Jump to content

Insect farming: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Tags: Mobile edit Mobile web edit Advanced mobile edit
 
(26 intermediate revisions by 16 users not shown)
Line 1: Line 1:
{{Short description|Raising and breeding insects as livestock}}
[[File:Bolikhamxay Thabok Crickets.JPG|thumb|Farming of crickets in Thailand.]]
[[File:Bolikhamxay Thabok Crickets.JPG|thumb|Farming of crickets in Thailand.]]
'''Insect farming''' is the practice of raising and breeding insects as [[livestock]], also referred to as ''minilivestock'' or ''micro stock''. Insects may be farmed for the commodities they produce (like [[silk]], [[honey]], [[lac]] or [[insect tea]]), or for them themselves; to be used [[insects as food|as food]], [[insects as feed|as feed]], as a dye, and otherwise.
'''Insect farming''' is the practice of raising and breeding insects as [[livestock]], also referred to as ''minilivestock'' or ''micro stock''. Insects may be farmed for the commodities they produce (like [[silk]], [[honey]], [[Lac (resin)|lac]] or [[insect tea]]), or for them themselves; to be used [[insects as food|as food]], [[insects as feed|as feed]], as a dye, and otherwise.


==Farming of popular insects==
==Farming of popular insects==
Line 7: Line 8:


=== Mealworms ===
=== Mealworms ===
The [[mealworm]] (''Tenebrio molitor'' L.) is the larvae form of a species of [[darkling beetle]]s (Coleoptera). The optimum incubation temperature is 25 ̊C - 27 ̊C and its embryonic development lasts 4 – 6 days. It has a long larvae period of about half a year with the optimum temperature and low moisture terminates.{{citation needed |date=April 2019}} The protein content of Tenebrio Molitor larvae, adult, exuvium and excreta are 46.44, 63.34, 32.87, and 18.51% respectively.<ref>{{cite journal |doi=10.7852/ijie.2012.25.1.093 |title=Nutritional Value of Mealworm, Tenebrio molitor as Food Source |year=2012 |last1=Ravzanaadii |first1=Nergui |last2=Kim |first2=Seong-Hyun |last3=Choi |first3=Won-Ho |last4=Hong |first4=Seong-Jin |last5=Kim |first5=Nam-Jung |journal=International Journal of Industrial Entomology |volume=25 |pages=93–98 |doi-access=free }}</ref>
The [[mealworm]] (''Tenebrio molitor'' L.) is the larvae form of a species of [[darkling beetle]]s (Coleoptera). The optimum incubation temperature is 25 ̊C - 27 ̊C and its embryonic development lasts 4 – 6 days. It has a long [[larva|larval]] period of about half a year with the optimum temperature and low moisture terminates.{{citation needed |date=April 2019}} The protein content of ''Tenebrio molitor'' larvae, adult, [[Exuviae|exuvium]] and [[excreta]] are 46.44, 63.34, 32.87, and 18.51% respectively.<ref>{{cite journal |doi=10.7852/ijie.2012.25.1.093 |title=Nutritional Value of Mealworm, Tenebrio molitor as Food Source |year=2012 |last1=Ravzanaadii |first1=Nergui |last2=Kim |first2=Seong-Hyun |last3=Choi |first3=Won-Ho |last4=Hong |first4=Seong-Jin |last5=Kim |first5=Nam-Jung |journal=International Journal of Industrial Entomology |volume=25 |pages=93–98 |doi-access=free }}</ref>

=== Buffaloworms ===
=== Buffaloworms ===
Buffaloworms, also called lesser mealworms, is the common name of ''[[Alphitobius diaperinus]]''. Its larvae superficially resemble small wireworms or true mealworms (Tenebrio spp.). They are approximately 7 to 11&nbsp;mm in length at last [[instar]]. Freshly-emerged larvae are a milky color. The pale color tinge returns to that of the first/second instar larva when preparing to molt, while a yellowish-brown appearance after [[molting]].{{citation needed|date=April 2019}} In addition, it was reported that it has the highest level of iron bioavailability.<ref>{{cite journal |doi=10.1111/nbu.12291 |title=Opportunities and hurdles of edible insects for food and feed |year=2017 |last1=Dobermann |first1=D. |last2=Swift |first2=J. A. |last3=Field |first3=L. M. |journal=Nutrition Bulletin |volume=42 |issue=4 |pages=293–308 |doi-access=free }}</ref>
Buffaloworms, also called lesser mealworms, is the common name of ''[[Alphitobius diaperinus]]''. Its larvae superficially resemble small [[wireworm]]s or true mealworms (''Tenebrio'' spp.). They are approximately 7 to 11&nbsp;mm in length at the last [[instar]]. Freshly emerged larvae are a milky color. The pale color tinge returns to that of the first/second instar larva when preparing to molt, while a yellowish-brown appearance after [[molting]].{{citation needed|date=April 2019}} In addition, it was reported that it has the highest level of [[iron]] bioavailability.<ref>{{cite journal |doi=10.1111/nbu.12291 |title=Opportunities and hurdles of edible insects for food and feed |year=2017 |last1=Dobermann |first1=D. |last2=Swift |first2=J. A. |last3=Field |first3=L. M. |journal=Nutrition Bulletin |volume=42 |issue=4 |pages=293–308 |doi-access=free }}</ref>


=== Honeybees ===
=== Honeybees ===
Commodities [[Honey bee#Bee products|harvested from]] [[honey bee|honeybee]]s include [[beeswax]], [[bee bread]], [[bee pollen]], [[propolis]], [[royal jelly]], [[brood (honey bee)|brood]], and [[honey]]. All of the aforementioned are mostly used in food, however, being wax, beeswax has many other uses, such as being used in [[candle]]s, and propolis may be used as a [[wood finish]]. In recent years, wild populations of honeybees{{check|date=May 2018}}<!-- Honeybees are usually domesticated animals; they have no wild populations, only feral ones --> have declined significantly.
Commodities [[Honey bee#Bee products|harvested from]] [[honey bee|honeybee]]s include [[beeswax]], [[bee bread]], [[bee pollen]], [[propolis]], [[royal jelly]], [[brood (honey bee)|brood]], and [[honey]]. All of the aforementioned are mostly used in food, however, being wax, beeswax has many other uses, such as being used in [[candle]]s, and propolis may be used as a [[wood finish]]. However, the presence of honeybees can negatively affect abundance and diversity of wild bees, with consequences for [[pollination]] of crops.<ref>{{Cite journal |last1=Angelella |first1=G. M. |last2=McCullough |first2=C. T. |last3=O’Rourke |first3=M. E. |date=2021-02-05 |title=Honey bee hives decrease wild bee abundance, species richness, and fruit count on farms regardless of wildflower strips |journal=Scientific Reports |language=en |volume=11 |issue=1 |pages=3202 |doi=10.1038/s41598-021-81967-1 |pmid=33547371 |pmc=7865060 |bibcode=2021NatSR..11.3202A |issn=2045-2322}}</ref>


=== Lac insects ===
=== Lac insects ===
[[Kerria lacca|Lac insects]] secrete a resinous substance called [[lac]]. Lac is used in many applications, from its use in food to being used as a colorant or as a [[wood finish]]. The majority of lac farming takes place in India and Thailand, with over 2 million residential employees.
[[Kerria lacca|Lac insects]] secrete a resinous substance called [[Lac (resin)|lac]]. Lac is used in many applications, from its use in food to being used as a colorant or as a [[wood finish]]. The majority of lac farming takes place in [[India]] and [[Thailand]], with over 2 million residential employees.


