Jump to content

Arithmetic combinatorics: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Copying material from Szemerédi's theorem
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5
 
(42 intermediate revisions by 24 users not shown)
Line 1: Line 1:
In mathematics, '''arithmetic combinatorics''' is a field in the intersection of [[number theory]], [[combinatorics]], [[ergodic theory]] and [[harmonic analysis]].
In [[mathematics]], '''[[arithmetic]] combinatorics''' is a field in the intersection of [[number theory]], [[combinatorics]], [[ergodic theory]] and [[harmonic analysis]].


==Scope==
==Scope==
Arithmetic combinatorics is about combinatorial estimates associated with arithmetic operations (addition, subtraction, multiplication, and division). '''Additive combinatorics''' is the special case when only the operations of addition and subtraction are involved.
Arithmetic combinatorics is about combinatorial estimates associated with arithmetic operations (addition, subtraction, multiplication, and division). [[Additive combinatorics]] is the special case when only the operations of addition and subtraction are involved.

[[Ben J. Green|Ben Green]] explains arithmetic combinatorics in his review of "Additive Combinatorics" by [[Terence Tao|Tao]] and [[Van H. Vu|Vu]].<ref>{{Cite journal|last=Green|first=Ben|date=July 2009|title=Book Reviews: Additive combinatorics, by Terence C. Tao and Van H. Vu|url=https://www.ams.org/journals/bull/2009-46-03/S0273-0979-09-01231-2/S0273-0979-09-01231-2.pdf|journal=Bulletin of the American Mathematical Society|volume= 46| issue = 3|pages=489–497|doi=10.1090/s0273-0979-09-01231-2|doi-access=free}}</ref>


Arithmetic combinatorics is explained in [[Ben J. Green|Green's]] [http://www.ams.org/bull/2009-46-03/S0273-0979-09-01231-2/S0273-0979-09-01231-2.pdf review] of "Additive Combinatorics" by [[Terence Tao|Tao]] and [[Van H. Vu|Vu]].
==Important results==
==Important results==
===Szemerédi's theorem===
===Szemerédi's theorem===
{{main|Szemerédi's theorem}}
{{main|Szemerédi's theorem}}
[[Szemerédi's theorem]] is a result in arithmetic combinatorics concerning [[arithmetic progression]]s in subsets of the integers. In 1936, [[Paul Erdős|Erdős]] and [[Pál Turán|Turán]] conjectured<ref name="erdos turan">{{cite journal|author-link1=Paul Erdős|first1=Paul|last1=Erdős|author-link2=Pál Turán|first2=Paul|last2=Turán|title=On some sequences of integers|journal=[[Journal of the London Mathematical Society]]|volume=11|issue=4|year=1936|pages=261–264|url=http://www.renyi.hu/~p_erdos/1936-05.pdf|mr=1574918|doi=10.1112/jlms/s1-11.4.261}}.</ref> that every set of integers ''A'' with positive [[natural density]] contains a ''k'' term arithmetic progression for every ''k''. This conjecture, which became Szemerédi's theorem, generalizes the statement of [[van der Waerden's theorem]].
[[Szemerédi's theorem]] is a result in arithmetic combinatorics concerning [[arithmetic progression]]s in subsets of the integers.

In 1936, [[Paul Erdős|Erdős]] and [[Paul Turán|Turán]] conjectured<ref name="erdos turan">{{citation|authorlink1=Paul Erdős|first1=Paul|last1=Erdős|authorlink2=Paul Turán|first2=Paul|last2=Turán|title=On some sequences of integers|journal=[[Journal of the London Mathematical Society]]|volume=11|issue=4|year=1936|pages=261–264|url=http://www.renyi.hu/~p_erdos/1936-05.pdf|doi=10.1112/jlms/s1-11.4.261}}.</ref> that every set of integers ''A'' with positive [[natural density]] contains a ''k'' term [[arithmetic progression]] for every ''k''. This conjecture, which became Szemerédi's theorem, generalizes the statement of [[van der Waerden's theorem]].
===Green–Tao theorem and extensions===
{{main|Green–Tao theorem}}
The [[Green–Tao theorem]], proved by [[Ben J. Green|Ben Green]] and [[Terence Tao]] in 2004,<ref>{{cite journal|doi=10.4007/annals.2008.167.481|first1=Ben|last1=Green|author1-link=Ben J. Green|first2=Terence|last2=Tao|author2-link=Terence Tao|arxiv=math.NT/0404188 |title=The primes contain arbitrarily long arithmetic progressions|journal=[[Annals of Mathematics]]|volume=167|year=2008|issue=2|pages=481–547|mr=2415379|s2cid=1883951 }}.</ref> states that the sequence of [[prime number]]s contains arbitrarily long [[arithmetic progression]]s. In other words, there exist arithmetic progressions of primes, with ''k'' terms, where ''k'' can be any natural number. The proof is an extension of [[Szemerédi's theorem]].

