, Ben; Tao, Terence (2008). "The primes contain arbitrarily long arithmetic progressions". Annals of Mathematics. 167 (2): 481–547. arXiv:math.NT/0404188. doi:10.4007/annals.2008.167.481. MR 2415379..
  4. ^ Tao, Terence; Ziegler, Tamar (2008). "The primes contain arbitrarily long polynomial progressions". Acta Mathematica. 201 (2): 213–305. arXiv:math.NT/0610050. doi:10.1007/s11511-008-0032-5. MR 2461509..
  5. ^ Breuillard, Emmanuel; Green, Ben; Tao, Terence (2012). "The structure of approximate groups". Publications Mathématiques de l'IHÉS. 116: 115–221. arXiv:1110.5008. doi:10.1007/s10240-012-0043-9. MR 3090256..
  6. ^ Bourgain, Jean; Katz, Nets; Tao, Terence (2004). "A sum-product estimate in finite fields, and applications". Geometric and Functional Analysis. 14 (1): 27–57. arXiv:math/0301343. doi:10.1007/s00039-004-0451-1. MR 2053599.

References

Further reading