Ring-opening polymerization: Difference between revisions

Content deleted Content added
cycloalk_a_nes even!
ref
 
(13 intermediate revisions by 5 users not shown)
Line 19:
[[File:General scheme ionic prop.png|thumb|600px|General scheme ionic propagation. Propagating center can be radical, cationic or anionic.]]
 
In [[polymer chemistry]], '''ring-opening polymerization''' ('''ROP''') is a form of [[chain-growth polymerization]] in which the [[End group|terminus]] of a [[polymer]] chain attacks [[cyclic compound|cyclic monomers]] to form a longer polymer (see figure). The reactive center can be [[Radical (chemistry)|radical]], [[anion]]ic or [[cation]]ic. Some cyclic monomers such as [[norbornene]] or [[cyclooctadiene]] can be polymerized to high [[molecular mass|molecular weight]] polymers by using metal [[Catalysis|catalysts]]. ROP is a versatile method for the synthesis of [[biopolymer]]s.
 
Ring-opening of cyclic monomers is often driven by the relief of [[ring strain|bond-angle strain]]. Thus, as is the case for other types of polymerization, the [[enthalpy]] change in ring-opening is negative.<ref name=Young>{{cite book|last=Young|first=Robert J.|title=Introduction to Polymers|year=2011|publisher=CRC Press|location=Boca Raton|isbn=978-0-8493-3929-5}}</ref> Many rings undergo ROP.<ref>{{cite journal |doi=10.1007/s00726-006-0432-9}}</ref>
 