=== Cochineal ===
=== Cochineal ===
Line 23: Line 23:
===Crickets===
===Crickets===
[[File:Cricket Shelter Modular Edible Insect Farm IMG 20200219 163454590.jpg|thumb|right|Cricket Shelter Modular Edible Insect Farm, designed by [[Terreform ONE]] ]]
[[File:Cricket Shelter Modular Edible Insect Farm IMG 20200219 163454590.jpg|thumb|right|Cricket Shelter Modular Edible Insect Farm, designed by [[Terreform ONE]] ]]
Among the hundreds of different types of [[Cricket (insect)|crickets]], the [[house cricket]] (''Acheta domesticus'') is the most common type used for human consumption.<ref name=":0" /> The cricket is one of the most nutritious edible insects, and in many parts of the world, crickets are consumed [[dry roasting|dry-roasted]], [[baking|bake]]d, [[deep frying|deep-fried]], and [[boiling|boil]]ed. Cricket consumption may take the form of [[cricket flour]], a powder of dried and ground crickets, which is easily integrated into many food recipes. Crickets are commonly farmed for non-human animal food, as they provide much nutrition to the many species of reptiles, fish, birds and other mammals that consume them. Crickets are normally killed by deep freezing, where they feel no pain and are sedated before neurological death.
Among the hundreds of different types of [[Cricket (insect)|crickets]], the [[house cricket]] (''Acheta domesticus'') is the most common type used for human consumption.<ref name=":0" /> The cricket is one of the most nutritious edible insects, and in many parts of the world, crickets are consumed [[dry roasting|dry-roasted]], [[baking|bake]]d, [[deep frying|deep-fried]], and [[boiling|boil]]ed. Cricket consumption may take the form of [[cricket flour]], a powder of dried and ground crickets, which is easily integrated into many food recipes. Crickets are commonly farmed for non-human animal food, as they provide much nutrition to the many species of reptiles, fish, birds and other mammals that consume them. Crickets are normally killed by deep freezing.


=== Waxworms ===
=== Waxworms ===
[[Waxworm]]s are the larvae of wax moths. These caterpillars are used widely across the world for food, fish bait, animal testing and plastic degradation. Low in protein but high in fat content, they are a valuable source of fat for many [[Insectivore|insectivorous]] organisms. Waxworms are popular in many parts of the world, due to their ability to live in low temperatures and their simplicity in production.<ref>{{cite web|url=http://www.huffingtonpost.com/daniella-martin/what-do-bugs-taste-like-a_b_901775.html|title=What Do Bugs Taste Like, Anyway?|last=Martin|first=Daniella|date=2011-07-18|website=Huffington Post|language=en-US|access-date=2017-04-17}}</ref>
[[Waxworm]]s are the larvae of wax moths. These [[caterpillar]]s are used widely across the world for food, fish bait, animal testing and plastic degradation. Low in protein but high in fat content, they are a valuable source of fat for many [[Insectivore|insectivorous]] organisms. Waxworms are popular in many parts of the world, due to their ability to live in low temperatures and their simplicity in production.<ref>{{cite web|url=http://www.huffingtonpost.com/daniella-martin/what-do-bugs-taste-like-a_b_901775.html|title=What Do Bugs Taste Like, Anyway?|last=Martin|first=Daniella|date=2011-07-18|website=Huffington Post|language=en-US|access-date=2017-04-17}}</ref>


===Cockroaches===
===Cockroaches===
{{see|Cockroach farming}}
{{see|Cockroach farming}}
[[Cockroach]]es are farmed by the million in China, where they are used in traditional medicine and in cosmetics. The main species farmed is the [[American cockroach]] (''Periplaneta americana''). The cockroaches are reared on food such as potato and pumpkin peeling waste from restaurants, then scooped or vacuumed from their nests, killed in boiling water and dried in the sun.<ref>{{Cite web |date=2013-10-15 |title=Cockroach farms multiplying in China |url=https://www.latimes.com/world/la-fg-c1-china-cockroach-20131015-dto-htmlstory.html |access-date=2022-06-29 |website=Los Angeles Times |language=en-US}}</ref>
[[Cockroach]]es are farmed by the million in China, and became an area of growth in the early 2000s.


== As feed and food ==
== As feed and food ==
{{Main|insects as feed|insects as food}}
{{Main|insects as feed|insects as food}}
Insects are promising to be used as animal feed. For instance, fly larvae can replace fish meal due to the similar amino acid composition. It is possible to formulate fish meal to increase unsaturated fatty acid.<ref name="fstjournal.org">{{cite web |title=New trends in sustainable and healthy food sources: land shrimps and sea crickets |url=https://fstjournal.org/features/27-1/insects-as-foods}}</ref> Wild birds and free-range poultry can consume insects inform an adult, larval and pupal naturally.<ref>{{cite journal |last1=Sánchez-Muros |first1=M. J. |title=Insect meal as renewable source of food for animal feeding: a review |journal=Journal of Cleaner Production |volume=65 |date=2014 |issue=65 |pages=16–27|doi=10.1016/j.jclepro.2013.11.068 }}</ref> Grasshoppers and moth, as well as the housefly, are reported as the feed supplements of poultry.<ref>{{cite journal |last1=Rumpold |first1=B. A. |title=Potential and challenges of insects as an innovative source for food and feed production |journal=Innovative Food Science & Emerging Technologies |volume=17 |date=2013 |issue=17 |pages=1–11|doi=10.1016/j.ifset.2012.11.005 }}</ref> Apart from that, insects have the potential as the feeds for reptile, soft monkey as well as birds.<ref>{{cite web |title=insect product |url=http://ngn.co.nl/onze-producten/}}</ref>
Insects show promise as animal feed. For instance, fly larvae can replace [[fish meal]] due to the similar [[amino acid]] composition. It is possible to formulate fish meal to increase unsaturated [[fatty acid]].<ref name="fstjournal.org">{{cite web |title=New trends in sustainable and healthy food sources: land shrimps and sea crickets |url=https://fstjournal.org/features/27-1/insects-as-foods}}</ref> Wild birds and free-range poultry can consume insects in the adult, larval and pupal forms naturally.<ref>{{cite journal |last1=Sánchez-Muros |first1=M. J. |title=Insect meal as renewable source of food for animal feeding: a review |journal=Journal of Cleaner Production |volume=65 |date=2014 |issue=65 |pages=16–27|doi=10.1016/j.jclepro.2013.11.068 }}</ref> Grasshoppers and moths, as well as [[housefly|houseflies]], have been used as feed supplements for poultry.<ref>{{cite journal |last1=Rumpold |first1=B. A. |title=Potential and challenges of insects as an innovative source for food and feed production |journal=Innovative Food Science & Emerging Technologies |volume=17 |date=2013 |issue=17 |pages=1–11|doi=10.1016/j.ifset.2012.11.005 }}</ref> Apart from that, insects have potential as feed for reptiles, fish, mammals, as well as birds.<ref>{{cite web |title=insect product |url=http://ngn.co.nl/onze-producten/}}</ref>