In 2006, Terence Tao and [[Tamar Ziegler]] extended the result to cover polynomial progressions.<ref>{{cite journal|first1=Terence|last1=Tao|author1-link=Terence Tao|first2=Tamar|last2=Ziegler|author2-link=Tamar Ziegler |title=The primes contain arbitrarily long polynomial progressions|journal=[[Acta Mathematica]]|volume=201|issue=2|year=2008|pages=213–305 |arxiv=math/0610050 | doi=10.1007/s11511-008-0032-5|mr=2461509|s2cid=119138411 }}.</ref> More precisely, given any [[integer-valued polynomial]]s ''P''<sub>1</sub>,..., ''P''<sub>''k''</sub> in one unknown ''m'' all with constant term 0, there are infinitely many integers ''x'', ''m'' such that ''x''&nbsp;+&nbsp;''P''<sub>1</sub>(''m''), ..., ''x''&nbsp;+&nbsp;''P''<sub>''k''</sub>(''m'') are simultaneously prime. The special case when the polynomials are ''m'', 2''m'', ..., ''km'' implies the previous result that there are length ''k'' arithmetic progressions of primes.

===Breuillard–Green–Tao theorem===

The Breuillard–Green–Tao theorem, proved by [[Emmanuel Breuillard]], [[Ben J. Green|Ben Green]], and [[Terence Tao]] in 2011,<ref>{{cite journal|doi=10.1007/s10240-012-0043-9|first1=Emmanuel|last1=Breuillard|author1-link=Emmanuel Breuillard|first2=Ben|last2=Green|author2-link=Ben J. Green|first3=Terence|last3=Tao|author3-link=Terence Tao|title=The structure of approximate groups
|journal=[[Publications Mathématiques de l'IHÉS]]|volume=116|year=2012|pages=115–221|mr=3090256|arxiv=1110.5008|s2cid=119603959 }}.</ref> gives a complete classification of approximate groups. This result can be seen as a nonabelian version of [[Freiman's theorem]], and a generalization of [[Gromov's theorem on groups of polynomial growth]].

==Example==
==Example==
If ''A'' is a set of ''N'' integers, how large or small can the [[sumset]]
If ''A'' is a set of ''N'' integers, how large or small can the [[sumset]]
Line 23: Line 35:


==Extensions==
==Extensions==
The sets being studied may also be subsets of algebraic structures other than the integers, for example, [[group (mathematics)|groups]], [[ring (mathematics)|rings]] and [[field (mathematics)|fields]].<ref>{{cite journal |title=A sum-product estimate in finite fields, and applications |first=Jean |last=Bourgain |first2=Nets |last2=Katz |first3=Terence |last3=Tao |year=2004 |journal=Geometric And Functional Analysis |volume=14 |issue=1 |pages=27–57 |doi=10.1007/s00039-004-0451-1 }}</ref>
The sets being studied may also be subsets of algebraic structures other than the integers, for example, [[group (mathematics)|groups]], [[ring (mathematics)|rings]] and [[field (mathematics)|fields]].<ref>{{cite journal |title=A sum-product estimate in finite fields, and applications |first1=Jean |last1=Bourgain |first2=Nets |last2=Katz |first3=Terence |last3=Tao |year=2004 |journal=[[Geometric and Functional Analysis]] |volume=14 |issue=1 |pages=27–57 |doi=10.1007/s00039-004-0451-1 | mr=2053599|arxiv=math/0301343 |s2cid=14097626 }}</ref>


