Numeral (linguistics): Difference between revisions

Content deleted Content added
No edit summary
Tags: Reverted references removed Mobile edit Mobile web edit
Deleted linguistic chauvinist vandalism
Tags: Visual edit Mobile edit Mobile web edit Advanced mobile edit
 
(21 intermediate revisions by 11 users not shown)
Line 2:
{{About|number words|the mathematical notation of numbers|numeral system}}
 
In linguistics, a '''numeral''' in the broadest sense is a [[word]] or [[phrase]] that describes a numerical [[quantity]]. Some theories of [[grammar]] use the word "numeral" to refer to [[cardinal number]]s that act as a [[determiner]] that specify the quantity of a [[noun]], for example the "two" in "two hats". Some theories of grammar do not include determiners as a part of speech and consider "two" in this example to be an [[adjective]]. Some theories consider "numeral" to be a [[synonym]] for "number" and assign all numbers (including [[Ordinal numeral|ordinal numbers]] like the [[compound word]] "seventy-fifthfirst") to a [[part of speech]] called "numerals".<ref>Charles Follen: ''A Practical Grammar of the German Language''. Boston, 1828, p.&nbsp;9, p.&nbsp;44 and 48. Quote: "PARTS OF SPEECH. There are ten parts of speech, viz. Article, Substantive or Noun, Adjective, Numeral, Pronoun, Verb, Adverb, Preposition, Conjunction, and Interjection.", "NUMERALS. The numbers are divided into cardinal, ordinal, proportional, distributive, and collective. [...] Numerals of proportion and distribution are [...] &c. ''Observation.'' The above numerals, in fach or fäl´tig, are regularly declined, like other adjectives."</ref><ref>Horace Dalmolin: ''The New English Grammar: With Phonetics, Morphology and Syntax'', Tate Publishing & Enterprises, 2009, p.&nbsp;175 & p.&nbsp;177. Quote: "76. The different types of words used to compose a sentence, in order to relate an idea or to convey a thought, are known as parts of speech. [...] The parts of speech, with a brief definition, will follow. [...] 87. Numeral: Numerals are words that express the idea of number. There are two types of numerals: ''cardinal'' and ''ordinal''. The cardinal numbers (''one, two, three...'') are used for counting people, objects, etc. Ordinal numbers (''first, second, third...'') can indicate ''order, placement'' in ''rank'', etc."</ref> Numerals in the broad sense can also be analyzed as a noun ("three is a small number"), as a [[pronoun]] ("the two went to town"), or for a small number of words as an [[adverb]] ("I rode the slide twice").
 
Numerals can express relationships like quantity (cardinal numbers), [[sequence]] (ordinal numbers), [[frequency]] (once, twice), and part ([[fraction]]).<ref name=GloL>{{Cite web|url=http://www-01.sil.org/linguistics/glossaryoflinguisticterms/WhatIsANumeral.htm|title=What is a numeral?|access-date=2017-03-06|archive-date=2016-11-25|archive-url=https://web.archive.org/web/20161125083926/http://www-01.sil.org/Linguistics/GlossaryofLinguisticTerms/WhatIsANumeral.htm|url-status=live}}</ref>
 
==Identifying numerals==
{{Redirect-distinguish|collective numeral|collective number|collective noun}}
Numerals may be [[attributive]], as in '''''two''' dogs'', or [[pronominal]], as in ''I saw '''two''' (of them)''.
 