Hundreds of species of crickets, [[grasshopper]]s, [[beetle]]s, [[moth]]s and various other insects are considered edible. Selected species are farmed for human consumption.<ref name=":0" /> Humans have been eating insects for as long as, as some sources suggest, 30,000 years.<ref>{{Cite book|title=Encyclopedia of entomology|date=2006-01-01|publisher=Springer|isbn=978-0792386704|oclc=964770230}}</ref> Today, insects are becoming increasingly viable as a source of sustainably produced protein, as conventional meat forms are very land-intensive and produce large quantities of [[methane]], a [[greenhouse gas]].<ref name=":0" /> Insects bred in captivity offer a low space-intensive, highly feed efficient{{Citation needed|reason=Crickets have a feed efficieny comparable to poultry and fish [[Feed conversion ratio#cite note-26]]|date=February 2018}}, relatively pollution-free, high-protein source of food for both humans and non-human animals. Insects have a high nutritional value, dense protein content and micronutrient and [[probiotic]] potential. Insects such as [[crickets]] and [[mealworm]]s have high concentrations of [[complete protein]], [[vitamin B12]], [[riboflavin]] and [[vitamin A]].<ref name=":0" /> Insects offer an economical solution to increasingly pressing food security and environmental issues concerning the production and distribution of protein to feed a growing world population.<ref name=":0" />
Hundreds of species of crickets, [[grasshopper]]s, [[beetle]]s, [[moth]]s and various other insects are considered edible. Selected species are farmed for human consumption.<ref name=":0" /> Humans have been eating insects for as long as (according to some sources) 30,000 years.<ref>{{Cite book|title=Encyclopedia of entomology|date=2006-01-01|publisher=Springer|isbn=978-0792386704|oclc=964770230}}</ref> Today insects are becoming increasingly viable as a source of sustainably produced protein, as conventional meat forms are very land-intensive and produce large quantities of [[methane]], a [[greenhouse gas]].<ref name=":0" /> Insects bred in captivity offer a low space-intensive,<ref name=":1" /> highly feed-efficient,<ref name=":0" /> relatively pollution-free,<ref name=":2">{{Cite journal |last1=Oonincx |first1=Dennis G. A. B. |last2=Itterbeeck |first2=Joost van |last3=Heetkamp |first3=Marcel J. W. |last4=Brand |first4=Henry van den |last5=Loon |first5=Joop J. A. van |last6=Huis |first6=Arnold van |date=2010-12-29 |title=An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption |journal=PLOS ONE |language=en |volume=5 |issue=12 |pages=e14445 |doi=10.1371/journal.pone.0014445 |issn=1932-6203 |pmc=3012052 |pmid=21206900|bibcode=2010PLoSO...514445O |doi-access=free }}</ref> high-protein source of food for both humans and non-human animals. Insects have a high nutritional value, dense protein content and [[micronutrient]] and [[probiotic]] potential. Insects such as [[crickets]] and [[mealworm]]s have high concentrations of [[complete protein]], [[vitamin B12]], [[riboflavin]] and [[vitamin A]].<ref name=":0" /> Insects offer an economical solution to increasingly pressing food security and environmental issues concerning the production and distribution of protein to feed a growing world population.<ref name=":0" />

The supposed environmental benefits of insects farming rely on the assumption that it replaces traditional animal farming, which is more polluting. But part of the production is used to feed livestock instead of humans. Additionally, insects that are intensively farmed are usually fed with [[Cereal|cereals]] and [[Soybean|soya]] that could feed humans. According to ''[[Time (magazine)|Time]]'', "[[Black soldier flies]] and Argentinian cockroaches are among the most efficient insect species, with food conversion ratios of between 1.4 and 2.7 to one, which means that even they eat more food than they produce", implying that "it’s far better to use croplands to feed people directly than to feed farmed insects."<ref>{{Cite web |last=Lymbery |first=Philip |date=2023-07-27 |title=Insect Farming Isn't Going to Save the Planet |url=https://time.com/6298660/insect-farming-isnt-going-to-save-the-planet/ |access-date=2024-06-07 |website=Time |language=en}}</ref>


===Benefits===
===Benefits===
Purported benefits of the use of insects as food include:
Purported benefits of the use of insects as food include:
* Significantly less amounts of resource and space use, less amounts of waste produced, and emissions of very trace amounts of greenhouse gases.<ref name="huffingtonpost.com">{{Cite web | url=https://www.huffingtonpost.com/2014/02/10/eating-bugs-food_n_4726371.html?slideshow=true |title = HuffPost is now a part of Verizon Media|date = 10 February 2014}}</ref>
* Significantly lower amounts of resource and space use, lower amounts of waste produced, and emissions of very trace amounts of greenhouse gases, compared to traditional meat and when fed directly to humans.<ref name="huffingtonpost.com">{{Cite web | url=https://www.huffingtonpost.com/2014/02/10/eating-bugs-food_n_4726371.html?slideshow=true |title = HuffPost is now a part of Verizon Media| website=[[HuffPost]] |date = 10 February 2014}}</ref>
* They include many vitamins and essential minerals, contain [[dietary fiber]] (which is not present in meat),<ref>{{Cite web |url=https://www.livestrong.com/article/301054-list-of-non-fiber-foods/ | title=List of Non-Fiber Foods}}</ref> and are a [[complete protein]].<ref name="huffingtonpost.com"/> The protein count of 100 g of cricket is nearly equivalent to the amount in 100 g of [[lean ground beef]].<ref name="huffingtonpost.com"/>
* They include many [[vitamin]]s and essential minerals, contain [[dietary fiber]] (which is not present in meat),<ref>{{Cite web |url=https://www.livestrong.com/article/301054-list-of-non-fiber-foods/ | title=List of Non-Fiber Foods}}</ref> and are a [[complete protein]].<ref name="huffingtonpost.com"/> The protein count of 100 g of cricket is nearly equivalent to the amount in 100 g of [[lean ground beef]].<ref name="huffingtonpost.com"/>
* As opposed to meat, lower costs are required to care for and produce insects.<ref name=":0">{{Cite book |title=Edible insects: future prospects for food and feed security |last1=Joost |first1=Van Itterbeeck |last2=Harmke |first2=Klunder |first3=(FAO) |last3=Food and Agriculture Organization of the United Nations |isbn=9789251075968 |oclc=893013301}}</ref>
* As opposed to meat, lower costs are required to care for and produce insects.<ref name=":0">{{Cite book |title=Edible insects: future prospects for food and feed security |last1=Joost |first1=Van Itterbeeck |last2=Harmke |first2=Klunder |first3=(FAO) |last3=Food and Agriculture Organization of the United Nations |isbn=9789251075968 |oclc=893013301}}</ref>
* Faster growth and reproduction rates. Crickets mature rather quickly and are typically full-grown within 3 weeks to a month,<ref name=":0" /> and an individual female can lay from 1,200 to 1,500 eggs in three to four weeks. Cattle, however, become adults at 2 years, and the breeding ratio is four breeding animals for each market animal produced.<ref name=EofE>{{cite book |last=Capinera | first=John L. | title=Encyclopedia of Entomology | publisher=[[Kluwer Academic Publishers]] | year=2004 | isbn=978-0-7923-8670-4}}</ref>
* Faster growth and reproduction rates. Crickets mature rather quickly and are typically full-grown within 3 weeks to a month,<ref name=":0" /> and an individual female can lay from 1,200 to 1,500 eggs in three to four weeks. Cattle, however, become adults at 2 years, and the breeding ratio is four breeding animals for each market animal produced.<ref name=EofE>{{cite book |last=Capinera | first=John L. | title=Encyclopedia of Entomology | publisher=[[Kluwer Academic Publishers]] | year=2004 | isbn=978-0-7923-8670-4}}</ref>
* Unlike meat, insects rarely transmit diseases such as H1N1, mad cow disease, or salmonella.<ref name="huffingtonpost.com"/>
* Unlike meat, insects rarely transmit diseases such as [[H1N1]], [[mad cow disease]], or [[salmonella]].<ref name="huffingtonpost.com"/>


==== Reduced feed ====
==== Reduced feed ====
Cattle use 12 times the amount of feed that crickets do to produce an equal amount of protein.<ref name=":0" /> Crickets also only use a quarter of the feed of sheep and one half the amount of feed given to swine and chicken to produce an equivalent amount of protein.<ref name=":0" /> Crickets require only two pounds of feed to produce one pound of the finished product.<ref name=":0" /> Much of this efficiency is a result of crickets being [[ectotherm]]ic, as in they get their heat from the environment instead of having to expend energy to create their own body heat as typical mammals do.
Cattle use 12 times the amount of feed that crickets do to produce an equal amount of protein.<ref name=":0" /> Crickets also only use a quarter of the feed of sheep and one-half the amount of feed given to swine and chicken to produce an equivalent amount of protein.<ref name=":0" /> Crickets require only two pounds of feed to produce one pound of the finished product.<ref name=":0" /> Much of this efficiency is a result of crickets being [[ectotherm]]ic, as in they get their heat from the environment instead of having to expend energy to create their own body heat as typical mammals do.


