Jump to content

Methylammonium lead halide: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Thermal decomposition of CH3NH3PbX3: added photodecomposition and reference to benchmarking protocol
Citation bot (talk | contribs)
Added bibcode. | Use this bot. Report bugs. | Suggested by Whoop whoop pull up | Category:Methylammonium compounds | #UCB_Category 2/9
 
(39 intermediate revisions by 18 users not shown)
Line 1: Line 1:
[[File:CH3NH3PbI3 structure.png|thumb|CH<sub>3</sub>NH<sub>3</sub>PbX<sub>3</sub> crystal structure.<ref name=r5/>]]
[[File:CH3NH3PbI3 structure.png|thumb|{{chem2|[CH3NH3]PbX3}} crystal structure.<ref name=r5/>]]
'''Methylammonium lead halides''' (MALHs) are solid compounds with [[Perovskite (structure)|perovskite structure]] and a chemical formula of CH<sub>3</sub>NH<sub>3</sub>PbX<sub>3</sub> (MAPbX<sub>3</sub>), where X = I, Br or Cl. They have potential applications in [[Perovskite solar cell|solar cells]], [[laser]]s, [[light-emitting diodes]], [[photodetectors]], radiation detectors <ref name="Nafradi2015">{{cite journal|last1=Náfrádi|first1=Bálint|title=Methylammonium Lead Iodide for Efficient X-ray Energy Conversion|journal=J. Phys. Chem. C|date=October 16, 2015|volume=2015|issue=119|pages=25204–25208|doi=10.1021/acs.jpcc.5b07876|url=http://pubs.acs.org/doi/abs/10.1021%2Facs.jpcc.5b07876}}</ref><ref name=r7/> magneto-optical data storage<ref name="Nafradi2016">{{cite journal|last1=Náfrádi|first1=Bálint|title=Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3|journal=Nature Communications|date=24 November 2016|volume=7|page=13406|doi=10.1038/ncomms13406|url=http://www.nature.com/articles/ncomms13406|arxiv=1611.08205|bibcode=2016NatCo...713406N}}</ref> and hydrogen production.<ref name=r1/>
'''Methylammonium lead halides''' (MALHs) are solid compounds with [[Perovskite (structure)|perovskite structure]] and a chemical formula of {{chem2|[CH3NH3]+Pb(2+)(X−)3}}, where X = [[Chloride|Cl]], [[Bromide|Br]] or [[Iodide|I]]. They have potential applications in [[Perovskite solar cell|solar cells]],<ref>{{Cite journal|last1=Kojima|first1=Akihiro|last2=Teshima|first2=Kenjiro|last3=Shirai|first3=Yasuo|last4=Miyasaka|first4=Tsutomu|date=2009-05-06|title=Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells|url=https://doi.org/10.1021/ja809598r|journal=Journal of the American Chemical Society|volume=131|issue=17|pages=6050–6051|doi=10.1021/ja809598r|pmid=19366264|issn=0002-7863}}</ref> [[laser]]s, [[light-emitting diodes]], [[photodetectors]], radiation detectors,<ref name="Nafradi2015">{{cite journal|last1=Náfrádi|first1=Bálint|title=Methylammonium Lead Iodide for Efficient X-ray Energy Conversion|journal=J. Phys. Chem. C|date=October 16, 2015|volume=2015|issue=119|pages=25204–25208|doi=10.1021/acs.jpcc.5b07876}}</ref><ref name=r7/> [[scintillator]],<ref name="Birowosuto2016">{{cite journal|last1=Birowosuto|first1=M. D.|title=X-ray Scintillation in Lead Halide Perovskite Crystals|journal=Sci. Rep.|date=16 November 2016|volume=6|page=37254|doi=10.1038/srep37254|pmid=27849019|pmc=5111063|arxiv=1611.05862|bibcode=2016NatSR...637254B}}</ref> magneto-optical data storage<ref name="Nafradi2016">{{cite journal|last1=Náfrádi|first1=Bálint|title=Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3|journal=Nature Communications|date=24 November 2016|volume=7|page=13406|doi=10.1038/ncomms13406|pmid=27882917|pmc=5123013|arxiv=1611.08205|bibcode=2016NatCo...713406N}}</ref> and [[hydrogen production]].<ref name=r1/>