Many words of different parts of speech indicate number or quantity. Such words are called [[quantifier (linguistics)|quantifier]]s. Examples are words such as ''every'', ''most'', ''least'', ''some'', etc. Numerals are distinguished from other quantifiers by the fact that they designate a specific number.<ref name=GloL/> Examples are words such as ''five, ten, fifty, one hundred, etc.'' They may or may not be treated as a distinct part of speech; this may vary, not only with the language, but with the choice of word. For example, "dozen" serves the function of a [[noun]], "first" serves the function of an [[adjective]], and "twice" serves the function of an [[adverb]]. In [[Old Church Slavonic]], the cardinal numbers 5 to 10 were feminine nouns; when quantifying a noun, that noun was [[Declension|declined]] in the genitive plural like other nouns that followed a noun of quantity (one would say the equivalent of "five '''of''' people"). In English grammar, the classification "''numeral''" (viewed as a [[part of speech]]) is reserved for those words which have distinct grammatical behavior: when a numeral modifies a noun, it may replace the [[article (grammar)|article]]: '''''the/some''' dogs played in the park'' → '''''twelve''' dogs played in the park''. (*'''''dozen''' dogs played in the park'' is not grammatical, so "dozen" is not a numeral in this sense.) English numerals indicate [[cardinal number (linguistics)|cardinal numbers]]. However, not all words for cardinal numbers are necessarily numerals. For example, ''million'' is grammatically a noun, and must be preceded by an article or numeral itself.
 
Numerals may be simple, such as 'eleven', or compound, such as 'twenty-three'.
 
In linguistics, however, numerals are classified according to purpose: examples are [[ordinal number (linguistics)|ordinal number]]s (''first'', ''second'', ''third'', etc.; from 'third' up, these are also used for fractions), [[Adverbial number|multiplicative (adverbial) numbers]] (''once'', ''twice'', and ''thrice''), [[multiplier (linguistics)|multipliers]] (''single'', ''double'', and ''triple''), and [[distributive number]]s (''singly'', ''doubly'', and ''triply''). [[Georgian language|Georgian]],<ref>{{cite web| url = http://wals.info/feature/description/| title = Walsinfo.com}}{{DlinkDead link|date=August 2023 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> LandLatin, and Romanian (see [[Romanian numbers#Distributive numbers|Romanian distributive numbers]]) have regular [[distributive number]]s, such as Latin ''singuli'' "one-by-one", ''kbini'' "in pairs, two-by-two", ''terni'' "three each", etc. In languages other than English, there may be other kinds of number words. For example, in Slavic languages there are [[English numerals#Collective numbers|collective numbers]] (monad, pair/dyad, triad) which describe sets, such as ''pair'' or ''dozen'' in English (see [[Russian numerals]], [[Polish numerals]]).
 
Some languages have a very limited set of numerals, and in some cases they arguably do not have any numerals at all, but instead use more generic quantifiers, such as 'pair' or 'many'. However, by now most such languages have borrowed the numeral system or part of the numeral system of a national or colonial language, though in a few cases (such as [[Guarani language|Guarani]]<ref>{{Cite web|title=Numbers in Guaraní (Papapy Avañe'ême)|url=https://omniglot.com/language/numbers/guarani.htm|access-date=2021-06-11|website=omniglot.com|archive-date=2021-06-11|archive-url=https://web.archive.org/web/20210611191500/https://omniglot.com/language/numbers/guarani.htm|url-status=live}}</ref>), a numeral system has been invented internally rather than borrowed. Other languages had an indigenous system but borrowed a second set of numerals anyway. An example is [[Japanese numerals|Japanese]], which uses either native or Chinese-derived numerals depending on what is being counted.
 
In many languages, such as [[Chinese numerals|Chinese]], numerals require the use of [[numeral classifier]]s. Many [[sign language]]s, such as [L[American Sign Language|ASL]], [[Incorporation (linguistics)|incorporate]] numerals.
 
==Larger numerals==
English has derived numerals for multiples of its base (''fifty, sixty,'' etc.), and some languages have simplex numerals for these, or even for numbers between the multiples of its base. [[Balinese language|Balinese]], for example, currently has a decimal system, with words for 10, 100, and 1000, but has additional simplex numerals for 25 (with a second word for 25 only found in a compound for 75), 35, 45, 50, 150, 175, 200 (with a second found in a compound for 1200), 400, 900, and 1600. In [[Hindustani numerals|Hindustani]], the numerals between 10 and 100 have developed to the extent that they need to be learned independently.
 
