Naturally occurring zirconium (40Zr) is composed of four stable isotopes (of which one may in the future be found radioactive), and one very long-lived radioisotope (96Zr), a primordial nuclide that decays via double beta decay with an observed half-life of 2.0×1019 years;[4] it can also undergo single beta decay, which is not yet observed, but the theoretically predicted value of t1/2 is 2.4×1020 years.[5] The second most stable radioisotope is 93Zr, which has a half-life of 1.53 million years. Thirty other radioisotopes have been observed. All have half-lives less than a day except for 95Zr (64.02 days), 88Zr (83.4 days), and 89Zr (78.41 hours). The primary decay mode is electron capture for isotopes lighter than 92Zr, and the primary mode for heavier isotopes is beta decay.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Zr) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
List of isotopes
editNuclide [n 1] |
Z | N | Isotopic mass (Da)[6] [n 2][n 3] |
Half-life[1] [n 4][n 5] |
Decay mode[1] |
Daughter isotope [n 6] |
Spin and parity[1] [n 7][n 5] |
Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy | Normal proportion[1] | Range of variation | |||||||||||||||||
77Zr | 40 | 37 | 76.96608(43)# | 100# μs | 3/2−# | ||||||||||||||
78Zr | 40 | 38 | 77.95615(43)# | 50# ms [>200 ns] |
0+ | ||||||||||||||
79Zr | 40 | 39 | 78.94979(32)# | 56(30) ms | β+ | 79Y | 5/2+# | ||||||||||||
80Zr | 40 | 40 | 79.94121(32)# | 4.6(6) s | β+ | 80Y | 0+ | ||||||||||||
81Zr | 40 | 41 | 80.938245(99) | 5.5(4) s | β+ (99.88%) | 81Y | (3/2−) | ||||||||||||
β+, p (0.12%) | 80Sr | ||||||||||||||||||
82Zr | 40 | 42 | 81.9317075(17) | 32(5) s | β+ | 82Y | 0+ | ||||||||||||
83Zr | 40 | 43 | 82.9292409(69) | 42(2) s | β+ | 83Y | 1/2−# | ||||||||||||
β+, p (?%) | 82Sr | ||||||||||||||||||
83m1Zr | 52.72(5) keV | 0.53(12) μs | IT | 83Zr | (5/2−) | ||||||||||||||
83m2Zr | 77.04(7) keV | 1.8(1) μs | IT | 83Zr | (7/2+) | ||||||||||||||
84Zr | 40 | 44 | 83.9233257(59) | 25.8(5) min | β+ | 84Y | 0+ | ||||||||||||
85Zr | 40 | 45 | 84.9214432(69) | 7.86(4) min | β+ | 85Y | (7/2+) | ||||||||||||
85mZr | 292.2(3) keV | 10.9(3) s | IT (?%) | 85Zr | 1/2−# | ||||||||||||||
β+ (?%) | 85Y | ||||||||||||||||||
86Zr | 40 | 46 | 85.9162968(38) | 16.5(1) h | β+ | 86Y | 0+ | ||||||||||||
87Zr | 40 | 47 | 86.9148173(45) | 1.68(1) h | β+ | 87Y | 9/2+ | ||||||||||||
87mZr | 335.84(19) keV | 14.0(2) s | IT | 87Zr | 1/2− | ||||||||||||||
88Zr[n 8] | 40 | 48 | 87.9102207(58) | 83.4(3) d | EC | 88Y | 0+ | ||||||||||||
88mZr | 2887.79(6) keV | 1.320(25) μs | IT | 88Zr | 8+ | ||||||||||||||
89Zr | 40 | 49 | 88.9088798(30) | 78.360(23) h | β+ | 89Y | 9/2+ | ||||||||||||
89mZr | 587.82(10) keV | 4.161(10) min | IT (93.77%) | 89Zr | 1/2− | ||||||||||||||
β+ (6.23%) | 89Y | ||||||||||||||||||
90Zr[n 9] | 40 | 50 | 89.90469876(13) | Stable | 0+ | 0.5145(4) | |||||||||||||