==Properties and synthesis==
==Properties and synthesis==
The first MALHs to be synthesized were the methylammonium derivatives {{chem2|[CH3NH3]SnX3}} and {{chem2|[CH3NH3]PbX3}}. Their potential in the area of energy conversion wasn't realized until decades later.<ref>{{Cite journal |last1=Cheetham |first1=Anthony K. |last2=Seshadri |first2=Ram |last3=Wudl |first3=Fred |date=2022-06-30 |title=Chemical synthesis and materials discovery |url=https://www.nature.com/articles/s44160-022-00096-3 |journal=Nature Synthesis |language=en |volume=1 |issue=7 |pages=514–520 |doi=10.1038/s44160-022-00096-3 |issn=2731-0582|arxiv=2207.07052 |bibcode=2022NatSy...1..514C |s2cid=250199748}}</ref>
In the CH<sub>3</sub>NH<sub>3</sub>PbX<sub>3</sub> crystal structure the methylammonium cation (CH<sub>3</sub>NH<sub>3</sub><sup>+</sup>) is surrounded by PbX<sub>6</sub> octahedra. The X ions are not fixed and can migrate through the crystal with an activation energy of 0.6 eV; the migration is vacancy assisted.<ref name=r5/> The methylammonium cations can rotate within their cages. At room temperature the ions have the CN axis aligned towards the face directions of the unit cells and the molecules randomly change to another of the six face directions on a 3 ps time scale.<ref name=r6/>
In the {{chem2|[CH3NH3]PbX3}} [[Cubic crystal system|cubic crystal structure]] the methylammonium cation ({{chem2|[CH3NH3]+}}) is surrounded by {{chem2|PbX6}} octahedra. The X ions are not fixed and can migrate through the crystal with an [[activation energy]] of 0.6 eV; the migration is vacancy assisted.<ref name=r5/> The methylammonium cations can rotate within their cages. At room temperature the ions have the CN axis aligned towards the face directions of the unit cells and the molecules randomly change to another of the six face directions on a 3 ps time scale.<ref name=r6/>


[[File:CH3NH3PbI3_crystal_growth.webm|thumb|Growth of a CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> single crystal in [[gamma-butyrolactone]] at 110 °C. The yellow color originates from the [[lead(II) iodide]] precursor.<ref name=r1/>]]
[[File:CH3NH3PbI3_crystal_growth.webm|thumb|Growth of a {{chem2|[CH3NH3]PbI3}} single crystal in [[gamma-butyrolactone]] at 110 °C. The yellow color originates from the [[lead(II) iodide]] precursor.<ref name=r1/>]]
[[File:CH3NH3PbBr3_crystal_growth.webm|thumb|Growth of a CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub> single crystal in [[dimethylformamide]] at 80 °C.<ref name=r1/>]]
[[File:CH3NH3PbBr3_crystal_growth.webm|thumb|Growth of a {{chem2|[CH3NH3]PbBr3}} single crystal in [[dimethylformamide]] at 80 °C.<ref name=r1/>]]
The solubility of MALHs strongly decreases with increased temperature: from 0.8 g/mL at 20&nbsp;°C to 0.3 g/mL at 80&nbsp;°C for CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> in dimethylformamide. This property is used in the growth of MALH single crystals and films from solution, using a mixture of [[Methylammonium halide|CH<sub>3</sub>NH<sub>3</sub>X]] and PbX<sub>2</sub> powders as the precursor. The growth rates are 3–20&nbsp;mm<sup>3</sup>/hour for CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> and reach 38&nbsp;mm<sup>3</sup>/hour for CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub> crystals.<ref name=r1/>
The solubility of MALHs strongly decreases with increased temperature: from 0.8 g/mL at 20&nbsp;°C to 0.3 g/mL at 80&nbsp;°C for {{chem2|[CH3NH3]PbBr3}} in dimethylformamide. This property is used in the growth of MALH single crystals and films from solution, using a mixture of [[Methylammonium halide|{{chem2|[CH3NH3]X}}]] and {{chem2|PbX2}} powders as the precursor. The growth rates are 3–20&nbsp;mm<sup>3</sup>/hour for {{chem2|[CH3NH3]PbI3}} and reach 38&nbsp;mm<sup>3</sup>/hour for {{chem2|[CH3NH3]PbBr3}} crystals.<ref name=r1/>


The resulting crystals are metastable and dissolve in the growth solution when cooled to room temperature. They have [[bandgap]]s of 2.18 eV for CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub> and 1.51 eV for CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>, while their respective carrier mobilities are 24 and 67 cm<sup>2</sup>/(V·s).<ref name=r1/> Their [[thermal conductivity]] is exceptionally low, ~0.5 W/(K·m) at room temperature for CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>.<ref name=r2/>
The resulting crystals are metastable and dissolve in the growth solution when cooled to room temperature. They have [[bandgap]]s of 2.18 eV for {{chem2|[CH3NH3]PbBr3}} and 1.51 eV for {{chem2|[CH3NH3]PbI3}}, while their respective carrier mobilities are 24 and 67 cm<sup>2</sup>/(V·s).<ref name=r1/> Their [[thermal conductivity]] is exceptionally low, ~0.5 W/(K·m) at room temperature for {{chem2|[CH3NH3]PbI3}}.<ref name=r2/>



