Beam tetrode

This is an old revision of this page, as edited by LSMFT (talk | contribs) at 10:59, 8 October 2021 (Provide source citation; reconcile lead paragraph with source). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

A beam tetrode, sometimes called a beam power tube, is a type of vacuum tube or thermionic valve that has two grids and forms the electron stream from the cathode into multiple partially collimated beams to produce a low potential space charge region between the anode and screen grid to return anode secondary emission electrons to the anode when the anode potential is less than that of the screen grid.[1][2] Beam tetrodes are usually used for power amplification, from audio frequency to radio frequency. The beam tetrode produces greater output power than a triode or pentode with the same anode supply voltage.[3] The first beam tetrode marketed was the Marconi N40, introduced in 1935.[4][5] Beam tetrodes manufactured and used in the 21st century include the 4CX1500A, KT66 and variants of the 6L6.

Radial beam power tetrode, designed for radio frequency use. This type of beam power tube does not use beam confining plates.
6L6 type beam tetrode electrode structures with anode cut open. The beam confining plates are the silver coloured structures to the left and right
Comparison of anode characteristic of beam power tube and power pentode
Twin beam tetrode RCA-815, used as the bias oscillator tube in the Ampex Model 300 "bathtub" 1/4" full-track professional audio tape recorder

History

In amplifier circuits, the useful anode voltage - anode current region of operation of the conventional tetrode tube was limited by the detrimental effect of secondary emission from the anode at anode potentials less than that of the screen grid.[6] The detrimental effect of anode secondary emission was solved by Philips/Mullard with the introduction of a suppressor grid, which resulted in the pentode design. Since Philips held a patent on this design, other manufacturers were keen to produce pentode type tubes without infringing the patent. In the UK, three EMI engineers (Isaac Shoenberg, Cabot Bull and Sidney Rodda) filed a patent on an alternative design in 1933.[7] Their design had the following features (compared to the normal pentode):

  • The apertures of the control and screen grids were aligned,[8] by winding the grids with the same pitch (the grids of the pentode used different pitches).
  • An auxiliary electrode structure at or near cathode potential and substantially outside of the electron stream, to establish a low electrostatic potential region between the screen grid and anode, limit the included angle of the beam and prevent anode secondary electrons outside of the beam region from reaching the screen[9][10][8] (the pentode has a suppressor grid in the electron stream).

The design is today known as the beam tetrode but historically was also known as a kinkless tetrode, since it had the same number of grids as the conventional tetrode but without the negative resistance kink in the anode current vs anode voltage characteristic curves of a true tetrode. Some authors, notably outside the United Kingdom, argue that the beam plates constitute a fifth electrode.[11][12]

The EMI design had the following advantages over the pentode:

  • The design produced more output power than a similar power pentode.[4]
  • The transconductance was higher than a similar power pentode.[13]
  • The plate resistance was lower than a similar power pentode.[13]
  • The screen grid current was about 5–10% of the anode current compared with about 20% for the pentode, thus the beam tetrode was more power-efficient.
  • The design introduced significantly less third-harmonic distortion into the signal than did the pentode.[14]

Disadvantages of the beam tetrode were:

  • It produced higher inherent intermodulation distortion than the pentode.
  • The beam tetrode had more tendency to oscillate than a triode if the circuit was not designed and laid out properly.[15]

The new tube was introduced at the Physical and Optical Societies' Exhibition in January 1935 as the Marconi N40.[4] Around one thousand of the N40 output tetrodes were produced, but MOV (Marconi-Osram Valve) company, under the joint ownership of EMI and GEC, considered the design too difficult to manufacture due to the need for good alignment of the grid wires.[5] As MOV had a design-share agreement with RCA of America, the design was passed to that company. RCA had the resources to produce a workable design, which resulted in the 6L6. Not long after, the beam tetrode appeared in a variety of offerings, including the 6V6 in December 1936, the MOV KT66 in 1937 and the KT88 in 1956, designed specifically for audio and highly prized by collectors today.