90m1Zr | 2319.000(9) keV | 809.2(20) ms | IT | 90Zr | 5- | ||||||||||||||
90m2Zr | 3589.418(15) keV | 131(4) ns | IT | 90Zr | 8+ | ||||||||||||||
91Zr[n 9] | 40 | 51 | 90.90564021(10) | Stable | 5/2+ | 0.1122(5) | |||||||||||||
91mZr | 3167.3(4) keV | 4.35(14) μs | IT | 91Zr | (21/2+) | ||||||||||||||
92Zr[n 9] | 40 | 52 | 91.90503534(10) | Stable | 0+ | 0.1715(3) | |||||||||||||
93Zr[n 10] | 40 | 53 | 92.90647066(49) | 1.61(5)×106 y | β− (73%)[7] | 93m1Nb | 5/2+ | ||||||||||||
β− (27%)[7] | 93Nb | ||||||||||||||||||
94Zr[n 9] | 40 | 54 | 93.90631252(18) | Observationally stable[n 11] | 0+ | 0.1738(4) | |||||||||||||
95Zr[n 9] | 40 | 55 | 94.90804028(93) | 64.032(6) d | β− | 95Nb | 5/2+ | ||||||||||||
96Zr[n 12][n 9][n 13] | 40 | 56 | 95.90827762(12) | 2.34(17)×1019 y | β−β−[n 14] | 96Mo | 0+ | 0.0280(2) | |||||||||||
97Zr | 40 | 57 | 96.91096380(13) | 16.749(8) h | β− | 97mNb | 1/2+ | ||||||||||||
97mZr | 1264.35(16) keV | 104.8(17) ns | IT | 97Zr | 7/2+ | ||||||||||||||
98Zr | 40 | 58 | 97.9127404(91) | 30.7(4) s | β− | 98Nb | 0+ | ||||||||||||
98mZr | 6601.9(11) keV | 1.9(2) μs | IT | 98Zr | (17−) | ||||||||||||||
99Zr | 40 | 59 | 98.916675(11) | 2.1(1) s | β− | 99mNb | 1/2+ | ||||||||||||
99mZr | 251.96(9) keV | 336(5) ns | IT | 99Zr | 7/2+ | ||||||||||||||
100Zr | 40 | 60 | 99.9180105(87) | 7.1(4) s | β− | 100Nb | 0+ | ||||||||||||
101Zr | 40 | 61 | 100.9214585(89) | 2.29(8) s | β− | 101Nb | 3/2+ | ||||||||||||
102Zr | 40 | 62 | 101.9231542(94) | 2.01(8) s | β− | 102Nb | 0+ | ||||||||||||
103Zr | 40 | 63 | 102.9272041(99) | 1.38(7) s | β− (>99%) | 103Nb | (5/2−) | ||||||||||||
β−, n (<1%) | 102Nb | ||||||||||||||||||
104Zr | 40 | 64 | 103.929449(10) | 920(28) ms | β− (>99%) | 104Nb | 0+ | ||||||||||||
β−, n (<1%) | 103Nb | ||||||||||||||||||
105Zr | 40 | 65 | 104.934022(13) | 670(28) ms | β− (>98%) | 105Nb | 1/2+# | ||||||||||||
β−, n (<2%) | 104Nb | ||||||||||||||||||
106Zr | 40 | 66 | 105.93693(22)# | 179(6) ms | β− (>98%) | 106Nb | 0+ | ||||||||||||
β−, n (<2%) | 105Nb | ||||||||||||||||||
107Zr | 40 | 67 | 106.94201(32)# | 145.7(24) ms | β− (>77%) | 107Nb | 5/2+# | ||||||||||||
β−, n (<23%) | 106Nb | ||||||||||||||||||
108Zr | 40 | 68 | 107.94530(43)# | 78.5(20) ms | β− | 108Nb | 0+ | ||||||||||||
108mZr | 2074.5(8) keV | 540(30) ns | IT | 108Zr | (6+) | ||||||||||||||
109Zr | 40 | 69 | 108.95091(54)# | 56(3) ms | β− | 109Nb | 5/2+# | ||||||||||||
110Zr | 40 | 70 | 109.95468(54)# | 37.5(20) ms | β− | 110Nb | 0+ | ||||||||||||
111Zr | 40 | 71 | 110.96084(64)# | 24.0(5) ms | β− | 111Nb | 5/2+# | ||||||||||||
112Zr | 40 | 72 | 111.96520(75)# | 43(21) ms | β− | 112Nb | 0+ | ||||||||||||
113Zr | 40 | 73 | 112.97172(32)# | 15# ms [>550 ns] |
3/2+ | ||||||||||||||
114Zr[9] | 40 | 74 | 0+ | ||||||||||||||||
This table header & footer: |
- ^ mZr – Excited nuclear isomer.
- ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- ^ Bold half-life – nearly stable, half-life longer than age of universe.
- ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- ^ Bold symbol as daughter – Daughter product is stable.
- ^ ( ) spin value – Indicates spin with weak assignment arguments.
- ^ Second most powerful known neutron absorber
- ^ a b c d e f Fission product
- ^ Long-lived fission product
- ^ Believed to decay by β−β− to 94Mo with a half-life over 1.1×1017 years
- ^ Primordial radionuclide
- ^ Predicted to be capable of undergoing triple beta decay and quadruple beta decay with very long partial half-lives
- ^ Theorized to also undergo β− decay to 96Nb with a partial half-life greater than 2.4×1019 y[8]
Zirconium-88
edit88Zr is a radioisotope of zirconium with a half-life of 83.4 days. In January 2019, this isotope was discovered to have a neutron capture cross section of approximately 861,000 barns; this is several orders of magnitude greater than predicted, and greater than that of any other nuclide except xenon-135.[10]
Zirconium-89
edit89Zr is a radioisotope of zirconium with a half-life of 78.41 hours. It is produced by proton irradiation of natural yttrium-89. Its most prominent gamma photon has an energy of 909 keV.
Zirconium-89 is employed in specialized diagnostic applications using positron emission tomography[11] imaging, for example, with zirconium-89 labeled antibodies (immuno-PET).[12] For a decay table, see Maria Vosjan. "Zirconium-89 (89Zr)". Cyclotron.nl.
Zirconium-93
editThermal | Fast | 14 MeV | |
---|---|---|---|
232Th | not fissile | 6.70 ± 0.40 | 5.58 ± 0.16 |
233U | 6.979 ± 0.098 | 6.94 ± 0.07 | 5.38 ± 0.32 |
235U | 6.346 ± 0.044 | 6.25 ± 0.04 | 5.19 ± 0.31 |
238U | not fissile | 4.913 ± 0.098 | 4.53 ± 0.13 |
239Pu | 3.80 ± 0.03 | 3.82 ± 0.03 | 3.0 ± 0.3 |
241Pu | 2.98 ± 0.04 | 2.98 ± 0.33 | ? |
Nuclide | t1⁄2 | Yield | Q[a 1] | βγ |
---|---|---|---|---|
(Ma) | (%)[a 2] | (keV) | ||
99Tc | 0.211 | 6.1385 | 294 | β |
126Sn | 0.230 | 0.1084 | 4050[a 3] | βγ |
79Se | 0.327 | 0.0447 | 151 | β |
135Cs | 1.33 | 6.9110[a 4] | 269 | β |
93Zr | 1.53 | 5.4575 | 91 | βγ |
107Pd | 6.5 | 1.2499 | 33 | β |
129I | 16.14 | 0.8410 | 194 | βγ |
93Zr is a radioisotope of zirconium with a half-life of 1.53 million years, decaying through emission of a low-energy beta particle. 73% of decays populate an excited state of niobium-93, which decays with a half-life of 14 years and a low-energy gamma ray to the stable ground state of 93Nb, while the remaining 27% of decays directly populate the ground state.[7] It is one of only 7 long-lived fission products. The low specific activity and low energy of its radiations limit the radioactive hazards of this isotope.
Nuclear fission produces it at a fission yield of 6.3% (thermal neutron fission of 235U), on a par with the other most abundant fission products. Nuclear reactors usually contain large amounts of zirconium as fuel rod cladding (see zircaloy), and neutron irradiation of 92Zr also produces some 93Zr, though this is limited by 92Zr's low neutron capture cross section of 0.22 barns. Indeed, one of the primary reasons for using zirconium in fuel rod cladding is its low cross section.