== Photodecomposition and thermal decomposition of CH<sub>3</sub>NH<sub>3</sub>PbX<sub>3</sub>==
Thermal decomposition of {{chem2|[CH3NH3]PbI3}} gives [[methyl iodide]] ({{chem2|CH3I}}) and [[ammonia]] ({{chem2|NH3}}).<ref name="Juarez-PerezHawash2016">{{cite journal|last1=Juarez-Perez|first1=Emilio J.|last2=Hawash|first2=Zafer|last3=Raga|first3=Sonia R.|last4=Ono|first4=Luis K.|last5=Qi|first5=Yabing|title=Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis|journal=Energy Environ. Sci.|volume=9|issue=11|year=2016|pages=3406–3410|issn=1754-5692|doi=10.1039/C6EE02016J|doi-access=free}}</ref>
Initially, a proposed decomposition pathway mechanism for CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> in presence of water
<ref name="FrostButler2014">{{cite journal|last1=Frost|first1=Jarvist M.|last2=Butler|first2=Keith T.|last3=Brivio|first3=Federico|last4=Hendon|first4=Christopher H.|last5=van Schilfgaarde|first5=Mark|last6=Walsh|first6=Aron|title=Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells|journal=Nano Letters|volume=14|issue=5|year=2014|pages=2584–2590|issn=1530-6984|doi=10.1021/nl500390f|arxiv=1402.4980|bibcode=2014NanoL..14.2584F}}</ref>
releasing CH<sub>3</sub>NH<sub>2</sub> and HI gases was broadly adopted by researchers in [[perovskite solar cell]]. Later, it was found that the major gases released during high temperature (> 360 °C) thermal degradation of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> are [[methyl iodide]] (CH<sub>3</sub>I) and [[ammonia]] (NH<sub>3</sub>).<ref name="Juarez-PerezHawash2016">{{cite journal|last1=Juarez-Perez|first1=Emilio J.|last2=Hawash|first2=Zafer|last3=Raga|first3=Sonia R.|last4=Ono|first4=Luis K.|last5=Qi|first5=Yabing|title=Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis|journal=Energy Environ. Sci.|volume=9|issue=11|year=2016|pages=3406–3410|issn=1754-5692|doi=10.1039/C6EE02016J}}</ref>
<ref name="WilliamsHolliman2014">{{cite journal|last1=Williams|first1=Alice E.|last2=Holliman|first2=Peter J.|last3=Carnie|first3=Matthew J.|last4=Davies|first4=Matthew L.|last5=Worsley|first5=David A.|last6=Watson|first6=Trystan M.|title=Perovskite processing for photovoltaics: a spectro-thermal evaluation|journal=J. Mater. Chem. A|volume=2|issue=45|year=2014|pages=19338–19346|issn=2050-7488|doi=10.1039/C4TA04725G}}</ref>
<ref name="WilliamsHolliman2014">{{cite journal|last1=Williams|first1=Alice E.|last2=Holliman|first2=Peter J.|last3=Carnie|first3=Matthew J.|last4=Davies|first4=Matthew L.|last5=Worsley|first5=David A.|last6=Watson|first6=Trystan M.|title=Perovskite processing for photovoltaics: a spectro-thermal evaluation|journal=J. Mater. Chem. A|volume=2|issue=45|year=2014|pages=19338–19346|issn=2050-7488|doi=10.1039/C4TA04725G}}</ref>


:<chem>{CH3NH3PbI3(s)} ->[\Delta] {PbI2(s)} + {CH3I(g)} + {NH3(g)} </chem>
:{{chem2|[CH3NH3]PbI3 → PbI2 + CH3I + NH3}}


==Applications==
In 2017, it has been inferred using in situ [[X-ray photoelectron spectroscopy|XPS]] measurements that in the presence of water vapour, CH<sub>3</sub>NH<sub>3</sub>I salt can not be a product of the degradation of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> perovskite.<ref>{{Cite journal|last=Chun-Ren Ke|first=Jack|last2=Walton|first2=Alex S.|last3=Lewis|first3=David J.|last4=Tedstone|first4=Aleksander|last5=O'Brien|first5=Paul|last6=Thomas|first6=Andrew G.|last7=Flavell|first7=Wendy R.|date=2017-05-04|title=In situ investigation of degradation at organometal halide perovskite surfaces by X-ray photoelectron spectroscopy at realistic water vapour pressure|journal=Chem. Commun.|language=en|volume=53|issue=37|pages=5231–5234|doi=10.1039/c7cc01538k|issn=1364-548X}}</ref>
MALHs have potential applications in [[Perovskite solar cell|solar cells]], [[laser]]s,<ref>{{cite journal |last1=Deschler |first1=Felix |last2=Price |first2=Michael |last3=Pathak |first3=Sandeep |last4=Klintberg |first4=Lina E. |last5=Jarausch |first5=David-Dominik |last6=Higler |first6=Ruben |last7=Hüttner |first7=Sven |last8=Leijtens |first8=Tomas |last9=Stranks |first9=Samuel D. |last10=Snaith |first10=Henry J. |last11=Atatüre |first11=Mete |last12=Phillips |first12=Richard T. |last13=Friend |first13=Richard H. |title=High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors |journal=The Journal of Physical Chemistry Letters |date=2 April 2014 |volume=5 |issue=8 |pages=1421–1426 |doi=10.1021/jz5005285 |pmid=26269988 |doi-access=free}}</ref> [[light-emitting diodes]], [[photodetectors]], radiation detectors,<ref name=r7/> [[scintillator]]<ref name="Birowosuto2016">{{cite journal|last1=Birowosuto|first1=M. D.|title=X-ray Scintillation in Lead Halide Perovskite Crystals|journal=Sci. Rep.|date=16 November 2016|volume=6|page=37254|doi=10.1038/srep37254|pmid=27849019|pmc=5111063|arxiv=1611.05862|bibcode=2016NatSR...637254B}}</ref> and hydrogen production.<ref name=r1/> The power conversion efficiency of MALH solar cells exceeds 19%.<ref name=r3/><ref name=r4/>