After the Phillips patent on the suppressor grid had expired, many beam tetrodes were referred to as "beam power pentodes". In addition, there were some examples of beam tetrodes designed to work in place of pentodes. The ubiquitous EL34, although manufactured by Mullard/Phillips and other European manufacturers as a true pentode, was also produced by other manufacturers (namely GE, Sylvania, and MOV) as a beam tetrode instead. The 6CA7 as manufactured by Sylvania and GE is a beam tetrode drop-in replacement for an EL34, and the KT77 is a similar design to the 6CA7 made by MOV.

A beam tetrode family widely used in the US comprised the 25L6, 35L6, and 50L6, and their miniature versions the 50B5 and 50C5. This family is not to be confused with the 6L6 despite similar designations. They were used in millions of All American Five AM radio receivers. Most of these used a transformerless power supply circuit. In American radio receivers with transformer power supplies, built from about 1940–1950, the 6V6, 6V6G, 6V6GT and miniature 6AQ5 beam tetrodes were very commonly used.

In military equipment, the 807 and 1625, with rated anode dissipations of 25 watts and operating from a supply of up to 750 volts, were in widespread use as the final amplifier in radio-frequency transmitters of up to 50 watts output power and in push-pull applications for audio. These tubes were very similar to a 6L6 but had a somewhat higher anode dissipation rating and the anode was connected to the top cap instead of a pin at the base. Large numbers entered the market after World War II and were used widely by radio amateurs in the USA and Europe through the 1950s and 1960s.

In the 1950s, the ultra-linear audio amplifier circuit was developed for beam tetrodes.[16] This amplifier circuit links the screen grids to taps on the output transformer, and provides reduced intermodulation distortion.

References

  1. ^ Donovan P. Geppert, (1951) Basic Electron Tubes, New York: McGraw-Hill, pp. 164 - 179. Retrieved 10 June 2021
  2. ^ Winfield G. Wagener, (May 1948) "500-Mc. Transmitting Tetrode Design Considerations", Proceedings of the I.R.E., p. 612. Retrieved 10 June 2021
  3. ^ Norman H. Crowhurst, (1959) basic audio vol. 2, New York: John F. Rider Publisher Inc., pp. 2-75, 2-76. Retrieved 7 Oct. 2021
  4. ^ a b c Editors, (Feb. 1935) "New Output Tetrode", Electronics, vol. 8 no.2, p. 65. Retrieved 10 June 2021
  5. ^ a b K. R. Thrower, (2009) British Radio Valves The Classic Years: 1926-1946, Reading, UK: Speedwell, pp. 125 - 126
  6. ^ John F. Rider, (1945) Inside the Vacuum Tube, New York: John F. Rider Publisher Inc., p. 294. Retrieved 10 June 2021
  7. ^ Schoenberg, Rodda, Bull, (1935) Improvements in and relating to thermionic valves, GB patent 423,932
  8. ^ a b Schoenberg, Rodda, Bull, (1938) Electron discharge device, US patent 2,107,519
  9. ^ Herbert J. Reich, Principles of Electron Tubes, McGraw-Hill, 1941, p. 72, Retrieved 10 June 2021
  10. ^ A. H. W. Beck, (1953) Thermionic Valves, Their Theory and Design, London: Cambridge University Press, p. 295. Retrieved 10 June 2021
  11. ^ Jeffrey Falla; Aurora Johnson (3 February 2011). How to Hot Rod Your Fender Amp: Modifying Your Amplifier for Magical Tone. Voyageur Press. pp. 178–. ISBN 978-0-7603-3847-6. Retrieved 6 April 2012.
  12. ^ Stanley William Amos; Roger S. Amos; Geoffrey William Arnold Dummer (1999). Newnes Dictionary of Electronics. Newnes. pp. 318–. ISBN 978-0-7506-4331-3. Retrieved 6 April 2012.
  13. ^ a b Geppert (1951) p. 169
  14. ^ Radiotron Designer's Handbook, F. Langford-Smith ed., 4th edition, Wireless Press, Sydney 1954. Section 13.3 (x), page 569:
  15. ^ L. C. Hollands (Mar. 1939) "Circuit Design Related to Tube Performance". Electronics. pp. 18 - 20. Retrieved 2 Oct. 2021
  16. ^ Hafler, David; Keroes, Herbert I (November 1951), "An Ultra-Linear Amplifier" (PDF), Audio Engineering: 15–17, archived from the original (PDF) on March 29, 2016 Alt URL.