==See also==
==See also==
*[[Additive number theory]]
*[[Additive number theory]]
*[[Approximate group]]
*[[Corners theorem]]
*[[Corners theorem]]
*[[Ergodic Ramsey theory]]
*[[Ergodic Ramsey theory]]
*[[Green–Tao theorem]]
*[[Problems involving arithmetic progressions]]
*[[Problems involving arithmetic progressions]]
<!-- *[[Restricted sum set]] -->
<!-- *[[Restricted sum set]] -->
Line 36: Line 48:
*[[Sidon set]]
*[[Sidon set]]
*[[Sum-free set]]
*[[Sum-free set]]
*[[Szemerédi's theorem]]
*[[Erdős–Szemerédi theorem|Sum-product problem]]


==Notes==
==Notes==
Line 42: Line 54:


==References==
==References==
* {{cite journal | first= Izabella | last = Łaba | authorlink = Izabella Łaba | title=From harmonic analysis to arithmetic combinatorics | journal=Bull. Amer. Math. Soc. | volume=45 | year=2008 | issue=01 | pages=77–115 | doi=10.1090/S0273-0979-07-01189-5 }}
* {{cite journal | first= Izabella | last = Łaba | author-link = Izabella Łaba | title=From harmonic analysis to arithmetic combinatorics | journal=Bull. Amer. Math. Soc. | volume=45 | year=2008 | issue=1 | pages=77–115 | doi=10.1090/S0273-0979-07-01189-5 | doi-access=free }}
*[http://www.cs.berkeley.edu/~luca/pubs/addcomb-sigact.pdf Additive Combinatorics and Theoretical Computer Science], Luca Trevisan, SIGACT News, June 2009
*[http://www.cs.berkeley.edu/~luca/pubs/addcomb-sigact.pdf Additive Combinatorics and Theoretical Computer Science] {{Webarchive|url=https://web.archive.org/web/20160304030143/http://www.cs.berkeley.edu/~luca/pubs/addcomb-sigact.pdf |date=2016-03-04 }}, Luca Trevisan, SIGACT News, June 2009
*{{cite book |last=Bibak|first=Khodakhast |editor-last1=Borwein |editor-first1=Jonathan M. |editor-last2=Shparlinski |editor-first2=Igor E. |editor-last3=Zudilin |editor-first3=Wadim |title=Number Theory and Related Fields: In Memory of Alf van der Poorten |publisher= Springer Proceedings in Mathematics & Statistics, Vol. 43, Springer, New York |date=2013 |pages= 99-128|chapter=Additive combinatorics with a view towards computer science and cryptography |doi=10.1007/978-1-4614-6642-0_4 |isbn=978-1-4614-6642-0}}
*{{cite book |last=Bibak|first=Khodakhast |editor-last1=Borwein |editor-first1=Jonathan M. |editor-last2=Shparlinski |editor-first2=Igor E. |editor-last3=Zudilin |editor-first3=Wadim |title=Number Theory and Related Fields: In Memory of Alf van der Poorten |publisher= Springer Proceedings in Mathematics & Statistics | volume=43 | location=New York |date=2013 |pages= 99–128|chapter=Additive combinatorics with a view towards computer science and cryptography |doi=10.1007/978-1-4614-6642-0_4 |arxiv=1108.3790 |isbn=978-1-4614-6642-0|s2cid=14979158 }}
*[http://people.math.gatech.edu/~ecroot/E2S-01-11.pdf Open problems in additive combinatorics], E Croot, V Lev
*[http://people.math.gatech.edu/~ecroot/E2S-01-11.pdf Open problems in additive combinatorics], E Croot, V Lev
*[http://www.ams.org/notices/200103/fea-tao.pdf From Rotating Needles to Stability of Waves: Emerging Connections between Combinatorics, Analysis, and PDE], [[Terence Tao]], AMS Notices March 2001
*[https://www.ams.org/notices/200103/fea-tao.pdf From Rotating Needles to Stability of Waves: Emerging Connections between Combinatorics, Analysis, and PDE], [[Terence Tao]], AMS Notices March 2001
* {{cite book | last1=Tao | first1=Terence | author1-link=Terence Tao | last2=Vu | first2=Van H. | author2-link=Van H. Vu | title=Additive combinatorics | series=Cambridge Studies in Advanced Mathematics | volume=105 | location=Cambridge | publisher=[[Cambridge University Press]] | year=2006 | isbn=0-521-85386-9 | zbl=1127.11002 }}
* {{cite book | last1=Tao | first1=Terence | author1-link=Terence Tao | last2=Vu | first2=Van H. | author2-link=Van H. Vu | title=Additive combinatorics | series=Cambridge Studies in Advanced Mathematics | volume=105 | location=Cambridge | publisher=[[Cambridge University Press]] | year=2006 | isbn=0-521-85386-9 | zbl=1127.11002 | mr=2289012 }}
* {{cite book | editor1-first=Andrew | editor1-last=Granville | editor1-link=Andrew Granville | editor2-first=Melvyn B. | editor2-last=Nathanson| editor3-first=József | editor3-last=Solymosi | title=Additive Combinatorics | series= CRM Proceedings & Lecture Notes | volume=43 | publisher=[[American Mathematical Society]] | year=2007 | isbn=978-0-8218-4351-2 | zbl=1124.11003 }}
* {{cite book | editor1-first=Andrew | editor1-last=Granville | editor1-link=Andrew Granville | editor2-first=Melvyn B. | editor2-last=Nathanson| editor3-first=József | editor3-last=Solymosi |editor3-link= József Solymosi | title=Additive Combinatorics | series= CRM Proceedings & Lecture Notes | volume=43 | publisher=[[American Mathematical Society]] | year=2007 | isbn=978-0-8218-4351-2 | zbl=1124.11003 }}
*{{cite book | first=Henry | last=Mann |authorlink=Henry Mann
*{{cite book | first=Henry | last=Mann |author-link=Henry Mann
|title=Addition Theorems: The Addition Theorems of Group Theory and Number Theory
|title=Addition Theorems: The Addition Theorems of Group Theory and Number Theory
|publisher=[http://www.krieger-publishing.com/subcats/MathematicsandStatistics/mathematicsandstatistics.html Robert E. Krieger Publishing Company]
|publisher= Robert E. Krieger Publishing Company
|location=Huntington, New York
|location=Huntington, New York
|year=1976
|year=1976
Line 57: Line 69:
|isbn=0-88275-418-1
|isbn=0-88275-418-1
}}
}}
* {{cite book | title=Additive Number Theory: the Classical Bases | volume=164 | series=Graduate Texts in Mathematics | author=Melvyn B. Nathanson | publisher=Springer-Verlag | year=1996 | isbn=0-387-94656-X }}
*{{cite book | title=Additive Number Theory: the Classical Bases | volume=164 | series=[[Graduate Texts in Mathematics]] | first=Melvyn B. | last=Nathanson | publisher=Springer-Verlag | year=1996 | isbn=0-387-94656-X | location=New York | mr=1395371}}
* {{cite book | title=Additive Number Theory: Inverse Problems and the Geometry of Sumsets | volume=165 | series=Graduate Texts in Mathematics | author=Melvyn B. Nathanson | publisher=Springer-Verlag | year=1996 | isbn=0-387-94655-1 }}
*{{cite book | title=Additive Number Theory: Inverse Problems and the Geometry of Sumsets | volume=165 | series=[[Graduate Texts in Mathematics]] | first=Melvyn B. | last=Nathanson | publisher=Springer-Verlag | year=1996 | isbn=0-387-94655-1 | location=New York | mr=1477155}}