==== Nutrient efficiency ====
==== Nutrient efficiency ====
[[Insects]] are [[nutrient]] efficient compared to other meat sources. The insect [[protein]] content is comparable to most meat products. Likewise, the [[fatty acid]] composition of [[edible insects]] is comparable to fish lipids, with high levels of [[polyunsaturated fatty acids]] (PUFAs). In addition, all parts on edible insect are efficiently used however, some parts on conventional [[livestock]] are not directly available for human consumption <ref name="fstjournal.org"/>
[[Insects]] are [[nutrient]]-efficient compared to other meat sources. The insect [[protein]] content is comparable to most meat products. Likewise, the [[fatty acid]] composition of [[edible insects]] is comparable to fish [[lipid]]s, with high levels of [[polyunsaturated fatty acids]] (PUFAs). In addition, all parts of edible insect are efficiently used whereas some parts of conventional [[livestock]] are not directly available for human consumption.<ref name="fstjournal.org"/>
The nutritional contents of insects vary with species as well as within species depending on their metamorphic stage, their habitat and their diet. For instance, the lipid composition of insects is largely dependent on their diet and metamorphic stage. Insect is abundant in other nutrients, [[Locust]]s for example contain between 8 and 20 milligrams of iron for every 100 grams of raw locust. Beef on the other hand contains roughly 6 milligrams of iron in the same amount of meat. Crickets as well are very efficient compared to their nutrients. For every 100 grams of substance crickets contain 12.9 grams of protein, 121 calories, and 5.5 grams of fat. Beef contains more protein containing 23.5 grams in 100 grams of substance, but also has roughly 3 times the calories, and four times the amount of fat as crickets do in 100 grams. So, per 100 grams of substance, crickets contain only half the nutrients of beef, except for iron. High levels of iron are implicated in [[Colorectal cancer|bowel cancer]]<ref>{{Cite web |url=http://www.medscape.com/viewarticle/502752_4 |title = Dietary Iron and Cancer}}</ref> and [[Cardiovascular disease|heart disease]].<ref>{{Cite web |url=http://www.webmd.com/heart-disease/news/20001025/too-much-iron-may-lead-to-heart-attack |title=Too Much Iron May Lead to Heart Attack}}</ref>
The nutritional contents of insects vary with species as well as within species, depending on their metamorphic stage, habitat, and diet. For instance, the lipid composition of insects is largely dependent on their diet and metamorphic stage. Insects are abundant in other nutrients. [[Locust]]s, for example, contain between 8 and 20 mg of iron in every 100 grams of raw locust. Beef, on the other hand, contains roughly 6 mg of iron in the same amount of meat. Crickets are also very nutrient-efficient. For every 100 grams of substance, crickets contain 12.9 grams of protein, 121 calories, and 5.5 grams of fat. Beef contains more protein, with 23.5 grams in 100 grams of substance, but also has roughly three times the calories and four times the amount of fat as crickets do in 100 grams. Therefore, per 100 grams of substance, crickets contain only half the nutrients of beef, except for iron. High levels of iron are implicated in [[Colorectal cancer|bowel cancer]]<ref>{{Cite web |url=http://www.medscape.com/viewarticle/502752_4 |title = Dietary Iron and Cancer}}</ref> and [[Cardiovascular disease|heart disease]].<ref>{{Cite web |url=http://www.webmd.com/heart-disease/news/20001025/too-much-iron-may-lead-to-heart-attack |title=Too Much Iron May Lead to Heart Attack}}</ref>
When considering the protein transition, cold-blood insects are enabling to convert food more efficiently: crickets only need 2.1&nbsp;kg feed for 1&nbsp;kg ‘meat’ while poultry and cows need about more than 2 times and 12 times of the feed<ref>{{cite web |title=Resources for our Future: Key issues and best practices in Resource Efficiency |url=https://hcss.nl/sites/default/files/files/reports/Resources_for_our_Future_webRweteringsrapp.pdf |publisher=The Hague Centre for Strategic Studies (HCSS) and TNO |access-date=15 April 2019}}</ref>
When considering the protein transition, cold-blooded insects can convert food more efficiently: crickets only need 2.1&nbsp;kg feed for 1&nbsp;kg ‘meat’, while poultry and cows need more than 2 times and 12 times of the feed, respectively.<ref>{{cite web |title=Resources for our Future: Key issues and best practices in Resource Efficiency |url=https://hcss.nl/sites/default/files/files/reports/Resources_for_our_Future_webRweteringsrapp.pdf |publisher=The Hague Centre for Strategic Studies (HCSS) and TNO |access-date=15 April 2019}}</ref>


==== Greenhouse gas emissions ====
==== Greenhouse gas emissions ====
The raising of livestock is responsible for 18% of all [[greenhouse gas]]es emitted.<ref name=":0" /> Alternative sources of protein, such as insects, replace protein sourced from livestock and help decrease the number of greenhouse gases emitted from food production. Insect raising has negligible emissions compared to livestock since no farmed insect species besides termites release methane,<ref name=":0" /> and none create ammonia.
The raising of livestock is responsible for 18% of all [[greenhouse gas]]es emitted.<ref name=":0" /> Alternative sources of protein, such as insects, replace protein sourced from livestock and help decrease the number of greenhouse gases emitted from food production. Insects produce less carbon dioxide, ammonia and methane than livestock such as pigs and cattle, with no farmed insect species besides [[Cockroach|cockroaches]] releasing methane at all.<ref name=":2" />


==== Land usage ====
==== Land usage ====
Livestock raising accounts for 70% of agricultural land use.<ref name=":1">{{Cite journal |last1=van Huis |first1=A. |last2=Dicke |first2=M. |last3=Loon |first3=J.J.A. van |title=Insects to feed the world |journal=Journal of Insects as Food and Feed |volume=1 |issue=1 |pages=3–5 |doi=10.3920/jiff2015.x002 |year=2015}}</ref> This results in a land-cover change which destroys local ecosystems and displaces people and wildlife. Insect farming is minimally space intensive compared to other conventional livestock, and can even take place in populated urban centers.<ref name=":1" />
Livestock raising accounts for 70% of agricultural land use.<ref name=":1">{{Cite journal |last1=van Huis |first1=A. |last2=Dicke |first2=M. |last3=Loon |first3=J.J.A. van |title=Insects to feed the world |journal=Journal of Insects as Food and Feed |volume=1 |issue=1 |pages=3–5 |doi=10.3920/jiff2015.x002 |year=2015}}</ref> This results in a land-cover change that destroys local ecosystems and displaces people and wildlife. Insect farming is minimally space-intensive compared to other conventional livestock, and can even take place in populated urban centers.<ref name=":1" />

