Numeral (linguistics): Difference between revisions

Content deleted Content added
{{anchor|Myriad system}} Myriad, Octad, and -yllion systems: complete the Knuth-proposed system notation
Deleted linguistic chauvinist vandalism
Tags: Visual edit Mobile edit Mobile web edit Advanced mobile edit
 
(8 intermediate revisions by one other user not shown)
Line 38:
! Value !! Name !! Alternate names, and names for sets of the given size
|-
| align="right" | 0 ||[[Names for the number 0|Zero]]|| aught, cipher, cypher, donut, dot, duck, goose egg, [[Tennis score#Scoring a game|love]], nada, naught, nil, none, nought, nowt, null, ought, oh, squat, zed, zilch, zip, zippo, Sunya ([[Sanskrit]])
|-
| align="right" | 1 || One || ace, individual, single, singleton, unary, unit, unity, Pratham ([[Sanskrit]])
|-
| align="right" | 2 || Two || binary, [[brace (grouping)|brace]], couple, couplet, distich, deuce, double, doubleton, duad, duality, duet, duo, dyad, pair, span, twain, twin, twosome, yoke
Line 239:
 
=== {{anchor|Myriad system}} Myriad, Octad, and [[-yllion]] systems ===
The following table details the myriad, octad, Ancient Greek Archimedes's notation, Chinese myriad, Chinese long and -yllion names for powers of 10.
 
There is also a [[Donald E. Knuth|Knuth]]-proposed system notation of numbers, named the -yllion system.<ref>{{Cite web|title=Large Numbers (page 2) at MROB|url=http://mrob.com/pub/math/largenum-2.html#yllion|access-date=2020-12-23|website=mrob.com|archive-date=2012-02-13|archive-url=https://web.archive.org/web/20120213070143/http://mrob.com/pub/math/largenum-2.html#yllion|url-status=live}}</ref> In this system, a new word is invented for every ''2<sup>n</sup>''-th power of ten. <!-- This Anchor tag serves to provide a permanent target for incoming section links. Please do not modify it, even if you modify the section title. -->
Line 245:
{| class="wikitable sortable mw-collapsible mw-collapsed"
|-
! Value !! Myriad System Name !! Octad System Name !! Ancient Greek Myriad Scale !! [[Chinese numerals#Large numbers|Chinese Myriad Scale]]!! Chinese Long Scale !!Knuth-[[-yllion|proposed]]<br>System Name
|-
| 10<sup>0</sup>
| align="center" | One
| align="center" | One
| align="center" | εἷς (heîs)
|<span class="nounderlines">[[wikt:一|一]]</span>
|<span class="nounderlines">[[wikt:一|一]]</span>
Line 257 ⟶ 258:
| align="center" | Ten
| align="center" | Ten
| align="center" | δέκα (déka)
|<span class="nounderlines">[[wikt:十|十]]</span>
|<span class="nounderlines">[[wikt:十|十]]</span>
Line 264 ⟶ 266:
| align="center" | Hundred
| align="center" | Hundred
| align="center" | ἑκατόν (hekatón)
|<span class="nounderlines">[[wikt:百|百]]</span>
|<span class="nounderlines">[[wikt:百|百]]</span>
Line 271 ⟶ 274:
| align="center" | Thousand
| align="center" | Thousand
| align="center" | χίλιοι (khī́lioi)