==Further reading==
==Further reading==
*[http://www.math.ucla.edu/~tao/254a.1.03w/ Some Highlights of Arithmetic Combinatorics], resources by [[Terence Tao]]
*[https://www.math.ucla.edu/~tao/254a.1.03w/ Some Highlights of Arithmetic Combinatorics], resources by [[Terence Tao]]
*[http://math.stanford.edu/~ksound/Notes.pdf Additive Combinatorics: Winter 2007], K Soundararajan
*[http://math.stanford.edu/~ksound/Notes.pdf Additive Combinatorics: Winter 2007], K Soundararajan
*[http://lucatrevisan.wordpress.com/2009/04/17/earliest-connections-of-additive-combinatorics-and-computer-science/ Earliest Connections of Additive Combinatorics and Computer Science], Luca Trevisan
*[http://lucatrevisan.wordpress.com/2009/04/17/earliest-connections-of-additive-combinatorics-and-computer-science/ Earliest Connections of Additive Combinatorics and Computer Science], Luca Trevisan

{{Number theory}}


[[Category:Additive number theory]]
[[Category:Additive number theory]]
Line 70: Line 84:
[[Category:Ergodic theory]]
[[Category:Ergodic theory]]
[[Category:Additive combinatorics]]
[[Category:Additive combinatorics]]

{{numtheory-stub}}

Latest revision as of 23:26, 7 September 2023

In mathematics, arithmetic combinatorics is a field in the intersection of number theory, combinatorics, ergodic theory and harmonic analysis.

