Spectral graph theory: Difference between revisions

Content deleted Content added
m References: Add a reference by moving it from further reading
 
(23 intermediate revisions by 13 users not shown)
Line 24:
A pair of graphs are said to be cospectral mates if they have the same spectrum, but are non-isomorphic.
 
The smallest pair of cospectral mates is {''K''<sub>1,4</sub>, ''C''<sub>4</sub> ∪ ''K''<sub>1</sub>}, comprising the 5-vertex [[star (graph theory)|star]] and the [[graph union]] of the 4-vertex [[cycle (graph theory)|cycle]] and the single-vertex graph, as reported by Collatz and Sinogowitz<ref>Collatz, L. and Sinogowitz, U. "Spektren endlicher Grafen." Abh. Math. Sem. Univ. Hamburg 21, 63&#x2013;7763–77, 1957.</ref><ref>{{mathworld|CospectralGraphs|Cospectral Graphs}}</ref> in 1957.
 
The smallest pair of [[polyhedral graph|polyhedral]] cospectral mates are [[enneahedron|enneahedra]] with eight vertices each.<ref>{{citation|title=Topological twin graphs. Smallest pair of isospectral polyhedral graphs with eight vertices|year=1994|last1=Hosoya|last2=Nagashima|last3=Hyugaji|first1=Haruo|first2=Umpei|first3=Sachiko|author1-link=Haruo Hosoya|journal=Journal of Chemical Information and Modeling|volume=34|issue=2|pages=428–431|doi=10.1021/ci00018a033}}.</ref>
Line 57:
 
===Cheeger inequality===
When the graph ''G'' is ''d''-regular, there is a relationship between ''h''(''G'') and the spectral gap ''d'' − λ<sub>2</sub> of ''G''. An inequality due to Dodziuk<ref>J.Dodziuk, Difference Equations, Isoperimetric inequality and Transience of Certain Random Walks, Trans. Amer. Math. Soc. 284 (1984), no. 2, 787-794.</ref> and independently [[Noga Alon|Alon]] and [[Vitali Milman|Milman]]{{Sfn|Alon|Spencer|2011}} states that<ref>Theorem 2.4 in {{harvtxt|Hoory|Linial|WidgersonWigderson|2006}}</ref>
 
: <math>\frac{1}{2}(d - \lambda_2) \le h(G) \le \sqrt{2d(d - \lambda_2)}.</math>
Line 63:
This inequality is closely related to the [[Cheeger bound]] for [[Markov chains]] and can be seen as a discrete version of [[Cheeger constant#Cheeger.27s inequality|Cheeger's inequality]] in [[Riemannian geometry]].
 
*For general connected graphs that are not necessarily regular, an alternative inequality is given by Chung<ref name=chung>{{cite book |lastlast1 =Chung |first1 =Fan |author-link =Fan Chung |year =1997 |title =Spectral Graph Theory |isbn =0821803158 |mr =1421568 |url =http://www.math.ucsd.edu/~fan/research/revised.html |postscript = [first 4 chapters are available in the website] |editor =American Mathematical Society |publisher =Providence, R. I.}}</ref>{{rp|35}}
== Hoffman-Delsarte inequality ==
:<math> \frac{1}{2} {\lambda} \le {\mathbf h}(G) \le \sqrt{2 \lambda},</math>
where <math>\lambda</math> is the least nontrivial eigenvalue of the normalized Laplacian, and <math>{\mathbf h}(G)</math> is the (normalized) Cheeger constant
: <math> {\mathbf h}(G) = \min_{\emptyset \not =S\subset V(G)}\frac{|\partial(S)|}{\min({\mathrm{vol}}(S), {\mathrm{vol}}(\bar{S}))}</math>
where <math>{\mathrm{vol}}(Y)</math> is the sum of degrees of vertices in <math>Y</math>.
 
== Hoffman-DelsarteHoffman–Delsarte inequality ==
There is an eigenvalue bound for [[Independent set (graph theory)|independent sets]] in [[regular graph]]s, originally due to [[Alan J. Hoffman]] and Philippe Delsarte.<ref>{{Cite web|url=https://www.math.uwaterloo.ca/~cgodsil/pdfs/ekrs-clg.pdf|title=Erdős-Ko-Rado Theorems|last=Godsil|first=Chris|date=May 2009}}</ref>
 
Suppose that <math>G</math> is a <math>k</math>-regular graph on <math>n</math> vertices with least eigenvalue <math>\lambda_{\mathrm{min}}</math>. Then:<math display="block">\alpha(G) \leq \frac{n}{1 - \frac{k}{\lambda_{\mathrm{min}}}}</math>where <math>\alpha(G)</math> denotes its [[independence number]].
 