==Historic references==
Similar high temperature degradation reaction has been confirmed for CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub> <ref name="Juarez-PerezOno2018">{{cite journal|last1=Juarez-Perez|first1=Emilio J.|last2=Ono|first2=Luis K.|last3=Maeda|first3=Maki|last4=Jiang|first4=Yan|last5=Hawash|first5=Zafer|last6=Qi|first6=Yabing|title=Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability|journal=Journal of Materials Chemistry A|volume=6|issue=20|year=2018|pages=9604–9612|doi=10.1039/C8TA03501F}}</ref>
*{{Cite journal |last=Weber |first=Dieter |date=1978 |title=CH3NH3SnBrxI3-x (x = 0-3), ein Sn(II)-System mit kubischer Perowskitstruktur / CH3NH3SnBrxI3-x (x = 0-3), a Sn(II)-System with Cubic Perovskite Structure |journal=Zeitschrift für Naturforschung B |language=en |volume=33 |issue=8 |pages=862–865 |doi=10.1515/znb-1978-0809 |issn=1865-7117|doi-access=free}}

*{{Cite journal |last=Weber |first=Dieter |date=1978-12-01 |title=CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3 , a Pb(II)-System with Cubic Perovskite Structure |journal=Zeitschrift für Naturforschung B |language=en |volume=33 |issue=12 |pages=1443–1445 |doi=10.1515/znb-1978-1214 |s2cid=93597007 |issn=1865-7117|doi-access=free}}*{{Cite journal |last=Grätzel |first=Michael |date=2014 |title=The light and shade of perovskite solar cells |url=https://www.nature.com/articles/nmat4065 |journal=Nature Materials |language=en |volume=13 |issue=9 |pages=838–842 |doi=10.1038/nmat4065 |pmid=25141800 |bibcode=2014NatMa..13..838G |issn=1476-1122}}
:<chem>{CH3NH3PbBr3(s)} ->[\Delta] {PbBr2(s)} + {CH3Br(g)} + {NH3(g)} </chem>

Furthermore, high resolution [[mass spectrometry]] measurements at low temperature conditions (< 100 °C) compatible with photovoltaic operation found that CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> undergoes reversible,

:<chem>{CH3NH3PbI3(s)} <=>[\Delta,h\nu] {PbI2(s)} + {Pb^0(s)} + {I2(g)} +{CH3NH2(g)} + {HI(g)} </chem>

and irreversible chemical decomposition reactions under vacuum when illumination or heat pulses are applied.<ref name="Juarez-PerezOno2018"></ref>

:<chem>{CH3NH3PbI3(s)} ->[\Delta,h\nu] {PbI2(s)} + +{CH3I(g)} + {NH3(g)} </chem>


Recently, a method to quantify the intrinsic chemical stability of arbitrarily mixed hybrid halide perovskites has been proposed.
<ref name="García-FernándezJuarez-Perez2018">{{cite journal|last1=García-Fernández|first1=Alberto|last2=Juarez-Perez|first2=Emilio J.|last3=Castro-García|first3=Socorro|last4=Sánchez-Andújar|first4=Manuel|last5=Ono|first5=Luis K.|last6=Jiang|first6=Yan|last7=Qi|first7=Yabing|title=Benchmarking Chemical Stability of Arbitrarily Mixed 3D Hybrid Halide Perovskites for Solar Cell Applications|journal=Small Methods|volume=2|issue=10|year=2018|pages=1800242|doi=10.1002/smtd.201800242}}</ref>

==Applications==
MALHs have potential applications in [[Perovskite solar cell|solar cells]], [[laser]]s, [[light-emitting diodes]], [[photodetectors]], radiation detectors <ref name=r7/> and hydrogen production.<ref name=r1/> The power conversion efficiency of MALH solar cells exceeds 19%.<ref name=r3/><ref name=r4/>


==See also==
==See also==
*[[Perovskite solar cell]]
*[[Methylammonium halide]]
*[[Methylammonium halide]]