93Zr also has a low neutron capture cross section of 0.7 barns.[14][15] Most fission zirconium consists of other isotopes; the other isotope with a significant neutron absorption cross section is 91Zr with a cross section of 1.24 barns. 93Zr is a less attractive candidate for disposal by nuclear transmutation than are 99Tc and 129I. Mobility in soil is relatively low, so that geological disposal may be an adequate solution. Alternatively, if the effect on the neutron economy of 93
Zr's higher cross section is deemed acceptable, irradiated cladding and fission product Zirconium (which are mixed together in most current nuclear reprocessing methods) could be used to form new zircalloy cladding. Once the cladding is inside the reactor, the relatively low level radioactivity can be tolerated, but transport and manufacturing might require special precautions.
References
edit- ^ a b c d e Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ^ "Standard Atomic Weights: Zirconium". CIAAW. 2024.
- ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- ^ "List of Adopted Double Beta (ββ) Decay Values". National Nuclear Data Center, Brookhaven National Laboratory.
- ^ H Heiskanen; M T Mustonen; J Suhonen (30 March 2007). "Theoretical half-life for beta decay of 96Zr". Journal of Physics G: Nuclear and Particle Physics. 34 (5): 837–843. doi:10.1088/0954-3899/34/5/005.
- ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
- ^ a b c Cassette, P.; Chartier, F.; Isnard, H.; Fréchou, C.; Laszak, I.; Degros, J.P.; Bé, M.M.; Lépy, M.C.; Tartes, I. (2010). "Determination of 93Zr decay scheme and half-life". Applied Radiation and Isotopes. 68 (1): 122–130. doi:10.1016/j.apradiso.2009.08.011. PMID 19734052.
- ^ Finch, S.W.; Tornow, W. (2016). "Search for the β decay of 96Zr". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 806: 70–74. Bibcode:2016NIMPA.806...70F. doi:10.1016/j.nima.2015.09.098.
- ^ Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of Zr110". Physical Review C. 103 (1): 014614. Bibcode:2021PhRvC.103a4614S. doi:10.1103/PhysRevC.103.014614. hdl:10261/260248. S2CID 234019083.
- ^ Shusterman, J.A.; Scielzo, N.D.; Thomas, K.J.; Norman, E.B.; Lapi, S.E.; Loveless, C.S.; Peters, N.J.; Robertson, J.D.; Shaughnessy, D.A.; Tonchev, A.P. (2019). "The surprisingly large neutron capture cross-section of 88Zr". Nature. 565 (7739): 328–330. Bibcode:2019Natur.565..328S. doi:10.1038/s41586-018-0838-z. OSTI 1512575. PMID 30617314. S2CID 57574387.
- ^ Dilworth, Jonathan R.; Pascu, Sofia I. (2018). "The chemistry of PET imaging with zirconium-89". Chemical Society Reviews. 47 (8): 2554–2571. doi:10.1039/C7CS00014F. PMID 29557435.
- ^ Van Dongen, GA; Vosjan, MJ (August 2010). "Immuno-positron emission tomography: shedding light on clinical antibody therapy". Cancer Biotherapy and Radiopharmaceuticals. 25 (4): 375–85. doi:10.1089/cbr.2010.0812. PMID 20707716.
- ^ M. B. Chadwick et al, "ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data", Nucl. Data Sheets 112(2011)2887. (accessed at www-nds.iaea.org/exfor/endf.htm)
- ^ "ENDF/B-VII.1 Zr-93(n,g)". National Nuclear Data Center, Brookhaven National Laboratory. 2011-12-22. Archived from the original on 2009-07-20. Retrieved 2014-11-20.
- ^ S. Nakamura; et al. (2007). "Thermal neutron capture cross-sections of Zirconium-91 and Zirconium-93 by prompt gamma-ray spectroscopy". Journal of Nuclear Science and Technology. 44 (1): 21–28. Bibcode:2007JNST...44...21N. doi:10.1080/18811248.2007.9711252. S2CID 96087661.
- Isotope masses from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- Isotopic compositions and standard atomic masses from:
- de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.