This bound has been applied to establish e.g. algebraic proofs of the [[Erdős–Ko–Rado theorem]] and its analogue for intersecting families of subspaces over [[finite field]]s.<ref>{{Cite book|title=Erdős-Ko-Rado theorems : algebraic approaches|lastlast1=1949-Godsil|firstfirst1=Godsil, C. D. (Christopher David)|otherslast2=Meagher, |first2=Karen (College teacher)|isbn=9781107128446|location=Cambridge, United Kingdom|oclc=935456305|year = 2016}}</ref>
 
For general graphs which are not necessarily regular, a similar upper bound for the independence number can be derived by using the maximum eigenvalue
<math> \lambda'_{max}</math> of the normalized Laplacian<ref name=chung/> of <math>G</math>:
<math display="block">\alpha(G) \leq n (1-\frac {1}{\lambda'_{\mathrm{max}}}) \frac {\mathrm{max deg}}{\mathrm{min deg}}
</math>
where <math>{\mathrm{max deg}}</math> and <math>{\mathrm{min deg}}</math> denote the maximum and minimum degree in <math>G</math>, respectively. This a consequence of a more general inequality (pp. 109 in
<ref name=chung/>):
<math display="block">{\mathrm{vol}}(X) \leq (1-\frac {1}{\lambda'_{\mathrm{max}}}) {\mathrm{vol}}(V(G))
</math>
where <math>X</math> is an independent set of vertices and <math>{\mathrm{vol}}(Y)</math> denotes the sum of degrees of vertices in <math>Y</math> .
 
==Historical outline==
Spectral graph theory emerged in the 1950s and 1960s. Besides [[graph theory|graph theoretic]] research on the relationship between structural and spectral properties of graphs, another major source was research in [[quantum chemistry]], but the connections between these two lines of work were not discovered until much later.<ref name= cvet2>''Eigenspaces of Graphs'', by [[Dragoš Cvetković]], Peter Rowlinson, Slobodan Simić (1997) {{isbn|0-521-57352-1}}</ref> The 1980 monograph ''Spectra of Graphs''<ref>Dragoš M. Cvetković, Michael Doob, [[Horst Sachs]], ''Spectra of Graphs'' (1980)</ref> by Cvetković, Doob, and Sachs summarised nearly all research to date in the area. In 1988 it was updated by the survey ''Recent Results in the Theory of Graph Spectra''.<ref>{{cite book|first1=Dragoš M.|last1=Cvetković |first2=Michael |last2=Doob |first3=Ivan |last3=Gutman |first4=A. |last4=Torgasev |title=Recent Results in the Theory of Graph Spectra |series=Annals of Discrete mathematics |number=36 |year=1988 |isbn=0-444-70361-6 |url=http://www.sciencedirect.com/science/bookseries/01675060/36}}</ref> The 3rd edition of ''Spectra of Graphs'' (1995) contains a summary of the further recent contributions to the subject.<ref name= cvet2/> Discrete geometric analysis created and developed by [[Toshikazu Sunada]] in the 2000s deals with spectral graph theory in terms of discrete Laplacians associated with weighted graphs,<ref>{{citation | last = Sunada | first = Toshikazu | journal = Proceedings of Symposia in Pure Mathematics | pages = 51–86 | title = Discrete geometric analysis | volume = 77 | year = 2008| doi = 10.1090/pspum/077/2459864 | isbn = 9780821844717 }}.</ref> and finds application in various fields, including [[Spectral shape analysis|shape analysis]]. In most recent years, the spectral graph theory has expanded to vertex-varying graphs often encountered in many real-life applications.<ref>{{Cite journal|lastlast1=Shuman|firstfirst1=David I|last2=Ricaud|first2=Benjamin|last3=Vandergheynst|first3=Pierre|date=March 2016|title=Vertex-frequency analysis on graphs|journal=Applied and Computational Harmonic Analysis|volume=40|issue=2|pages=260–291|doi=10.1016/j.acha.2015.02.005|issn=1063-5203|arxiv=1307.5708|s2cid=16487065 }}</ref><ref>{{Cite journal|lastlast1=Stankovic|firstfirst1=Ljubisa|last2=Dakovic|first2=Milos|last3=Sejdic|first3=Ervin|date=July 2017|title=Vertex-Frequency Analysis: A Way to Localize Graph Spectral Components [Lecture Notes]|journal=IEEE Signal Processing Magazine|language=en-US|volume=34|issue=4|pages=176–182|doi=10.1109/msp.2017.2696572|issn=1053-5888|bibcode=2017ISPM...34..176S|s2cid=19969572 }}</ref><ref>{{Cite journal|lastlast1=Sakiyama|firstfirst1=Akie|last2=Watanabe|first2=Kana|last3=Tanaka|first3=Yuichi|date=September 2016|title=Spectral Graph Wavelets and Filter Banks With Low Approximation Error|journal=IEEE Transactions on Signal and Information Processing over Networks|language=en-US|volume=2|issue=3|pages=230–245|doi=10.1109/tsipn.2016.2581303|s2cid=2052898 |issn=2373-776X}}</ref><ref>{{Cite journal|lastlast1=Behjat|firstfirst1=Hamid|last2=Richter|first2=Ulrike|last3=Van De Ville|first3=Dimitri|last4=Sornmo|first4=Leif|date=2016-11-15|title=Signal-Adapted Tight Frames on Graphs|journal=IEEE Transactions on Signal Processing|language=en-US|volume=64|issue=22|pages=6017–6029|doi=10.1109/tsp.2016.2591513|issn=1053-587X|bibcode=2016ITSP...64.6017B|s2cid=12844791 |url=http://infoscience.epfl.ch/record/223159}}</ref>
 