|<span class="nounderlines">[[wikt:千|千]]</span>
|<span class="nounderlines">[[wikt:千|千]]</span>
Line 278 ⟶ 282:
| align="center" | Myriad
| align="center" | Myriad
| align="center" | μύριοι (mýrioi)
|<span class="nounderlines">[[wikt:萬|萬]]</span> (<span class="nounderlines">[[wikt:万|万]]</span>)
|<span class="nounderlines">[[wikt:萬|萬]]</span> (<span class="nounderlines">[[wikt:万|万]]</span>)
Line 285 ⟶ 290:
| align="center" | Ten myriad
| align="center" | Ten myriad
| align="center" | δεκάκις μύριοι (dekákis mýrioi)
| 十萬 (十万)
| 十萬 (十万)
Line 292 ⟶ 298:
| align="center" | Hundred myriad
| align="center" | Hundred myriad
| align="center" | ἑκατοντάκις μύριοι (hekatontákis mýrioi)
| 百萬 (百万)
| 百萬 (百万)
Line 299 ⟶ 306:
| align="center" | Thousand myriad
| align="center" | Thousand myriad
| align="center" | χιλιάκις μύριοι (khiliákis mýrioi)
| 千萬 (千万)
| 千萬 (千万)
Line 306 ⟶ 314:
| align="center" | Second myriad
| align="center" | Octad
| align="center" | μυριάκις μύριοι (muriákis mýrioi)
|<span class="nounderlines">[[wikt:億|億]]</span> (<span class="nounderlines">[[wikt:亿|亿]]</span>)
|<span class="nounderlines">[[wikt:億|億]]</span> (<span class="nounderlines">[[wikt:亿|亿]]</span>)
| align="center" | Myllion
|-
| 10<sup>9</sup>
| align="center" | Ten second myriad
| align="center" | Ten octad
| align="center" | δεκάκις μυριάκις μύριοι (dekákis muriákis múrioi)
|十億 (十亿)
|十億 (十亿)
| align="center" | Ten myllion
|-
| 10<sup>10</sup>
| align="center" | Hundred second myriad
| align="center" | Hundred octad
| align="center" | ἑκατοντάκις μυριάκις μύριοι (hekatontákis muriákis múrioi)
|百億 (百亿)
|百億 (百亿)
| align="center" | Hundred myllion
|-
| 10<sup>11</sup>
| align="center" | Thousand second myriad
| align="center" | Thousand octad
| align="center" | χῑλῐάκῐς μυριάκις μύριοι (khīliákis muriákis múrioi)
|千億 (千亿)
|千億 (千亿)
| align="center" | Ten hundred myllion
|-
| 10<sup>12</sup>
| align="center" | Third myriad
| align="center" | Myriad octad
| align="center" | μυριάκις μυριάκις μύριοι (muriákis muriákis mýrioi)
|<span class="nounderlines">[[wikt:兆|兆]]</span>
| 萬億 (万亿)
| align="center" | Myriad myllion
|-
| 10<sup>13</sup>
| align="center" | Ten third myriad
| align="center" | Ten myriad octad
| align="center" | δεκάκις μυριάκις μυριάκις μύριοι (dekákis muriákis muriákis mýrioi)
| 十兆
| 十萬億 (十万亿)
| align="center" | Ten myriad myllion
|-
| 10<sup>14</sup>
| align="center" | Hundred third myriad
| align="center" | Hundred myriad octad
| align="center" | ἑκατοντάκις μυριάκις μυριάκις μύριοι (hekatontákis muriákis muriákis mýrioi)
| 百兆
| 百萬億 (百万亿)
| align="center" | Hundred myriad myllion
|-
| 10<sup>15</sup>
| align="center" | Thousand third myriad
| align="center" | Thousand myriad octad
| align="center" | χιλιάκις μυριάκις μυριάκις μύριοι (khiliákis muriákis muriákis mýrioi)
| 千兆
| 千萬億 (千万亿)