== Insect welfare ==
{{See also|Animal welfare}}
There is uncertainty on whether insects are [[Sentience|sentient]] and have the ability to feel [[pain]].<ref name=":3">{{Cite news |last=Reynolds |first=Matt |title=Insect Farming Is Booming. But Is It Cruel? |url=https://www.wired.com/story/insect-farming-sentience/ |access-date=2024-06-06 |work=Wired |language=en-US |issn=1059-1028}}</ref>

One question is whether insects have the ability to sense noxious stimuli, known as [[nociception]]. According to [[Lars Chittka]], "almost every time scientists search for insect nociception, they find it." Insects shown to have nociception include flies, bees and beetles.<ref name=":3" />

Another question is whether these noxious stimuli can lead to a [[subjective experience]] of pain, notably when processed inside a brain. Scientists often look for behavioral cues, such as how animals react when injured.<ref>{{Cite web |last=Chittka |first=Lars |date=2023-07-01 |title=Do Insects Feel Joy and Pain? |url=https://www.scientificamerican.com/article/do-insects-feel-joy-and-pain/ |access-date=2024-06-06 |website=Scientific American |language=en}}</ref><ref>{{Cite web |last=Gorvett |first=Zaria |date=29 November 2021 |title=Why insects are more sensitive than they seem |url=https://www.bbc.com/future/article/20211126-why-insects-are-more-sensitive-than-they-seem |access-date=2024-06-06 |website=BBC |language=en-GB}}</ref> Research on insect sentience is relatively overlooked. Additionally, the findings may not generalize well, as some types of insects are more likely to exhibit sentience, or to a greater degree, than others.<ref name=":3" />

According to [[Jonathan Birch (philosopher)|Jonathan Birch]], "If we’re going to farm animals that are candidates for sentience, then there should be welfare standards". Professor [[Bob Fischer (philosopher)|Bob Fischer]] also argued that "If there are [[Animal welfare|welfare]] concerns, you’ve got to intervene at the planning stages, when those facilities are being designed and constructed".<ref name=":3" />

Relevant environmental factors include "temperature, moisture levels, lighting, how crowded the insects are, and what they eat."<ref name=":3" />


== Processing methods ==
== Processing methods ==
With the concerning on animal health and welfare about the tolerance on pain, processing on the insects can be mainly concluded as: harvesting and cleaning, inactivation, heating and drying depending on the final product and rearing methods.<ref>{{cite book |last1=Hakman,Peters & van Huis |title=Admission procedure for insects such as mini-cattle (Dutch version) |date=1 September 2013 |url=http://edepot.wur.nl/353333}}</ref><ref name="fstjournal.org"/>
With the concern for pain tolerance in animal health and welfare, processing the insects can be mainly concluded as: harvesting and cleaning, inactivation, heating and drying, depending on the final product and rearing methods.<ref>{{cite book |last1=Hakman,Peters & van Huis |title=Admission procedure for insects such as mini-cattle (Dutch version) |date=1 September 2013 |url=http://edepot.wur.nl/353333}}</ref><ref name="fstjournal.org"/>


=== Harvesting and cleaning ===
=== Harvesting and cleaning ===
Insects at different life stages can be collected by sieving followed by water cleaning when it is necessary to remove biomass or excretion. Before processing, the insects are sieved and stored alive at 4 for about one day without any feed.<ref>{{cite journal |title=Extraction and characterisation of protein fractions from five insect species |journal=Food Chemistry |date=2013 |volume=141 |issue=4 |pages=3341–3348|doi=10.1016/j.foodchem.2013.05.115 |pmid=23993491 |last1=Yi |first1=Liya |last2=Lakemond |first2=Catriona M.M. |last3=Sagis |first3=Leonard M.C. |last4=Eisner-Schadler |first4=Verena |last5=Van Huis |first5=Arnold |last6=Van Boekel |first6=Martinus A.J.S. }}</ref>
Insects at different life stages can be collected by sieving followed by water cleaning when it is necessary to remove biomass or excretion. Before processing, the insects are sieved and stored alive at 4 °C for about one day without any feed.<ref>{{cite journal |title=Extraction and characterisation of protein fractions from five insect species |journal=Food Chemistry |date=2013 |volume=141 |issue=4 |pages=3341–3348|doi=10.1016/j.foodchem.2013.05.115 |pmid=23993491 |last1=Yi |first1=Liya |last2=Lakemond |first2=Catriona M.M. |last3=Sagis |first3=Leonard M.C. |last4=Eisner-Schadler |first4=Verena |last5=Van Huis |first5=Arnold |last6=Van Boekel |first6=Martinus A.J.S. }}</ref>


=== Inactivation ===
=== Inactivation ===
An inactivation step is needed to inactive any enzymes and microbes on the insects. The enzymatic browning reaction (mainly phenolase or phenol oxidase<ref>{{cite journal |title=Involvement of phenoloxidase in browning during grinding of Tenebrio molitor larvae |journal=PLOS ONE |date=2017 |volume=12 |issue=12 |page=e0189685|doi=10.1371/journal.pone.0189685 |pmid=29244828 |pmc=5731683 |bibcode=2017PLoSO..1289685J |last1=Janssen |first1=Renske H. |last2=Lakemond |first2=Catriona M. M. |last3=Fogliano |first3=Vincenzo |last4=Renzone |first4=Giovanni |last5=Scaloni |first5=Andrea |last6=Vincken |first6=Jean-Paul |doi-access=free }}</ref>) can cause the brown or black color on the insect, which leads to discoloration and the off-flavor.
An inactivation step is needed to inactive any [[enzyme]]s and microbes on the insects. The enzymatic browning reaction (mainly [[phenolase]] or [[phenol oxidase]]<ref>{{cite journal |title=Involvement of phenoloxidase in browning during grinding of Tenebrio molitor larvae |journal=PLOS ONE |date=2017 |volume=12 |issue=12 |page=e0189685|doi=10.1371/journal.pone.0189685 |pmid=29244828 |pmc=5731683 |bibcode=2017PLoSO..1289685J |last1=Janssen |first1=Renske H. |last2=Lakemond |first2=Catriona M. M. |last3=Fogliano |first3=Vincenzo |last4=Renzone |first4=Giovanni |last5=Scaloni |first5=Andrea |last6=Vincken |first6=Jean-Paul |doi-access=free }}</ref>) can cause the brown or black color on the insect, which leads to discoloration and an off-flavor.


=== Heat-treatment ===
=== Heat-treatment ===
Sufficient heat treatment is required to kill [[enterobacteriaceae]] so that the product can meet the safety requirement. D-value and Z-value can be used to estimate the effectiveness of heat treatments. The temperature and duration of the heating will cause insect proteins' denaturation and changes the functional properties of proteins.
Sufficient heat treatment is required to kill [[enterobacteriaceae]] so that the product can meet safety requirements. D-value and Z-value can be used to estimate the effectiveness of heat treatments. The temperature and duration of the heating will cause insect proteins' [[Denaturation (biochemistry)|denaturation]] and changes the functional properties of proteins.


=== Drying ===
=== Drying ===
To prevent spoilage, the products are dried to lower the moisture content and prolong the shelf life. Longer drying time results from a low evaporation rate due to the [[chitin]] layer, which can prevent the insect from dehydration during their lifetime. So the product in granules form give the advantages of further drying. In general, insects have a moisture level in the range of 55-65%. A drying process decreasing the moisture content to a level of less than 10% is good for preservation.
To prevent spoilage, the products are dried to lower moisture content and prolong shelf life. Longer drying time results from a low evaporation rate due to the [[chitin]] layer, which can prevent the insect from dehydrating during their lifetime. So the product being in granule form gives the advantage of further drying. In general, insects have a moisture level in the range of 55-65%. A drying process decreasing the moisture content to a level of <10% is good for preservation.