Line 46: Line 33:
{{Commons category|Methylammonium lead halides}}
{{Commons category|Methylammonium lead halides}}
{{reflist|refs=
{{reflist|refs=
<ref name=r1>{{cite journal|doi=10.1038/ncomms8586|pmid=26145157|pmc=4544059|title=High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization|journal=Nature Communications|volume=6|pages=7586|year=2015|last1=Saidaminov|first1=Makhsud I.|last2=Abdelhady|first2=Ahmed L.|last3=Murali|first3=Banavoth|last4=Alarousu|first4=Erkki|last5=Burlakov|first5=Victor M.|last6=Peng|first6=Wei|last7=Dursun|first7=Ibrahim|last8=Wang|first8=Lingfei|last9=He|first9=Yao|last10=MacUlan|first10=Giacomo|last11=Goriely|first11=Alain|last12=Wu|first12=Tom|last13=Mohammed|first13=Omar F.|last14=Bakr|first14=Osman M.|bibcode=2015NatCo...6E7586S}}</ref>
<ref name=r1>{{cite journal|doi=10.1038/ncomms8586|pmid=26145157|pmc=4544059|title=High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization|journal=Nature Communications|volume=6|pages=7586|year=2015|last1=Saidaminov|first1=Makhsud I.|last2=Abdelhady|first2=Ahmed L.|last3=Murali|first3=Banavoth|last4=Alarousu|first4=Erkki|last5=Burlakov|first5=Victor M.|last6=Peng|first6=Wei|last7=Dursun|first7=Ibrahim|last8=Wang|first8=Lingfei|last9=He|first9=Yao|last10=MacUlan|first10=Giacomo|last11=Goriely|first11=Alain|last12=Wu|first12=Tom|last13=Mohammed|first13=Omar F.|last14=Bakr|first14=Osman M.|bibcode=2015NatCo...6.7586S}}</ref>


<ref name=r2>{{cite journal|last1=Pisoni|first1=Andrea|last2=Jaćimović|first2=Jaćim|last3=Barišić|first3=Osor S.|last4=Spina|first4=Massimo|last5=Gaál|first5=Richard|last6=Forró|first6=László|last7=Horváth|first7=Endre|title=Ultra-Low Thermal Conductivity in Organic–Inorganic Hybrid Perovskite CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>|journal=The Journal of Physical Chemistry Letters|date= 2014|volume=5|issue=14|pages=2488–2492|doi=10.1021/jz5012109|pmid=26277821|arxiv=1407.4931}}</ref>
<ref name=r2>{{cite journal|last1=Pisoni|first1=Andrea|last2=Jaćimović|first2=Jaćim|last3=Barišić|first3=Osor S.|last4=Spina|first4=Massimo|last5=Gaál|first5=Richard|last6=Forró|first6=László|last7=Horváth|first7=Endre|title=Ultra-Low Thermal Conductivity in Organic–Inorganic Hybrid Perovskite CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>|journal=The Journal of Physical Chemistry Letters|date= 2014|volume=5|issue=14|pages=2488–2492|doi=10.1021/jz5012109|pmid=26277821|arxiv=1407.4931|s2cid=33371327}}</ref>


<ref name=r3>{{cite journal|doi= 10.1126/science.1254050 |pmid= 25082698 |title= Interface engineering of highly efficient perovskite solar cells |journal= Science |volume= 345 |issue= 6196 |pages= 542 |year= 2014 |last1= Zhou |first1= H. |last2= Chen |first2= Q. |last3= Li |first3= G. |last4= Luo |first4= S. |last5= Song |first5= T.-b. |last6= Duan |first6= H.-S. |last7= Hong |first7= Z. |last8= You |first8= J. |last9= Liu |first9= Y. |last10= Yang |first10= Y. |bibcode= 2014Sci...345..542Z }}</ref>
<ref name=r3>{{cite journal|doi= 10.1126/science.1254050 |pmid= 25082698 |title= Interface engineering of highly efficient perovskite solar cells |journal= Science |volume= 345 |issue= 6196 |pages= 542–6 |year= 2014 |last1= Zhou |first1= H. |last2= Chen |first2= Q. |last3= Li |first3= G. |last4= Luo |first4= S. |last5= Song |first5= T.-b. |last6= Duan |first6= H.-S. |last7= Hong |first7= Z. |last8= You |first8= J. |last9= Liu |first9= Y. |last10= Yang |first10= Y. |bibcode= 2014Sci...345..542Z |s2cid= 32378923}}</ref>