Scope

[edit]

Arithmetic combinatorics is about combinatorial estimates associated with arithmetic operations (addition, subtraction, multiplication, and division). Additive combinatorics is the special case when only the operations of addition and subtraction are involved.

Ben Green explains arithmetic combinatorics in his review of "Additive Combinatorics" by Tao and Vu.[1]

Important results

[edit]

Szemerédi's theorem

[edit]

Szemerédi's theorem is a result in arithmetic combinatorics concerning arithmetic progressions in subsets of the integers. In 1936, Erdős and Turán conjectured[2] that every set of integers A with positive natural density contains a k term arithmetic progression for every k. This conjecture, which became Szemerédi's theorem, generalizes the statement of van der Waerden's theorem.

Green–Tao theorem and extensions

[edit]

The Green–Tao theorem, proved by Ben Green and Terence Tao in 2004,[3] states that the sequence of prime numbers contains arbitrarily long arithmetic progressions. In other words, there exist arithmetic progressions of primes, with k terms, where k can be any natural number. The proof is an extension of Szemerédi's theorem.

In 2006, Terence Tao and Tamar Ziegler extended the result to cover polynomial progressions.[4] More precisely, given any integer-valued polynomials P1,..., Pk in one unknown m all with constant term 0, there are infinitely many integers x, m such that x + P1(m), ..., x + Pk(m) are simultaneously prime. The special case when the polynomials are m, 2m, ..., km implies the previous result that there are length k arithmetic progressions of primes.

Breuillard–Green–Tao theorem

[edit]

The Breuillard–Green–Tao theorem, proved by Emmanuel Breuillard, Ben Green, and Terence Tao in 2011,[5] gives a complete classification of approximate groups. This result can be seen as a nonabelian version of Freiman's theorem, and a generalization of Gromov's theorem on groups of polynomial growth.

Example

[edit]

If A is a set of N integers, how large or small can the sumset

the difference set

and the product set

be, and how are the sizes of these sets related? (Not to be confused: the terms difference set and product set can have other meanings.)

Extensions

[edit]

The sets being studied may also be subsets of algebraic structures other than the integers, for example, groups, rings and fields.[6]

See also

[edit]

Notes

[edit]
  1. ^ Green, Ben (July 2009). "Book Reviews: Additive combinatorics, by Terence C. Tao and Van H. Vu" (PDF). Bulletin of the American Mathematical Society. 46 (3): 489–497. doi:10.1090/s0273-0979-09-01231-2.
  2. ^ Erdős, Paul; Turán, Paul (1936). "On some sequences of integers" (PDF). Journal of the London Mathematical Society. 11 (4): 261–264. doi:10.1112/jlms/s1-11.4.261. MR 1574918..
  3. ^ Green, Ben; Tao, Terence (2008). "The primes contain arbitrarily long arithmetic progressions". Annals of Mathematics. 167 (2): 481–547. arXiv:math.NT/0404188. doi:10.4007/annals.2008.167.481. MR 2415379. S2CID 1883951..
  4. ^ Tao, Terence; Ziegler, Tamar (2008). "The primes contain arbitrarily long polynomial progressions". Acta Mathematica. 201 (2): 213–305. arXiv:math/0610050. doi:10.1007/s11511-008-0032-5. MR 2461509. S2CID 119138411..
  5. ^ Breuillard, Emmanuel; Green, Ben; Tao, Terence (2012). "The structure of approximate groups". Publications Mathématiques de l'IHÉS. 116: 115–221. arXiv:1110.5008. doi:10.1007/s10240-012-0043-9. MR 3090256. S2CID 119603959..
  6. ^ Bourgain, Jean; Katz, Nets; Tao, Terence (2004). "A sum-product estimate in finite fields, and applications". Geometric and Functional Analysis. 14 (1): 27–57. arXiv:math/0301343. doi:10.1007/s00039-004-0451-1. MR 2053599. S2CID 14097626.

References

[edit]

Further reading

[edit]