Besides the moisture level, oxidation of lipids can cause high levels of unsaturated fatty acids in products. Hence the processing steps influencing the final fat stability in products are necessary to be considered during drying.
Besides the moisture level, oxidation of lipids can cause high levels of unsaturated fatty acids. Hence the processing steps influencing the final fat stability in products are necessary to be considered during drying.


== Regulations in Europe ==
== Regulations in Europe ==
The use of insect meal as feed and food is limited by the legislation. Insects can be used in [[Novel Food]] according to the guidelines for market authorization of products of the European Union.<ref>{{cite web |title=Food Safety First – First time Right Regulatory roadmap for insect products in Feed and Food applications |url=https://nutricionanimal.info/download/IPIFF-Report-on-Regulatory-Barriers-related-to-insect-production.pdf}}</ref> The European Union Commission accepted the use of insects for fish feed in July 2017.<ref>{{cite web |title=Green light for insect protein in fish feed in EU |url=https://www.feednavigator.com/Article/2016/12/14/Green-light-for-insect-protein-in-fish-feed-in-EU}}</ref> However, the power to promote the scale-up of insects production becomes difficult when only a few participate in this market to change the rules. In Europe, safety documents for certain insects and accompanying products are required by the European Union (EFSA) and NVWA.<ref>{{cite web |title=Mealworms and foods: Food for people and fish |url=http://ngn.co.nl/wp-content/uploads/2017/10/Meelwormen-en-Maden-English-Translation.pdf}}</ref>
The use of insect meal as feed and food is limited by legislation. Insects can be used in [[Novel Food]] according to the [[European Union]] guidelines for market authorization of products.<ref>{{cite web |title=Food Safety First – First time Right Regulatory roadmap for insect products in Feed and Food applications |url=https://nutricionanimal.info/download/IPIFF-Report-on-Regulatory-Barriers-related-to-insect-production.pdf}}</ref> The European Union Commission accepted the use of insects for fish feed in July 2017.<ref>{{cite web |title=Green light for insect protein in fish feed in EU |url=https://www.feednavigator.com/Article/2016/12/14/Green-light-for-insect-protein-in-fish-feed-in-EU}}</ref> However, the power to promote the scale-up of insect production becomes difficult when few participate in this market to change the rules. In Europe, safety documents for certain insects and accompanying products are required by the European Union (EFSA) and NVWA.<ref>{{cite web |title=Mealworms and foods: Food for people and fish |url=http://ngn.co.nl/wp-content/uploads/2017/10/Meelwormen-en-Maden-English-Translation.pdf}}</ref>


==Footnotes==
==Footnotes==
Line 91: Line 105:
* [http://www.bangkokpost.com/learning/learning-from-news/352836/eating-insects-sudden-popularity Eating insects: Sudden popularity]
* [http://www.bangkokpost.com/learning/learning-from-news/352836/eating-insects-sudden-popularity Eating insects: Sudden popularity]
* [http://modernfarmer.com/2013/06/eating-bugs-world-entomophagy-harman-johar/ Apartment Bug Farm Is A Big Business], [[Modern Farmer (magazine)|Modern Farmer]]
* [http://modernfarmer.com/2013/06/eating-bugs-world-entomophagy-harman-johar/ Apartment Bug Farm Is A Big Business], [[Modern Farmer (magazine)|Modern Farmer]]
* [http://news.nationalgeographic.com/news/2013/13/130514-edible-insects-entomophagy-science-food-bugs-beetles/ U.N. Urges Eating Insects], [[National Geographic (magazine)|National Geographic]]
* [https://web.archive.org/web/20130606223425/http://news.nationalgeographic.com/news/2013/13/130514-edible-insects-entomophagy-science-food-bugs-beetles U.N. Urges Eating Insects], [[National Geographic (magazine)|National Geographic]]
* [https://www.theguardian.com/environment/2010/aug/01/insects-food-emissions Insect Food Emissions], [[The Guardian]]
* [https://www.theguardian.com/environment/2010/aug/01/insects-food-emissions Insect Food Emissions], [[The Guardian]]
* [http://www.onegreenplanet.org/animalsandnature/facts-on-animal-farming-and-the-environment/ One Green Planet]
* [http://www.onegreenplanet.org/animalsandnature/facts-on-animal-farming-and-the-environment/ One Green Planet]
Line 100: Line 114:
==See also==
==See also==
* [[Entomophagy]]
* [[Entomophagy]]
* [[Insects as food]]
* [[Entomophagy in humans]]
* [[Butterfly ranching in Papua New Guinea]]
* [[Butterfly ranching in Papua New Guinea]]
* [[Insect Farming and Trading Agency]]
* [[Insect Farming and Trading Agency]]
* [[Welfare of farmed insects]]
* [[Welfare of farmed insects]]
* [[Cricket flour]]
* [[Cricket flour]]
* [[Maggot farming]]


{{Agriculture footer}}
{{Agriculture footer}}

Latest revision as of 10:52, 12 June 2024

Farming of crickets in Thailand.

Insect farming is the practice of raising and breeding insects as livestock, also referred to as minilivestock or micro stock. Insects may be farmed for the commodities they produce (like silk, honey, lac or insect tea), or for them themselves; to be used as food, as feed, as a dye, and otherwise.

Farming of popular insects[edit]

Silkworms[edit]

Silkworms, the caterpillars of the domestic silkmoth, are kept to produce silk, an elastic fiber made when they are in the process of creating a cocoon. Silk is commonly regarded as a major cash crop and is used in the crafting of many textiles.

Mealworms[edit]

The mealworm (Tenebrio molitor L.) is the larvae form of a species of darkling beetles (Coleoptera). The optimum incubation temperature is 25 ̊C - 27 ̊C and its embryonic development lasts 4 – 6 days. It has a long larval period of about half a year with the optimum temperature and low moisture terminates.[citation needed] The protein content of Tenebrio molitor larvae, adult, exuvium and excreta are 46.44, 63.34, 32.87, and 18.51% respectively.[1]

Buffaloworms[edit]

Buffaloworms, also called lesser mealworms, is the common name of Alphitobius diaperinus. Its larvae superficially resemble small wireworms or true mealworms (Tenebrio spp.). They are approximately 7 to 11 mm in length at the last instar. Freshly emerged larvae are a milky color. The pale color tinge returns to that of the first/second instar larva when preparing to molt, while a yellowish-brown appearance after molting.[citation needed] In addition, it was reported that it has the highest level of iron bioavailability.[2]

Honeybees[edit]

Commodities harvested from honeybees include beeswax, bee bread, bee pollen, propolis, royal jelly, brood, and honey. All of the aforementioned are mostly used in food, however, being wax, beeswax has many other uses, such as being used in candles, and propolis may be used as a wood finish. However, the presence of honeybees can negatively affect abundance and diversity of wild bees, with consequences for pollination of crops.[3]

Lac insects[edit]

Lac insects secrete a resinous substance called lac. Lac is used in many applications, from its use in food to being used as a colorant or as a wood finish. The majority of lac farming takes place in India and Thailand, with over 2 million residential employees.

Cochineal[edit]

Made into a red dye known as carmine, cochineal are incorporated into many products, including cosmetics, food, paint, and fabric. About 100,000 insects are needed to make a single kilogram of dye. The shade of red the dye yields depends on how the insect is processed. France is the world's largest importer of carmine.