<ref name=r4>{{cite journal|doi=10.1002/adma.201500048|pmid=25914242|title=Planar CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate|journal=Advanced Materials|volume=27|issue=22|pages=3424|year=2015|last1=Heo|first1=Jin Hyuck|last2=Song|first2=Dae Ho|last3=Han|first3=Hye Ji|last4=Kim|first4=Seong Yeon|last5=Kim|first5=Jun Ho|last6=Kim|first6=Dasom|last7=Shin|first7=Hee Won|last8=Ahn|first8=Tae Kyu|last9=Wolf|first9=Christoph|last10=Lee|first10=Tae-Woo|last11=Im|first11=Sang Hyuk}}</ref>
<ref name=r4>{{cite journal|doi=10.1002/adma.201500048|pmid=25914242|title=Planar CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate|journal=Advanced Materials|volume=27|issue=22|pages=3424–30|year=2015|last1=Heo|first1=Jin Hyuck|last2=Song|first2=Dae Ho|last3=Han|first3=Hye Ji|last4=Kim|first4=Seong Yeon|last5=Kim|first5=Jun Ho|last6=Kim|first6=Dasom|last7=Shin|first7=Hee Won|last8=Ahn|first8=Tae Kyu|last9=Wolf|first9=Christoph|last10=Lee|first10=Tae-Woo|last11=Im|first11=Sang Hyuk|bibcode=2015AdM....27.3424H |s2cid=3165151}}</ref>


<ref name=r5>{{cite journal|doi=10.1038/ncomms8497|pmid=26105623|pmc=4491179|title=Ionic transport in hybrid lead iodide perovskite solar cells|journal=Nature Communications|volume=6|pages=7497|year=2015|last1=Eames|first1=Christopher|last2=Frost|first2=Jarvist M.|last3=Barnes|first3=Piers R. F.|last4=o'Regan|first4=Brian C.|last5=Walsh|first5=Aron|last6=Islam|first6=M. Saiful|bibcode=2015NatCo...6E7497E}}</ref>
<ref name=r5>{{cite journal|doi=10.1038/ncomms8497|pmid=26105623|pmc=4491179|title=Ionic transport in hybrid lead iodide perovskite solar cells|journal=Nature Communications|volume=6|pages=7497|year=2015|last1=Eames|first1=Christopher|last2=Frost|first2=Jarvist M.|last3=Barnes|first3=Piers R. F.|last4=o'Regan|first4=Brian C.|last5=Walsh|first5=Aron|last6=Islam|first6=M. Saiful|bibcode=2015NatCo...6.7497E}}</ref>


<ref name=r6>{{cite journal|doi=10.1021/acs.jpclett.5b01555|title=Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites|journal=J. Phys. Chem. Lett.|volume=6|issue=18|pages=3663–3669|year=2015|last1=Bakulin|first1=A.A.|last2=Selig|first2=O.|last3=Bakker|first3=H.J.|last4=Rezus|first4=Y.L.A.|last5=Muller|first5=C.|last6=Glaser|first6=T.|last7=Lovrincic|first7=R.|last8=Sun|first8=Z.|last9=Chen|first9=Z.|last10=Walsh|first10=A.|last11=Frost|first11=J.M.|last12=Jansen|first12=T.L.C.}}</ref>
<ref name=r6>{{cite journal|doi=10.1021/acs.jpclett.5b01555|pmid=26722739|title=Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites|journal=J. Phys. Chem. Lett.|volume=6|issue=18|pages=3663–3669|year=2015|last1=Bakulin|first1=A.A.|last2=Selig|first2=O.|last3=Bakker|first3=H.J.|last4=Rezus|first4=Y.L.A.|last5=Muller|first5=C.|last6=Glaser|first6=T.|last7=Lovrincic|first7=R.|last8=Sun|first8=Z.|last9=Chen|first9=Z.|last10=Walsh|first10=A.|last11=Frost|first11=J.M.|last12=Jansen|first12=T.L.C.|hdl=10044/1/48952|url=http://spiral.imperial.ac.uk/bitstream/10044/1/48952/2/Paper_MArotatioin_v31.pdf|hdl-access=free}}</ref>


<ref name=r7>{{cite journal|doi=10.1038/nphoton.2016.139|title=Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites|journal=Nature Photonics|volume=10|pages=585–589|year=2016|last1=Yakunin|first1=S.|last2=Dirin|first2=D.|last3=Shynkarenko|first3=Y.|last4=Morad|first4=V.|last5=Cherniukh|first5=I.|last6=Nazarenko|first6=O.|last7=Kreil|first7=D.|last8=Nauser|first8=T.|last9=Kovalenko|first9=M.|bibcode=2016NaPho..10..585Y}}</ref>}}
<ref name=r7>{{cite journal|doi=10.1038/nphoton.2016.139|title=Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites|journal=Nature Photonics|volume=10|issue=9|pages=585–589|year=2016|last1=Yakunin|first1=S.|last2=Dirin|first2=D.|last3=Shynkarenko|first3=Y.|last4=Morad|first4=V.|last5=Cherniukh|first5=I.|last6=Nazarenko|first6=O.|last7=Kreil|first7=D.|last8=Nauser|first8=T.|last9=Kovalenko|first9=M.|bibcode=2016NaPho..10..585Y|hdl=20.500.11850/118934|s2cid=123312325 |hdl-access=free}}</ref>}}