| align="center" | Ten hundred myriad myllion
|-
| 10<sup>16</sup>
| align="center" | Fourth myriad
| align="center" | Second octad
| align="center" | μυριάκις μυριάκις μυριάκις μύριοι (muriákis muriákis muriákis mýrioi)
|<span class="nounderlines">[[wikt:京|京]]</span>
|<span class="nounderlines">[[wikt:兆|兆]]</span>
| align="center" | Byllion
|-
| 10<sup>17</sup>
| align="center" | Ten fourth myriad
| align="center" | Ten second octad
| align="center" | δεκάκις μυριάκις μυριάκις μυριάκις μύριοι (dekákis muriákis muriákis muriákis mýrioi)
| 十京
| 十兆
| align="center" | Ten byllion
|-
| 10<sup>18</sup>
| align="center" | Hundred fourth myriad
| align="center" | Hundred second octad
| align="center" | ἑκατοντάκις μυριάκις μυριάκις μυριάκις μύριοι (hekatontákis muriákis muriákis muriákis mýrioi)
| 百京
| 百兆
| align="center" | Hundred byllion
|-
| 10<sup>19</sup>
| align="center" | Thousand fourth myriad
| align="center" | Thousand second octad
| align="center" | χιλιάκις μυριάκις μυριάκις μυριάκις μύριοι (khiliákis muriákis muriákis muriákis mýrioi)
| 千京
| 千兆
| align="center" | Ten hundred byllion
|-
| 10<sup>20</sup>
| align="center" | Fifth myriad
| align="center" | Myriad second octad
| align="center" | μυριάκις μυριάκις μυριάκις μυριάκις μύριοι (muriákis muriákis muriákis muriákis mýrioi)
|<span class="nounderlines">[[wikt:垓|垓]]</span>
| 萬兆
| align="center" | Myriad byllion
|-
| 10<sup>21</sup>
| align="center" | Ten fifth myriad
| align="center" | Ten myriad second octad
| align="center" | δεκάκις μυριάκις μυριάκις μυριάκις μυριάκις μύριοι (dekákis muriákis muriákis muriákis muriákis mýrioi)
| 十垓
| 十萬兆
| align="center" | Ten myriad byllion
|-
| 10<sup>22</sup>
| align="center" | Hundred fifth myriad
| align="center" | Hundred myriad second octad
| align="center" | ἑκατοντάκις μυριάκις μυριάκις μυριάκις μυριάκις μύριοι (hekatontákis muriákis muriákis muriákis muriákis mýrioi)
| 百垓
| 百萬兆
| align="center" | Hundred myriad byllion
|-
| 10<sup>23</sup>
| align="center" | Thousand fifth myriad
| align="center" | Thousand myriad second octad
| align="center" | χιλιάκις μυριάκις μυριάκις μυριάκις μυριάκις μύριοι (khiliákis muriákis muriákis muriákis muriákis mýrioi)
| 千垓
| 千萬兆
| align="center" | Ten hundred myriad byllion
|-
| 10<sup>24</sup>
| align="center" | Sixth myriad
| align="center" | Third octad
| align="center" | μυριάκις μυριάκις μυριάκις μυριάκις μυριάκις μύριοι (muriákis muriákis muriákis muriákis muriákis mýrioi)
|<span class="nounderlines">[[wikt:秭|秭]]</span> (in China); <span class="nounderlines">[[wikt:𥝱|𥝱]]</span> (in Japan)
| 億兆
Line 341 ⟶ 450:
| align="center" | Seventh myriad
| align="center" | Myriad third octad
|
|<span class="nounderlines">[[wikt:穰|穰]]</span>
| 萬億兆
Line 348 ⟶ 458:
| align="center" | Eighth myriad
| align="center" | Fourth octad
|
