Hartle–Thorne metric: Difference between revisions
Appearance
Content deleted Content added
link |
Improved introduction. |
||
(20 intermediate revisions by 9 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Approximate solution to Einstein's field equations}} |
|||
{{technical|date=April 2019}} |
|||
{{general relativity|expanded=solutions}} |
|||
The '''Hartle-Thorne metric''' is a [[spacetime metric]] in [[General Relativity]] describes the exterior of a slowly and rigidly rotating, stationary and [[axially symmetric]] body.<ref>http://adsabs.harvard.edu/doi/10.1086/149707</ref> It is an approximate solution of the vacuum [[Einstein equations]].<ref name=revistas>https://revistas.ucr.ac.cr/index.php/matematica/article/view/29856</ref> |
|||
The '''Hartle–Thorne metric''' is an approximate solution of the vacuum [[Einstein field equations]] of general relativity<ref name="revistas">{{Cite journal |last1=Frutos Alfaro |first1=Francisco |last2=Soffel |first2=Michael |year=2017 |title=On the Post-Linear Quadrupole-Quadrupole Metric |journal=Revista de Matemática: Teoría y Aplicaciones |volume=24 |issue=2 |pages=239 |arxiv=1507.04264 |doi=10.15517/rmta.v24i2.29856 |s2cid=119159263}}</ref> that describes the exterior of a slowly and rigidly rotating, stationary and [[axially symmetric]] body.<ref>{{Cite journal |doi = 10.1086/149707|title = Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars|journal = The Astrophysical Journal|volume = 153|pages = 807|year = 1968|last1 = Hartle|first1 = James B.|last2 = Thorne|first2 = Kip S.|bibcode = 1968ApJ...153..807H|doi-access = free}}</ref> |
|||
The metric was found by [[James Hartle]] and [[Kip Thorne]] in the 1960s to study the spacetime outside [[neutron stars]], [[white dwarfs]] and [[supermassive stars]]. It can be shown that it is an approximation to the [[Kerr metric]] (which describes a rotating black hole) when the quadrupole moment is set as <math>q=-a^2aM^3</math>, which is the correct value for a black hole but not, in general, for other astrophysical objects. |
|||
The metric was found by [[James Hartle]] and [[Kip Thorne]] in the 1960s. |
|||
==Metric== |
==Metric== |
||
Up to second order in the [[angular momentum]] <math>J</math>, mass <math>M</math> and [[quadrupole moment]] <math>q</math>, the |
Up to second order in the [[angular momentum]] <math>J</math>, mass <math>M</math> and [[quadrupole moment]] <math>q</math>, the |
||
metric in [[spherical coordinates]] is given by<ref name=revistas/> |
metric in [[spherical coordinates]] is given by<ref name=revistas/> |
||
<math>\begin{align}g_{tt} &= - \left(1-\frac{2M}{r}+\frac{2q}{r^3} P_2 +\frac{2Mq}{r^4} P_2 +\frac{2q^2}{r^6} P^2_2 |
:<math>\begin{align}g_{tt} &= - \left(1-\frac{2M}{r}+\frac{2q}{r^3} P_2 +\frac{2Mq}{r^4} P_2 +\frac{2q^2}{r^6} P^2_2 |
||
-\frac{2}{3} \frac{J^2}{r^4} (2P_2+1)\right), \\ |
-\frac{2}{3} \frac{J^2}{r^4} (2P_2+1)\right), \\ |
||
g_{t\phi} &= -\frac{2J}{r}\sin^2\theta, \\ |
g_{t\phi} &= -\frac{2J}{r}\sin^2\theta, \\ |
||
Line 20: | Line 21: | ||
where |
where |
||
<math>P_2=\frac{3\cos^2\theta-1}{2}.</math> |
<math>P_2=\frac{3\cos^2\theta-1}{2}.</math> |
||
==See also== |
|||
{{Portal|Astronomy|Physics}} |
|||
* [[Kerr metric]] |
|||
{{clear}} |
|||
==References== |
==References== |
||
Line 26: | Line 32: | ||
{{DEFAULTSORT:Hartle-Thorne metric}} |
|||
[[Category:General relativity]] |
[[Category:General relativity]] |
||
[[Category:Metric tensors]] |
|||
{{relativity-stub}} |
Latest revision as of 18:59, 30 May 2024
General relativity |
---|
The Hartle–Thorne metric is an approximate solution of the vacuum Einstein field equations of general relativity[1] that describes the exterior of a slowly and rigidly rotating, stationary and axially symmetric body.[2]
The metric was found by James Hartle and Kip Thorne in the 1960s to study the spacetime outside neutron stars, white dwarfs and supermassive stars. It can be shown that it is an approximation to the Kerr metric (which describes a rotating black hole) when the quadrupole moment is set as , which is the correct value for a black hole but not, in general, for other astrophysical objects.
Metric
[edit]Up to second order in the angular momentum , mass and quadrupole moment , the metric in spherical coordinates is given by[1]
where
See also
[edit]References
[edit]- ^ a b Frutos Alfaro, Francisco; Soffel, Michael (2017). "On the Post-Linear Quadrupole-Quadrupole Metric". Revista de Matemática: Teoría y Aplicaciones. 24 (2): 239. arXiv:1507.04264. doi:10.15517/rmta.v24i2.29856. S2CID 119159263.
- ^ Hartle, James B.; Thorne, Kip S. (1968). "Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars". The Astrophysical Journal. 153: 807. Bibcode:1968ApJ...153..807H. doi:10.1086/149707.