{{DEFAULTSORT:Methylammonium lead halide}}
{{DEFAULTSORT:Methylammonium lead halide}}
[[Category:Lead compounds]]
[[Category:Lead(II) compounds]]
[[Category:Perovskites]]
[[Category:Perovskites]]
[[Category:Articles containing video clips]]
[[Category:Articles containing video clips]]
[[Category:Methylammonium compounds]]

Latest revision as of 19:28, 15 September 2024

[CH3NH3]PbX3 crystal structure.[1]

Methylammonium lead halides (MALHs) are solid compounds with perovskite structure and a chemical formula of [CH3NH3]+Pb2+(X)3, where X = Cl, Br or I. They have potential applications in solar cells,[2] lasers, light-emitting diodes, photodetectors, radiation detectors,[3][4] scintillator,[5] magneto-optical data storage[6] and hydrogen production.[7]


Properties and synthesis

[edit]

The first MALHs to be synthesized were the methylammonium derivatives [CH3NH3]SnX3 and [CH3NH3]PbX3. Their potential in the area of energy conversion wasn't realized until decades later.[8] In the [CH3NH3]PbX3 cubic crystal structure the methylammonium cation ([CH3NH3]+) is surrounded by PbX6 octahedra. The X ions are not fixed and can migrate through the crystal with an activation energy of 0.6 eV; the migration is vacancy assisted.[1] The methylammonium cations can rotate within their cages. At room temperature the ions have the CN axis aligned towards the face directions of the unit cells and the molecules randomly change to another of the six face directions on a 3 ps time scale.[9]

Growth of a [CH3NH3]PbI3 single crystal in gamma-butyrolactone at 110 °C. The yellow color originates from the lead(II) iodide precursor.[7]
Growth of a [CH3NH3]PbBr3 single crystal in dimethylformamide at 80 °C.[7]

The solubility of MALHs strongly decreases with increased temperature: from 0.8 g/mL at 20 °C to 0.3 g/mL at 80 °C for [CH3NH3]PbBr3 in dimethylformamide. This property is used in the growth of MALH single crystals and films from solution, using a mixture of [CH3NH3]X and PbX2 powders as the precursor. The growth rates are 3–20 mm3/hour for [CH3NH3]PbI3 and reach 38 mm3/hour for [CH3NH3]PbBr3 crystals.[7]

The resulting crystals are metastable and dissolve in the growth solution when cooled to room temperature. They have bandgaps of 2.18 eV for [CH3NH3]PbBr3 and 1.51 eV for [CH3NH3]PbI3, while their respective carrier mobilities are 24 and 67 cm2/(V·s).[7] Their thermal conductivity is exceptionally low, ~0.5 W/(K·m) at room temperature for [CH3NH3]PbI3.[10]


Thermal decomposition of [CH3NH3]PbI3 gives methyl iodide (CH3I) and ammonia (NH3).[11] [12]

[CH3NH3]PbI3 → PbI2 + CH3I + NH3

Applications

[edit]

MALHs have potential applications in solar cells, lasers,[13] light-emitting diodes, photodetectors, radiation detectors,[4] scintillator[5] and hydrogen production.[7] The power conversion efficiency of MALH solar cells exceeds 19%.[14][15]

Historic references

[edit]
  • Weber, Dieter (1978). "CH3NH3SnBrxI3-x (x = 0-3), ein Sn(II)-System mit kubischer Perowskitstruktur / CH3NH3SnBrxI3-x (x = 0-3), a Sn(II)-System with Cubic Perovskite Structure". Zeitschrift für Naturforschung B. 33 (8): 862–865. doi:10.1515/znb-1978-0809. ISSN 1865-7117.
  • Weber, Dieter (1978-12-01). "CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3 , a Pb(II)-System with Cubic Perovskite Structure". Zeitschrift für Naturforschung B. 33 (12): 1443–1445. doi:10.1515/znb-1978-1214. ISSN 1865-7117. S2CID 93597007.*Grätzel, Michael (2014). "The light and shade of perovskite solar cells". Nature Materials. 13 (9): 838–842. Bibcode:2014NatMa..13..838G. doi:10.1038/nmat4065. ISSN 1476-1122. PMID 25141800.

See also

[edit]

