Russo–Vallois integral: Difference between revisions
→Definitions: Just typos |
Citation bot (talk | contribs) Alter: journal. Add: isbn. | Use this bot. Report bugs. | Suggested by Abductive | Category:Articles lacking in-text citations from January 2012 | #UCB_Category 294/451 |
||
(8 intermediate revisions by 6 users not shown) | |||
Line 17: | Line 17: | ||
One sets: |
One sets: |
||
:<math>I^-(\varepsilon,t,f,dg)={1\over\varepsilon}\int_0^tf(s)(g(s+\varepsilon)-g(s))\,ds</math> |
:<math>I^-(\varepsilon,t,f,dg)={1\over\varepsilon}\int_0^tf(s)(g(s+\varepsilon)-g(s))\,ds</math> |
||
:<math>I^+(\varepsilon,t,f,dg)={1\over\varepsilon}\int_0^t f(s)(g(s)-g(s-\varepsilon)) \, ds</math> |
:<math>I^+(\varepsilon,t,f,dg)={1\over\varepsilon}\int_0^t f(s)(g(s)-g(s-\varepsilon)) \, ds</math> |
||
Line 26: | Line 27: | ||
'''Definition:''' The forward integral is defined as the ucp-limit of |
'''Definition:''' The forward integral is defined as the ucp-limit of |
||
:<math>I^-</math>: <math>\int_0^t fd^-g=\text{ucp-}\lim_{\varepsilon\rightarrow\infty}I^-(\varepsilon,t,f,dg).</math> |
:<math>I^-</math>: <math>\int_0^t fd^-g=\text{ucp-}\lim_{\varepsilon\rightarrow\infty (0?)}I^-(\varepsilon,t,f,dg).</math> |
||
'''Definition:''' The backward integral is defined as the ucp-limit of |
'''Definition:''' The backward integral is defined as the ucp-limit of |
||
:<math>I^+</math>: <math>\int_0^t f \, d^+g = \text{ucp-}\lim_{\varepsilon\rightarrow\infty}I^+(\varepsilon,t,f,dg).</math> |
:<math>I^+</math>: <math>\int_0^t f \, d^+g = \text{ucp-}\lim_{\varepsilon\rightarrow\infty (0?)}I^+(\varepsilon,t,f,dg).</math> |
||
'''Definition:''' The generalized bracket is defined as the ucp-limit of |
'''Definition:''' The generalized bracket is defined as the ucp-limit of |
||
Line 36: | Line 37: | ||
:<math>[f,g]_\varepsilon</math>: <math>[f,g]_\varepsilon=\text{ucp-}\lim_{\varepsilon\rightarrow\infty}[f,g]_\varepsilon (t).</math> |
:<math>[f,g]_\varepsilon</math>: <math>[f,g]_\varepsilon=\text{ucp-}\lim_{\varepsilon\rightarrow\infty}[f,g]_\varepsilon (t).</math> |
||
For continuous [[semimartingale]]s <math>X,Y</math> and a [[ |
For continuous [[semimartingale]]s <math>X,Y</math> and a [[càdlàg]] function H, the Russo–Vallois integral coincidences with the usual [[Itô integral]]: |
||
:<math>\int_0^t H_s \, dX_s=\int_0^t H \, d^-X.</math> |
:<math>\int_0^t H_s \, dX_s=\int_0^t H \, d^-X.</math> |
||
Line 83: | Line 84: | ||
==References== |
==References== |
||
*Russo, Vallois |
*{{cite journal|author=Russo, Francesco|author2=Vallois, Pierre|title=Forward, backward and symmetric integration|journal=Prob. Th. And Rel. Fields|volume=97|year=1993|pages=403–421|doi=10.1007/BF01195073|doi-access=free}} |
||
*Russo, Vallois |
*{{cite journal|author=Russo, F.|author2=Vallois, P.|title=The generalized covariation process and Ito-formula|journal=Stoch. Proc. And Appl.|volume=59|issue=1|pages=81–104|year=1995|doi=10.1016/0304-4149(95)93237-A|doi-access=free}} |
||
*{{cite book|author=Zähle, Martina|chapter=Forward Integrals and Stochastic Differential Equations|title=''In:'' Seminar on Stochastic Analysis, Random Fields and Applications III|series=Progress in Prob. Vol. 52|year=2002|pages=293–302|publisher=Birkhäuser, Basel|doi=10.1007/978-3-0348-8209-5_20|isbn=978-3-0348-9474-6 }} |
|||
*Zähle; Forward Integrals and SDE, Progress in Prob. Vol. 52 (2002) |
|||
*{{cite book|author=Adams, Robert A.|author2=Fournier, John J. F.|title=Sobolev Spaces|publisher=Elsevier|edition=second|year=2003|isbn=9780080541297 |url=https://books.google.com/books?id=R5A65Koh-EoC}} |
|||
*Fournier, Adams: Sobolev Spaces, Elsevier, second edition (2003) |
|||
{{Integrals}} |
|||
{{DEFAULTSORT:Russo-Vallois integral}} |
{{DEFAULTSORT:Russo-Vallois integral}} |
Latest revision as of 05:25, 25 December 2023
In mathematical analysis, the Russo–Vallois integral is an extension to stochastic processes of the classical Riemann–Stieltjes integral
for suitable functions and . The idea is to replace the derivative by the difference quotient
- and to pull the limit out of the integral. In addition one changes the type of convergence.
Definitions
[edit]Definition: A sequence of stochastic processes converges uniformly on compact sets in probability to a process
if, for every and
One sets:
and
Definition: The forward integral is defined as the ucp-limit of
- :
Definition: The backward integral is defined as the ucp-limit of
- :
Definition: The generalized bracket is defined as the ucp-limit of
- :
For continuous semimartingales and a càdlàg function H, the Russo–Vallois integral coincidences with the usual Itô integral:
In this case the generalised bracket is equal to the classical covariation. In the special case, this means that the process
is equal to the quadratic variation process.
Also for the Russo-Vallois Integral an Ito formula holds: If is a continuous semimartingale and
then
By a duality result of Triebel one can provide optimal classes of Besov spaces, where the Russo–Vallois integral can be defined. The norm in the Besov space
is given by
with the well known modification for . Then the following theorem holds:
Theorem: Suppose
Then the Russo–Vallois integral
exists and for some constant one has
Notice that in this case the Russo–Vallois integral coincides with the Riemann–Stieltjes integral and with the Young integral for functions with finite p-variation.
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. (January 2012) |
References
[edit]- Russo, Francesco; Vallois, Pierre (1993). "Forward, backward and symmetric integration". Prob. Th. And Rel. Fields. 97: 403–421. doi:10.1007/BF01195073.
- Russo, F.; Vallois, P. (1995). "The generalized covariation process and Ito-formula". Stoch. Proc. And Appl. 59 (1): 81–104. doi:10.1016/0304-4149(95)93237-A.
- Zähle, Martina (2002). "Forward Integrals and Stochastic Differential Equations". In: Seminar on Stochastic Analysis, Random Fields and Applications III. Progress in Prob. Vol. 52. Birkhäuser, Basel. pp. 293–302. doi:10.1007/978-3-0348-8209-5_20. ISBN 978-3-0348-9474-6.
- Adams, Robert A.; Fournier, John J. F. (2003). Sobolev Spaces (second ed.). Elsevier. ISBN 9780080541297.