==See also==
Line 87 ⟶ 103:
* {{citation|last1=Alon|last2=Spencer|title=The probabilistic method|publisher=Wiley|year=2011}}.
* {{citation| first1=Andries |last1=Brouwer| first2 = Willem H. | last2 = Haemers| author-link = Andries Brouwer| url=http://www.win.tue.nl/~aeb/2WF02/spectra.pdf |title=Spectra of Graphs |year=2011|publisher=Springer}}
* {{citation|last1=Hoory|last2=Linial|last3=Wigderson|year=2006|title=Expander graphs and their applications|url=https://www.cs.huji.ac.il/~nati/PAPERS/expander_survey.pdf}}.
* {{cite book |lastlast1 =Chung |first1 =Fan |author-link =Fan Chung |year =1997 |title =Spectral Graph Theory |isbn =0821803158 |mr =1421568 |url =http://www.math.ucsd.edu/~fan/research/revised.html |postscript = [first 4 chapters are available in the website] |editor =American Mathematical Society |publisher =Providence, R. I.}}
*
{{cite book |last =Chung |first1 =Fan |author-link =Fan Chung |year =1997 |title =Spectral Graph Theory |isbn =0821803158 |mr =1421568 |url =http://www.math.ucsd.edu/~fan/research/revised.html |postscript = [first 4 chapters are available in the website] |editor =American Mathematical Society |publisher =Providence, R. I.}}
 
* {{cite book |last =Schwenk |first =A. J. |author-link =Schwenk A. J. |chapter =Almost All Trees are Cospectral |title =New Directions in the Theory of Graphs |editor-last =Harary |editor-first =Frank |editor-link =Frank Harary |publisher =[[Academic Press]] |location =New York |year =1973 |isbn =012324255X |oclc =890297242 }}
* {{cite book |last = Bogdan | first =Nica | title="A Brief Introduction to Spectral Graph Theory" | publisher = EMS Press | location = Zurich | year = 2018 | isbn =978-3-03719-188-0}}
 
* [https://doi.org/10.1007/978-3-662-67872-5 Pavel Kurasov (2024), ''Spectral Geometry of Graphs'', Springer(Birkhauser), Open Access (CC4.0).]
== Further reading ==
* {{cite book |last =Chung |first1 =Fan |author-link =Fan Chung |year =1997 |title =Spectral Graph Theory |isbn =0821803158 |mr =1421568 |url =http://www.math.ucsd.edu/~fan/research/revised.html |postscript = [first 4 chapters are available in the website] |editor =American Mathematical Society |publisher =Providence, R. I.}}
 
==External links==