References

[edit]
  1. ^ a b Eames, Christopher; Frost, Jarvist M.; Barnes, Piers R. F.; o'Regan, Brian C.; Walsh, Aron; Islam, M. Saiful (2015). "Ionic transport in hybrid lead iodide perovskite solar cells". Nature Communications. 6: 7497. Bibcode:2015NatCo...6.7497E. doi:10.1038/ncomms8497. PMC 4491179. PMID 26105623.
  2. ^ Kojima, Akihiro; Teshima, Kenjiro; Shirai, Yasuo; Miyasaka, Tsutomu (2009-05-06). "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells". Journal of the American Chemical Society. 131 (17): 6050–6051. doi:10.1021/ja809598r. ISSN 0002-7863. PMID 19366264.
  3. ^ Náfrádi, Bálint (October 16, 2015). "Methylammonium Lead Iodide for Efficient X-ray Energy Conversion". J. Phys. Chem. C. 2015 (119): 25204–25208. doi:10.1021/acs.jpcc.5b07876.
  4. ^ a b Yakunin, S.; Dirin, D.; Shynkarenko, Y.; Morad, V.; Cherniukh, I.; Nazarenko, O.; Kreil, D.; Nauser, T.; Kovalenko, M. (2016). "Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites". Nature Photonics. 10 (9): 585–589. Bibcode:2016NaPho..10..585Y. doi:10.1038/nphoton.2016.139. hdl:20.500.11850/118934. S2CID 123312325.
  5. ^ a b Birowosuto, M. D. (16 November 2016). "X-ray Scintillation in Lead Halide Perovskite Crystals". Sci. Rep. 6: 37254. arXiv:1611.05862. Bibcode:2016NatSR...637254B. doi:10.1038/srep37254. PMC 5111063. PMID 27849019.
  6. ^ Náfrádi, Bálint (24 November 2016). "Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3". Nature Communications. 7: 13406. arXiv:1611.08205. Bibcode:2016NatCo...713406N. doi:10.1038/ncomms13406. PMC 5123013. PMID 27882917.
  7. ^ a b c d e f Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Murali, Banavoth; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; MacUlan, Giacomo; Goriely, Alain; Wu, Tom; Mohammed, Omar F.; Bakr, Osman M. (2015). "High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization". Nature Communications. 6: 7586. Bibcode:2015NatCo...6.7586S. doi:10.1038/ncomms8586. PMC 4544059. PMID 26145157.
  8. ^ Cheetham, Anthony K.; Seshadri, Ram; Wudl, Fred (2022-06-30). "Chemical synthesis and materials discovery". Nature Synthesis. 1 (7): 514–520. arXiv:2207.07052. Bibcode:2022NatSy...1..514C. doi:10.1038/s44160-022-00096-3. ISSN 2731-0582. S2CID 250199748.
  9. ^ Bakulin, A.A.; Selig, O.; Bakker, H.J.; Rezus, Y.L.A.; Muller, C.; Glaser, T.; Lovrincic, R.; Sun, Z.; Chen, Z.; Walsh, A.; Frost, J.M.; Jansen, T.L.C. (2015). "Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites" (PDF). J. Phys. Chem. Lett. 6 (18): 3663–3669. doi:10.1021/acs.jpclett.5b01555. hdl:10044/1/48952. PMID 26722739.
  10. ^ Pisoni, Andrea; Jaćimović, Jaćim; Barišić, Osor S.; Spina, Massimo; Gaál, Richard; Forró, László; Horváth, Endre (2014). "Ultra-Low Thermal Conductivity in Organic–Inorganic Hybrid Perovskite CH3NH3PbI3". The Journal of Physical Chemistry Letters. 5 (14): 2488–2492. arXiv:1407.4931. doi:10.1021/jz5012109. PMID 26277821. S2CID 33371327.
  11. ^ Juarez-Perez, Emilio J.; Hawash, Zafer; Raga, Sonia R.; Ono, Luis K.; Qi, Yabing (2016). "Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis". Energy Environ. Sci. 9 (11): 3406–3410. doi:10.1039/C6EE02016J. ISSN 1754-5692.
  12. ^ Williams, Alice E.; Holliman, Peter J.; Carnie, Matthew J.; Davies, Matthew L.; Worsley, David A.; Watson, Trystan M. (2014). "Perovskite processing for photovoltaics: a spectro-thermal evaluation". J. Mater. Chem. A. 2 (45): 19338–19346. doi:10.1039/C4TA04725G. ISSN 2050-7488.
  13. ^ Deschler, Felix; Price, Michael; Pathak, Sandeep; Klintberg, Lina E.; Jarausch, David-Dominik; Higler, Ruben; Hüttner, Sven; Leijtens, Tomas; Stranks, Samuel D.; Snaith, Henry J.; Atatüre, Mete; Phillips, Richard T.; Friend, Richard H. (2 April 2014). "High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors". The Journal of Physical Chemistry Letters. 5 (8): 1421–1426. doi:10.1021/jz5005285. PMID 26269988.
  14. ^ Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. (2014). "Interface engineering of highly efficient perovskite solar cells". Science. 345 (6196): 542–6. Bibcode:2014Sci...345..542Z. doi:10.1126/science.1254050. PMID 25082698. S2CID 32378923.
  15. ^ Heo, Jin Hyuck; Song, Dae Ho; Han, Hye Ji; Kim, Seong Yeon; Kim, Jun Ho; Kim, Dasom; Shin, Hee Won; Ahn, Tae Kyu; Wolf, Christoph; Lee, Tae-Woo; Im, Sang Hyuk (2015). "Planar CH3NH3PbI3 Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate". Advanced Materials. 27 (22): 3424–30. Bibcode:2015AdM....27.3424H. doi:10.1002/adma.201500048. PMID 25914242. S2CID 3165151.