|<span class="nounderlines">[[wikt:溝|溝]]</span> (<span class="nounderlines">[[wikt:沟|沟]]</span>)
|<span class="nounderlines">[[wikt:京|京]]</span>
Line 355 ⟶ 466:
| align="center" | Ninth myriad
| align="center" | Myriad fourth octad
|
|<span class="nounderlines">[[wikt:澗|澗]]</span> (<span class="nounderlines">[[wikt:涧|涧]]</span>)
| 萬京
Line 362 ⟶ 474:
| align="center" | Tenth myriad
| align="center" | Fifth octad
|
|<span class="nounderlines">[[wikt:正|正]]</span>
| 億京
Line 369 ⟶ 482:
| align="center" | Eleventh myriad
| align="center" | Myriad fifth octad
|
|<span class="nounderlines">[[wikt:載|載]]</span> (<span class="nounderlines">[[wikt:载|载]]</span>)
| 萬億京
Line 376 ⟶ 490:
| align="center" | Twelfth myriad
| align="center" | Sixth octad
|
|<span class="nounderlines">[[wikt:極|極]]</span> (<span class="nounderlines">[[wikt:极|极]]</span>) (in China and in Japan)
| 兆京
Line 383 ⟶ 498:
| align="center" | Thirteenth myriad
| align="center" | Myriad sixth octad
|
|<span class="nounderlines">[[wikt:恆河沙|恆河沙]]</span> (<span class="nounderlines">[[wikt:恒河沙|恒河沙]]</span>) (in China)
| 萬兆京
Line 390 ⟶ 506:
| align="center" | Fourteenth myriad
| align="center" | Seventh octad
|
|<span class="nounderlines">[[wikt:阿僧祇|阿僧祇]]</span> (in China); <span class="nounderlines">[[wikt:恒河沙|恒河沙]]</span> (in Japan)
| 億兆京
Line 397 ⟶ 514:
| align="center" | Fifteenth myriad
| align="center" | Myriad seventh octad
|
|<span class="nounderlines">[[wikt:那由他|那由他]]</span>, <span class="nounderlines">[[wikt:那由多|那由多]]</span> (in China)
| 萬億兆京
Line 404 ⟶ 522:
| align="center" | Sixteenth myriad
| align="center" | Eighth octad
|
|<span class="nounderlines">[[wikt:不可思議|不可思議]]</span> (<span class="nounderlines">[[wikt:不可思议|不可思议]]</span>) (in China), <span class="nounderlines">[[wikt:阿僧祇|阿僧祇]]</span> (in Japan)
|<span class="nounderlines">[[wikt:垓|垓]]</span>
Line 411 ⟶ 530:
| align="center" | Seventeenth myriad
| align="center" | Myriad eighth octad
|
|<span class="nounderlines">[[wikt:無量大數|無量大數]]</span> (<span class="nounderlines">[[wikt:无量大数|无量大数]]</span>) (in China)
| 萬垓
Line 418 ⟶ 538:
| align="center" | Eighteenth myriad
| align="center" | Ninth octad
|
|<span class="nounderlines">[[wikt:那由他|那由他]]</span>, <span class="nounderlines">[[wikt:那由多|那由多]]</span> (in Japan)
| 億垓
Line 425 ⟶ 546:
| align="center" | Twentieth myriad
| align="center" | Tenth octad
|
|<span class="nounderlines">[[wikt:不可思議|不可思議]]</span> (in Japan)
| 兆垓
Line 432 ⟶ 554:
| align="center" | Twenty-second myriad
| align="center" | Eleventh octad
|
|<span class="nounderlines">[[wikt:無量大数|無量大数]]</span> (in Japan)
| 億兆垓
Line 437 ⟶ 560:
|-
| 10<sup>128</sup>
| align="center" | Thirty-second myriad
|
| align="center" | Sixteenth octad
|
|
Line 444 ⟶ 568:
|-
| 10<sup>256</sup>
| align="center" | Sixty-fourth myriad
|
| align="center" | Thirty-second octad
|
|
Line 451 ⟶ 576:
|-
| 10<sup>512</sup>