==Monomers==
Many [[cyclic compound|Cycliccyclic monomers]] that are amenable to ROP include [[epoxide]]s, cyclic trisiloxanes, some lactones, [[lactide]]s, [[cyclic carbonate]]s, and [[amino acid N-carboxyanhydride|amino acid ''N''-carboxyanhydride]]s.<ref>{{Citecite journal |last1doi=JEROME10.3390/polym5020361|first1doi-access=Cfree |last2title=LECOMTE|first2=P|date=2008Ring-06-10|title=RecentOpening advancesPolymerization—An inIntroductory theReview synthesis of aliphatic polyesters by ring-opening polymerization☆|journaldate=Advanced2013 Drug Delivery Reviews|volumelast1=60Nuyken |issuefirst1=9Oskar |pageslast2=1056–1076Pask |doifirst2=10.1016/j.addr.2008.02.008Stephen |pmidjournal=18403043Polymers |hdlvolume=2268/37235 |issnissue=0169-409X2 |urlpages=http://orbi.ulg.ac.be/handle/2268/3723|hdl-access=free361–403 }}</ref> These include [[epoxide]]s,<ref name=Sarazin>{{cite journal|title=Discrete Cationic Complexes for Ring-Opening Polymerization Catalysis of Cyclic Esters and Epoxides|author=Yann Sarazin |author2=Jean-François Carpentier |journal=Chemical Reviews|year=2015|volume=115|issue=9|pages=3564–3614|doi=10.1021/acs.chemrev.5b00033|pmid=25897976}}</ref><ref name=Longo>{{cite journal|title=Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides with Discrete Metal Complexes: Structure–Property Relationships|first1=Julie M.|last1=Longo|first2=Maria J.|last2= Sanford|first3=Geoffrey W.|last3=Coates|journal=Chemical Reviews|year=2016|volume=116|issue=24|pages=15167–15197|doi=10.1021/acs.chemrev.6b00553|pmid=27936619}}</ref> cyclic trisiloxanes,{{cn|date=December 2023}} some lactones<ref name=Sarazin/><ref name=Jerome>{{citeCite journal|authorlast1=Kricheldorf, H. R. JEROME|yearfirst1=2006 C|last2=LECOMTE|first2=P|date=2008-06-10|title=PolypeptidesRecent andadvances 100in Yearsthe of Chemistrysynthesis of Α-Aminoaliphatic Acidpolyesters Nby ring-Carboxyanhydridesopening polymerization☆|journal=AngewandteAdvanced ChemieDrug International EditionDelivery Reviews|volume=4560|issue=359|pages=5752–57841056–1076|doi= 10.10021016/aniej.200600693addr.2008.02.008|pmid=16948174 18403043|hdl=2268/3723|issn=0169-409X|url=http://orbi.ulg.ac.be/handle/2268/3723|hdl-access=free}}</ref> Many strainedand [[cycloalkenelactide]]s,<ref e.gname=Jerome/> cyclic [[norborneneanhydride]]s,<ref are suitable monomers vianame=Longo/> [[ring-openingcyclic metathesis polymerizationcarbonate]]. Even highly strained [[cycloalkane]] ringss, such as [[cyclopropane]]<ref>{{cite journal |titlelast= The Polymerization of Cyclopropane Matsumura|first1first= R. J. Shuichi|last1author2=Tsukada, ScottKeisuke |first2author3=Toshima, H. E.Kazunobu |last2title=Enzyme-Catalyzed GunningRing-Opening |journal=Polymerization J.of Phys.1,3-Dioxan-2-one Chem.to Poly(trimethylene carbonate)|yearjournal=Macromolecules|date=May 1952 1997|volume= 56 30|issue= 1 10|pages= 156–160 3122–3124|doi= 10.1021/j150493a031 ma961862g|bibcode=1997MaMol..30.3122M}}</ref> and [[cyclobutane]]
</ref> and [[amino acid N-carboxyanhydride|amino acid ''N''-carboxyanhydride]]s.<ref>{{cite journal|author=Kricheldorf, H. R. |year=2006 |title=Polypeptides and 100 Years of Chemistry of α-Amino Acid ''N''-Carboxyanhydrides|journal=Angewandte Chemie International Edition |volume=45|issue=35|pages=5752–5784|doi= 10.1002/anie.200600693|pmid=16948174 }}</ref><ref>{{cite journal|title=Synthesis of Well-Defined Polypeptide-Based Materials via the Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides|author=Nikos Hadjichristidis |author2=Hermis Iatrou |author3=Marinos Pitsikalis |author4=Georgios Sakellariou |journal=Chemical Reviews|year=2009|volume=109|issue=11|pages= 5528–5578|doi=10.1021/cr900049t|pmid=19691359}}</ref> Many strained [[cycloalkene]]s, e.g [[norbornene]], are suitable monomers via [[ring-opening metathesis polymerization]]. Even highly strained [[cycloalkane]] rings, such as [[cyclopropane]]<ref>{{cite journal |title= The Polymerization of Cyclopropane |first1= R. J. |last1= Scott |first2= H. E. |last2= Gunning |journal= J. Phys. Chem. |year= 1952 |volume= 56 |issue= 1 |pages= 156–160 |doi= 10.1021/j150493a031 }}</ref> and [[cyclobutane]]<ref>{{cite journal |title= Ring-Opening Polymerization of the Cyclobutane Adduct of Methyl Tricyanoethylenecarboxylate and Ethyl Vinyl Ether |first1= Tsutomu |last1= Yokozawa |first2= Ei-ichi |last2= Tsuruta |journal= Macromolecules |year= 1996 |volume= 29 |issue= 25 |pages= 8053–8056 |doi= 10.1021/ma9608535 }}</ref> derivatives, can undergo ROP.
 
==History==
Line 37:
===Anionic ring-opening polymerization (AROP)===
{{main article|Anionic polymerization}}
[[File:Wiki566665.tif|thumb|400px|center|The general mechanism for anionic ring-opening polymerization. Polarized functional group is represented by X-Y, where the atom X (usually a carbon atom) becomes electron deficient due to the highly electron-withdrawing nature of Y (usually an oxygen, nitrogen, sulfur, etc.). The nucleophile will attack atom X, thus releasing Y-<sup>−</sup>. The newly formed nucleophile will then attack the atom X in another monomer molecule, and the sequence would repeat until the polymer is formed.<ref name=dubois />]]
Anionic ring-opening polymerizations (AROP) involve [[nucleophile|nucleophilic reagents]] as initiators. Monomers with a three-member ring structure - such as [[epoxides]], [[aziridines]], and [[episulfides]] - undergo anionic ROP.<ref name=dubois />
 