Crickets[edit]

Cricket Shelter Modular Edible Insect Farm, designed by Terreform ONE

Among the hundreds of different types of crickets, the house cricket (Acheta domesticus) is the most common type used for human consumption.[4] The cricket is one of the most nutritious edible insects, and in many parts of the world, crickets are consumed dry-roasted, baked, deep-fried, and boiled. Cricket consumption may take the form of cricket flour, a powder of dried and ground crickets, which is easily integrated into many food recipes. Crickets are commonly farmed for non-human animal food, as they provide much nutrition to the many species of reptiles, fish, birds and other mammals that consume them. Crickets are normally killed by deep freezing.

Waxworms[edit]

Waxworms are the larvae of wax moths. These caterpillars are used widely across the world for food, fish bait, animal testing and plastic degradation. Low in protein but high in fat content, they are a valuable source of fat for many insectivorous organisms. Waxworms are popular in many parts of the world, due to their ability to live in low temperatures and their simplicity in production.[5]

Cockroaches[edit]

Cockroaches are farmed by the million in China, where they are used in traditional medicine and in cosmetics. The main species farmed is the American cockroach (Periplaneta americana). The cockroaches are reared on food such as potato and pumpkin peeling waste from restaurants, then scooped or vacuumed from their nests, killed in boiling water and dried in the sun.[6]

As feed and food[edit]

Insects show promise as animal feed. For instance, fly larvae can replace fish meal due to the similar amino acid composition. It is possible to formulate fish meal to increase unsaturated fatty acid.[7] Wild birds and free-range poultry can consume insects in the adult, larval and pupal forms naturally.[8] Grasshoppers and moths, as well as houseflies, have been used as feed supplements for poultry.[9] Apart from that, insects have potential as feed for reptiles, fish, mammals, as well as birds.[10]

Hundreds of species of crickets, grasshoppers, beetles, moths and various other insects are considered edible. Selected species are farmed for human consumption.[4] Humans have been eating insects for as long as (according to some sources) 30,000 years.[11] Today insects are becoming increasingly viable as a source of sustainably produced protein, as conventional meat forms are very land-intensive and produce large quantities of methane, a greenhouse gas.[4] Insects bred in captivity offer a low space-intensive,[12] highly feed-efficient,[4] relatively pollution-free,[13] high-protein source of food for both humans and non-human animals. Insects have a high nutritional value, dense protein content and micronutrient and probiotic potential. Insects such as crickets and mealworms have high concentrations of complete protein, vitamin B12, riboflavin and vitamin A.[4] Insects offer an economical solution to increasingly pressing food security and environmental issues concerning the production and distribution of protein to feed a growing world population.[4]

The supposed environmental benefits of insects farming rely on the assumption that it replaces traditional animal farming, which is more polluting. But part of the production is used to feed livestock instead of humans. Additionally, insects that are intensively farmed are usually fed with cereals and soya that could feed humans. According to Time, "Black soldier flies and Argentinian cockroaches are among the most efficient insect species, with food conversion ratios of between 1.4 and 2.7 to one, which means that even they eat more food than they produce", implying that "it’s far better to use croplands to feed people directly than to feed farmed insects."[14]

Benefits[edit]

Purported benefits of the use of insects as food include:

  • Significantly lower amounts of resource and space use, lower amounts of waste produced, and emissions of very trace amounts of greenhouse gases, compared to traditional meat and when fed directly to humans.[15]
  • They include many vitamins and essential minerals, contain dietary fiber (which is not present in meat),[16] and are a complete protein.[15] The protein count of 100 g of cricket is nearly equivalent to the amount in 100 g of lean ground beef.[15]
  • As opposed to meat, lower costs are required to care for and produce insects.[4]
  • Faster growth and reproduction rates. Crickets mature rather quickly and are typically full-grown within 3 weeks to a month,[4] and an individual female can lay from 1,200 to 1,500 eggs in three to four weeks. Cattle, however, become adults at 2 years, and the breeding ratio is four breeding animals for each market animal produced.[17]
  • Unlike meat, insects rarely transmit diseases such as H1N1, mad cow disease, or salmonella.[15]

Reduced feed[edit]

Cattle use 12 times the amount of feed that crickets do to produce an equal amount of protein.[4] Crickets also only use a quarter of the feed of sheep and one-half the amount of feed given to swine and chicken to produce an equivalent amount of protein.[4] Crickets require only two pounds of feed to produce one pound of the finished product.[4] Much of this efficiency is a result of crickets being ectothermic, as in they get their heat from the environment instead of having to expend energy to create their own body heat as typical mammals do.

Nutrient efficiency[edit]

Insects are nutrient-efficient compared to other meat sources. The insect protein content is comparable to most meat products. Likewise, the fatty acid composition of edible insects is comparable to fish lipids, with high levels of polyunsaturated fatty acids (PUFAs). In addition, all parts of edible insect are efficiently used whereas some parts of conventional livestock are not directly available for human consumption.[7] The nutritional contents of insects vary with species as well as within species, depending on their metamorphic stage, habitat, and diet. For instance, the lipid composition of insects is largely dependent on their diet and metamorphic stage. Insects are abundant in other nutrients. Locusts, for example, contain between 8 and 20 mg of iron in every 100 grams of raw locust. Beef, on the other hand, contains roughly 6 mg of iron in the same amount of meat. Crickets are also very nutrient-efficient. For every 100 grams of substance, crickets contain 12.9 grams of protein, 121 calories, and 5.5 grams of fat. Beef contains more protein, with 23.5 grams in 100 grams of substance, but also has roughly three times the calories and four times the amount of fat as crickets do in 100 grams. Therefore, per 100 grams of substance, crickets contain only half the nutrients of beef, except for iron. High levels of iron are implicated in bowel cancer[18] and heart disease.[19] When considering the protein transition, cold-blooded insects can convert food more efficiently: crickets only need 2.1 kg feed for 1 kg ‘meat’, while poultry and cows need more than 2 times and 12 times of the feed, respectively.[20]

Greenhouse gas emissions[edit]

The raising of livestock is responsible for 18% of all greenhouse gases emitted.[4] Alternative sources of protein, such as insects, replace protein sourced from livestock and help decrease the number of greenhouse gases emitted from food production. Insects produce less carbon dioxide, ammonia and methane than livestock such as pigs and cattle, with no farmed insect species besides cockroaches releasing methane at all.[13]

Land usage[edit]

Livestock raising accounts for 70% of agricultural land use.[12] This results in a land-cover change that destroys local ecosystems and displaces people and wildlife. Insect farming is minimally space-intensive compared to other conventional livestock, and can even take place in populated urban centers.[12]

Insect welfare[edit]

There is uncertainty on whether insects are sentient and have the ability to feel pain.[21]

One question is whether insects have the ability to sense noxious stimuli, known as nociception. According to Lars Chittka, "almost every time scientists search for insect nociception, they find it." Insects shown to have nociception include flies, bees and beetles.[21]

Another question is whether these noxious stimuli can lead to a subjective experience of pain, notably when processed inside a brain. Scientists often look for behavioral cues, such as how animals react when injured.[22][23] Research on insect sentience is relatively overlooked. Additionally, the findings may not generalize well, as some types of insects are more likely to exhibit sentience, or to a greater degree, than others.[21]

According to Jonathan Birch, "If we’re going to farm animals that are candidates for sentience, then there should be welfare standards". Professor Bob Fischer also argued that "If there are welfare concerns, you’ve got to intervene at the planning stages, when those facilities are being designed and constructed".[21]

Relevant environmental factors include "temperature, moisture levels, lighting, how crowded the insects are, and what they eat."[21]

Processing methods[edit]

With the concern for pain tolerance in animal health and welfare, processing the insects can be mainly concluded as: harvesting and cleaning, inactivation, heating and drying, depending on the final product and rearing methods.[24][7]

Harvesting and cleaning[edit]

Insects at different life stages can be collected by sieving followed by water cleaning when it is necessary to remove biomass or excretion. Before processing, the insects are sieved and stored alive at 4 °C for about one day without any feed.[25]

Inactivation[edit]

An inactivation step is needed to inactive any enzymes and microbes on the insects. The enzymatic browning reaction (mainly phenolase or phenol oxidase[26]) can cause the brown or black color on the insect, which leads to discoloration and an off-flavor.