| align="center" | 128th myriad
|
| align="center" | Sixty-fourth octad
|
|
Line 458 ⟶ 584:
|-
| 10<sup>1,024</sup>
| align="center" | 256th myriad
|
| align="center" | 128th octad
|
|
Line 465 ⟶ 592:
|-
| 10<sup>2,048</sup>
| align="center" | 512th myriad
|
| align="center" | 256th octad
|
|
Line 472 ⟶ 600:
|-
| 10<sup>4,096</sup>
| align="center" | 1024th myriad
|
| align="center" | 512th octad
|
|
Line 479 ⟶ 608:
|-
| 10<sup>8,192</sup>
| align="center" | 2048th myriad
|
| align="center" | 1024th octad
|
|
Line 486 ⟶ 616:
|-
| 10<sup>16,384</sup>
| align="center" | 4096th myriad
| align="center" | 2048th octad
|
|
|<span class="nounderlines">[[wikt:恆河沙|恆河沙]]</span> (<span class="nounderlines">[[wikt:恒河沙|恒河沙]]</span>)
|
|
| align="center" | Duodecyllion
|-
| 10<sup>32,768</sup>
| align="center" | 8192nd myriad
| align="center" | 4096th octad
|
|
|<span class="nounderlines">[[wikt:阿僧祇|阿僧祇]]</span>
|
|
| align="center" | Tredecyllion
|-
| 10<sup>65,536</sup>
| align="center" | 16384th myriad
| align="center" | 8192nd octad
|
|
|<span class="nounderlines">[[wikt:那由他|那由他]]</span>, <span class="nounderlines">[[wikt:那由多|那由多]]</span>
|
|
| align="center" | Quattuordecyllion
|-
| 10<sup>131,072</sup>
| align="center" | 32768th myriad
| align="center" | 16384th octad
|
|
|<span class="nounderlines">[[wikt:不可思議|不可思議]]</span> (<span class="nounderlines">[[wikt:不可思议|不可思议]]</span>)
|
|
| align="center" | Quindecyllion
|-
| 10<sup>262,144</sup>
| align="center" | 65536th myriad
| align="center" | 32768th octad
|
|
|<span class="nounderlines">[[wikt:無量大數|無量大數]]</span> (<span class="nounderlines">[[wikt:无量大数|无量大数]]</span>)
|
|
| align="center" | Sexdecyllion
|-
| 10<sup>524,288</sup>
| align="center" | 131072nd myriad
|
| align="center" | 65536th octad
|
|
Line 528 ⟶ 664:
|-
| 10<sup>1,048,576</sup>
| align="center" | 262144th myriad
|
| align="center" | 131072nd octad
|
|
Line 535 ⟶ 672:
|-
| 10<sup>2,097,152</sup>
| align="center" | 524288th myriad
|
| align="center" | 262144th octad
|
|
Line 542 ⟶ 680:
|-
| 10<sup>4,194,304</sup>
| align="center" | 1048576th myriad
|
| align="center" | 524288th octad
|
|
Line 549 ⟶ 688:
|-
| 10<sup>2<sup>32</sup></sup>
| align="center" | 1073741824th myriad
|
| align="center" | 536870912nd octad
|
|
Line 556 ⟶ 696:
|-
| 10<sup>2<sup>42</sup></sup>
| align="center" | 1099511627776th myriad
|
| align="center" | 549755813888th octad
|
|
Line 563 ⟶ 704:
|-
| 10<sup>2<sup>52</sup></sup>
|
|
|
Line 570 ⟶ 712:
|-
| 10<sup>2<sup>62</sup></sup>
|
|
|
Line 577 ⟶ 720:
|-
| 10<sup>2<sup>72</sup></sup>
|
|
|
Line 584 ⟶ 728:
|-
| 10<sup>2<sup>82</sup></sup>
|
|
|
Line 591 ⟶ 736:
|-
| 10<sup>2<sup>92</sup></sup>
|
|
|
Line 598 ⟶ 744:
|-
| 10<sup>2<sup>102</sup></sup>
|
|
|
Line 605 ⟶ 752:
|-
| 10<sup>2<sup>1,002</sup></sup>
|
|
|
Line 612 ⟶ 760:
|-
| 10<sup>2<sup>10,002</sup></sup>
|
|
|