Line 53:
===Ring-opening metathesis polymerization===
{{main article|Ring-opening metathesis polymerization}}
[[Ring-opening metathesis polymerisation|Ring-opening metathesis polymerization]] (ROMP) produces [[Saturated and unsaturated compounds|unsaturated]] polymers from [[cycloalkene]]s or bicycloalkenes. It requires [[Organometallic chemistry|organometallic catalysts]].<ref name=nuyken />
 
The mechanism for ROMP follows similar pathways as [[olefin metathesis]]. The initiation process involves the coordination of the cycloalkene monomer to the [[Transition metal carbene complex|metal alkylidene complex]], followed by a [2+2] type [[cycloaddition]] to form the metallacyclobutane intermediate that cycloreverts to form a new alkylidene species.<ref name=sutthasupa>{{cite journal|last=Sutthasupa|first=Sutthira|author2=Shiotsuki, Masashi |author3=Sanda, Fumio |title=Recent advances in ring-opening metathesis polymerization, and application to synthesis of functional materials|journal=Polymer Journal|date=13 October 2010|volume=42|issue=12|pages=905–915|doi=10.1038/pj.2010.94|doi-access=free}}</ref><ref name=hartwig>{{cite book|last=Hartwig|first=John F.| author-link = John F. Hartwig | title=Organotransition metal chemistry: from bonding to catalysis|year=2010|publisher=University Science Books|location=Sausalito, California|isbn=978-1-891389-53-5}}</ref>
[[File:Romp mechanism.png|thumb|center|850px|General scheme of the mechanism for ROMP.]] Commercially relevant [[Saturated and unsaturated compounds|unsaturated]] polymers synthesized by ROMP include Norsorex (poly[[Norbornene|polynorbornenenorbornene]]), Vestenamer (polycyclooctene)poly[[cyclooctene]], and Metton (polycyclopentadiene)poly[[cyclopentadiene]].<ref>{{Cite journal|last1=Love|first1=Jennifer A.|author-link=Jennifer Love (chemist)|last2=Morgan|first2=John P.|last3=Trnka|first3=Tina M.|last4=Grubbs|first4=Robert H.|date=2002-11-04|title=A Practical and Highly Active Ruthenium-Based Catalyst that Effects the Cross Metathesis of Acrylonitrile|journal=Angewandte Chemie International Edition|volume=41|issue=21|pages=4035–4037|doi=10.1002/1521-3773(20021104)41:21<4035::aid-anie4035>3.0.co;2-i|pmid=12412073 |issn=1433-7851}}</ref><ref>{{Cite journal|last1=Walsh|first1=Dylan J.|last2=Lau|first2=Sii Hong|last3=Hyatt|first3=Michael G.|last4=Guironnet|first4=Damien|date=2017-09-25|title=Kinetic Study of Living Ring-Opening Metathesis Polymerization with Third-Generation Grubbs Catalysts|journal=Journal of the American Chemical Society|language=EN|volume=139|issue=39|pages=13644–13647|doi=10.1021/jacs.7b08010|pmid=28944665|issn=0002-7863}}</ref>
 