Heat-treatment[edit]

Sufficient heat treatment is required to kill enterobacteriaceae so that the product can meet safety requirements. D-value and Z-value can be used to estimate the effectiveness of heat treatments. The temperature and duration of the heating will cause insect proteins' denaturation and changes the functional properties of proteins.

Drying[edit]

To prevent spoilage, the products are dried to lower moisture content and prolong shelf life. Longer drying time results from a low evaporation rate due to the chitin layer, which can prevent the insect from dehydrating during their lifetime. So the product being in granule form gives the advantage of further drying. In general, insects have a moisture level in the range of 55-65%. A drying process decreasing the moisture content to a level of <10% is good for preservation.

Besides the moisture level, oxidation of lipids can cause high levels of unsaturated fatty acids. Hence the processing steps influencing the final fat stability in products are necessary to be considered during drying.

Regulations in Europe[edit]

The use of insect meal as feed and food is limited by legislation. Insects can be used in Novel Food according to the European Union guidelines for market authorization of products.[27] The European Union Commission accepted the use of insects for fish feed in July 2017.[28] However, the power to promote the scale-up of insect production becomes difficult when few participate in this market to change the rules. In Europe, safety documents for certain insects and accompanying products are required by the European Union (EFSA) and NVWA.[29]

Footnotes[edit]

  1. ^ Ravzanaadii, Nergui; Kim, Seong-Hyun; Choi, Won-Ho; Hong, Seong-Jin; Kim, Nam-Jung (2012). "Nutritional Value of Mealworm, Tenebrio molitor as Food Source". International Journal of Industrial Entomology. 25: 93–98. doi:10.7852/ijie.2012.25.1.093.
  2. ^ Dobermann, D.; Swift, J. A.; Field, L. M. (2017). "Opportunities and hurdles of edible insects for food and feed". Nutrition Bulletin. 42 (4): 293–308. doi:10.1111/nbu.12291.
  3. ^ Angelella, G. M.; McCullough, C. T.; O’Rourke, M. E. (2021-02-05). "Honey bee hives decrease wild bee abundance, species richness, and fruit count on farms regardless of wildflower strips". Scientific Reports. 11 (1): 3202. Bibcode:2021NatSR..11.3202A. doi:10.1038/s41598-021-81967-1. ISSN 2045-2322. PMC 7865060. PMID 33547371.
  4. ^ a b c d e f g h i j k l Joost, Van Itterbeeck; Harmke, Klunder; Food and Agriculture Organization of the United Nations, (FAO). Edible insects: future prospects for food and feed security. ISBN 9789251075968. OCLC 893013301.
  5. ^ Martin, Daniella (2011-07-18). "What Do Bugs Taste Like, Anyway?". Huffington Post. Retrieved 2017-04-17.
  6. ^ "Cockroach farms multiplying in China". Los Angeles Times. 2013-10-15. Retrieved 2022-06-29.
  7. ^ a b c "New trends in sustainable and healthy food sources: land shrimps and sea crickets".
  8. ^ Sánchez-Muros, M. J. (2014). "Insect meal as renewable source of food for animal feeding: a review". Journal of Cleaner Production. 65 (65): 16–27. doi:10.1016/j.jclepro.2013.11.068.
  9. ^ Rumpold, B. A. (2013). "Potential and challenges of insects as an innovative source for food and feed production". Innovative Food Science & Emerging Technologies. 17 (17): 1–11. doi:10.1016/j.ifset.2012.11.005.
  10. ^ "insect product".
  11. ^ Encyclopedia of entomology. Springer. 2006-01-01. ISBN 978-0792386704. OCLC 964770230.
  12. ^ a b c van Huis, A.; Dicke, M.; Loon, J.J.A. van (2015). "Insects to feed the world". Journal of Insects as Food and Feed. 1 (1): 3–5. doi:10.3920/jiff2015.x002.
  13. ^ a b Oonincx, Dennis G. A. B.; Itterbeeck, Joost van; Heetkamp, Marcel J. W.; Brand, Henry van den; Loon, Joop J. A. van; Huis, Arnold van (2010-12-29). "An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption". PLOS ONE. 5 (12): e14445. Bibcode:2010PLoSO...514445O. doi:10.1371/journal.pone.0014445. ISSN 1932-6203. PMC 3012052. PMID 21206900.
  14. ^ Lymbery, Philip (2023-07-27). "Insect Farming Isn't Going to Save the Planet". Time. Retrieved 2024-06-07.
  15. ^ a b c d "HuffPost is now a part of Verizon Media". HuffPost. 10 February 2014.
  16. ^ "List of Non-Fiber Foods".
  17. ^ Capinera, John L. (2004). Encyclopedia of Entomology. Kluwer Academic Publishers. ISBN 978-0-7923-8670-4.
  18. ^ "Dietary Iron and Cancer".
  19. ^ "Too Much Iron May Lead to Heart Attack".
  20. ^ "Resources for our Future: Key issues and best practices in Resource Efficiency" (PDF). The Hague Centre for Strategic Studies (HCSS) and TNO. Retrieved 15 April 2019.
  21. ^ a b c d e Reynolds, Matt. "Insect Farming Is Booming. But Is It Cruel?". Wired. ISSN 1059-1028. Retrieved 2024-06-06.
  22. ^ Chittka, Lars (2023-07-01). "Do Insects Feel Joy and Pain?". Scientific American. Retrieved 2024-06-06.
  23. ^ Gorvett, Zaria (29 November 2021). "Why insects are more sensitive than they seem". BBC. Retrieved 2024-06-06.
  24. ^ Hakman,Peters & van Huis (1 September 2013). Admission procedure for insects such as mini-cattle (Dutch version).
  25. ^ Yi, Liya; Lakemond, Catriona M.M.; Sagis, Leonard M.C.; Eisner-Schadler, Verena; Van Huis, Arnold; Van Boekel, Martinus A.J.S. (2013). "Extraction and characterisation of protein fractions from five insect species". Food Chemistry. 141 (4): 3341–3348. doi:10.1016/j.foodchem.2013.05.115. PMID 23993491.
  26. ^ Janssen, Renske H.; Lakemond, Catriona M. M.; Fogliano, Vincenzo; Renzone, Giovanni; Scaloni, Andrea; Vincken, Jean-Paul (2017). "Involvement of phenoloxidase in browning during grinding of Tenebrio molitor larvae". PLOS ONE. 12 (12): e0189685. Bibcode:2017PLoSO..1289685J. doi:10.1371/journal.pone.0189685. PMC 5731683. PMID 29244828.
  27. ^ "Food Safety First – First time Right Regulatory roadmap for insect products in Feed and Food applications" (PDF).
  28. ^ "Green light for insect protein in fish feed in EU".
  29. ^ "Mealworms and foods: Food for people and fish" (PDF).

References[edit]

See also[edit]