==Thermodynamics==
Line 88:
For example, [[tetrahydrofuran]] (THF) cannot be polymerized above {{mvar|T<sub>c</sub>}}&nbsp;=&nbsp;84&nbsp;°C, nor cyclo-octasulfur (S<sub>8</sub>) below {{mvar|T<sub>f</sub>}}&nbsp;=&nbsp;159&nbsp;°C.<ref>{{cite journal|last=Tobolsky|first=A. V.|title=Equilibrium polymerization in the presence of an ionic initiator|journal=Journal of Polymer Science|date=July 1957|volume=25|issue=109|pages=220–221|doi=10.1002/pol.1957.1202510909|bibcode=1957JPoSc..25..220T}}</ref><ref>{{cite journal|last=Tobolsky|first=A. V.|title=Equilibrium polymerization in the presence of an ionic initiator|journal=Journal of Polymer Science|date=August 1958|volume=31|issue=122|page=126|doi=10.1002/pol.1958.1203112214|bibcode=1958JPoSc..31..126T|doi-access=free}}</ref><ref>{{cite journal|last=Tobolsky|first=Arthur V.|author2=Eisenberg, Adi |title=Equilibrium Polymerization of Sulfur|journal=Journal of the American Chemical Society|date=May 1959|volume=81|issue=4|pages=780–782|doi=10.1021/ja01513a004}}</ref><ref>{{cite journal|last=Tobolsky|first=A. V.|author2=Eisenberg, A. |title=A General Treatment of Equilibrium Polymerization|journal=Journal of the American Chemical Society|date=January 1960|volume=82|issue=2|pages=289–293|doi=10.1021/ja01487a009}}</ref> However, for many monomers, {{mvar|T<sub>c</sub>}} and {{mvar|T<sub>f</sub>}}, for polymerization in the bulk, are well above or below the operable polymerization temperatures, respectively.
The polymerization of a majority of monomers is accompanied by an [[entropy]] decrease, due mostly to the loss in the translational degrees of freedom. In this situation, polymerization is thermodynamically allowed only when the enthalpic contribution into {{math|Δ''G<sub>p</sub>''}} prevails (thus, when {{math|Δ''H<sub>p</sub>''° < 0}} and {{math|Δ''S<sub>p</sub>''° < 0}}, the inequality {{math|{{abs|Δ''H<sub>p</sub>''}} > &minus;''T''Δ''S<sub>p</sub>''}} is required). Therefore, the higher the ring strain, the lower the resulting monomer concentration at [[Chemical equilibrium|equilibrium]].
 
==See also==
* [[Ring opening metathesis polymerization]]
* [http://www.pslc.ws/macrog/meta.htm Olefin Metathesis Polymerization]
 
==Additional reading==
*{{Cite book |title=Expanding Monomers: Synthesis, Characterization, and Applications |title-link=Expanding Monomers |publisher=CRC Press |year=1992 |isbn=978-0-8493-5156-3 |editor-last=Luck |editor-first=Russel M. |editor-last2=Sadhir |editor-first2=Rajender K. |location=Boca Raton, Florida}}
*{{cite journal|lasttitle=SugiyamaOrganocatalytic Ring-Opening Polymerization|firstauthor=JNahrain E. Kamber |author2=R.Wonhee NagahataJeong |author3=Robert M. GoyalWaymouth |author4=MRussell C. AsaiPratt |author5=MBas G. G. UedaLohmeijer |author6=KJames L. TakeuchiHedrick |journal=ACSChemical Polymer PreprintsReviews|year=19982007|volume=40107|seriesissue=112|pages=5813–5840|doi=10.1021/cr068415b|pagepmid=9017988157}}
*{{cite book |title= Handbook of Ring‐Opening Polymerization |editor1-first= Philippe |editor1-last= Dubois |editor2-first= Olivier |editor2-last= Coulembier |editor3-first= Jean-Marie |editor3-last= Raquez |publisher= Wiley |year= 2009 |isbn= 9783527628407 |doi= 10.1002/9783527628407 }}<!-- see especially chapter 13 "Polymerization of Cycloalkanes" lead-ref for expanding our article -->
*{{cite journal|title=Synthesis of Well-Defined Polypeptide-Based Materials via the Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides|author=Nikos Hadjichristidis |author2=Hermis Iatrou |author3=Marinos Pitsikalis |author4=Georgios Sakellariou |journal=Chemical Reviews|year=2009|volume=109|issue=11|pages= 5528–5578|doi=10.1021/cr900049t|pmid=19691359}}
*{{cite journal|title=Organocatalytic Ring-Opening Polymerization|author=Nahrain E. Kamber |author2=Wonhee Jeong |author3=Robert M. Waymouth |author4=Russell C. Pratt |author5=Bas G. G. Lohmeijer |author6=James L. Hedrick |journal=Chemical Reviews|year=2007|volume=107|issue=12|pages=5813–5840|doi=10.1021/cr068415b|pmid=17988157}}</ref>
*{{cite journal|last=Matsumura|first=Shuichi|author2=Tsukada, Keisuke |author3=Toshima, Kazunobu |title=Enzyme-Catalyzed Ring-Opening Polymerization of 1,3-Dioxan-2-one to Poly(trimethylene carbonate)|journal=Macromolecules|date=May 1997|volume=30|issue=10|pages=3122–3124|doi=10.1021/ma961862g|bibcode=1997MaMol..30.3122M}}
 
== References ==