In many languages, numerals up to the base are a distinct [[part of speech]], while the words for powers of the base belong to one of the other word classes. In English, these higher words are [[hundred (word)|hundred]] 10<sup>2</sup>, [[thousand]] 10<sup>3</sup>, [[million]] 10<sup>6</sup>, and higher powers of a thousand ([[short scale]]) or of a million ([[long scale]]—see [[names of large numbers]]). These words cannot modify a noun without being preceded by an article or numeral (*''hundred dogs played in the park''), and so are nouns.
 
In East Asia, the higher units are hundred, thousand, [[myriad]] 10<sup>4</sup>, and [[Chinese numerals#Large numbers|powers of myriad]]. In the [[Indian subcontinent]], they are hundred, thousand, [[lakh]] 10<sup>5</sup>, [[crore]] 10<sup>7</sup>, and [[Indian numbering system|so on]]. The [[Maya numerals|Mesoamerican system]], still used to some extent in [[Mayan languages]], was based on powers of 20: ''bak’'' 400 (20<sup>2</sup>), ''pik'' 8000 (20<sup>3</sup>), ''kalab'' 160,000 (20<sup>4</sup>), etc.
Line 38:
! Value !! Name !! Alternate names, and names for sets of the given size
|-
| align="right" | 0 ||[[Names for the number 0|Zero]]|| aught, cipher, cypher, donut, dot, duck, goose egg, [[Tennis score#Scoring a game|love]], nada, naught, nil, none, nought, nowt, null, ought, oh, squat, zed, zilch, zip, zippo, Sunya ([[Sanskrit]])
|-
| align="right" | 1 || One || ace, individual, single, singleton, unary, unit, unity, Pratham ([[Sanskrit]])
|-
| align="right" | 2 || Two || binary, [[brace (grouping)|brace]], couple, couplet, distich, deuce, double, doubleton, duad, duality, duet, duo, dyad, pair, span, twain, twin, twosome, yoke
Line 90:
| align="right" | 90 || Ninety || four-score and ten
|-
| align="right" | 100 || One hundred || centred, century, ton, [[long hundred|short hundred]]
|-
| align="right" | 111 || One hundred [and] eleven || eleventy-one<ref>{{cite news|url=https://www.theguardian.com/uk/2003/jan/02/jrrtolkien.books|title=Tolkien catches up with his hobbit|last=Ezard|first=John|date=2 Jan 2003|work=The Guardian|access-date=6 Apr 2018}}</ref>
|-
| align="right" | 120 || One hundred [and] twenty || [[long hundred]],<ref name="ShipAssistant" /> great hundred, ''(obsolete)'' hundred
|-
| align="right" | 144 || One hundred [and] forty-four ||[[Gross (unit)|gross]], dozen dozen, small gross
Line 239:
 
=== {{anchor|Myriad system}} Myriad, Octad, and [[-yllion]] systems ===
The following table details the myriad, octad, Ancient Greek Archimedes's notation, Chinese myriad, Chinese long and -yllion names for powers of 10.
 
There is also a [[Donald E. Knuth|Knuth]]-proposed system notation of numbers, named the -yllion system.<ref>{{Cite web|title=Large Numbers (page 2) at MROB|url=http://mrob.com/pub/math/largenum-2.html#yllion|access-date=2020-12-23|website=mrob.com|archive-date=2012-02-13|archive-url=https://web.archive.org/web/20120213070143/http://mrob.com/pub/math/largenum-2.html#yllion|url-status=live}}</ref> In this system, a new word is invented for every ''2<sup>n</sup>''-th power of ten. <!-- This Anchor tag serves to provide a permanent target for incoming section links. Please do not modify it, even if you modify the section title. -->
 
{| class="wikitable sortable mw-collapsible mw-collapsed"
|-
! Value !! Myriad System Name !! Octad System Name !! Ancient Greek Myriad Scale !! [[Chinese numerals#Large numbers|Chinese Myriad Scale]]!! Chinese Long Scale !!Knuth-[[-yllion|proposed]]<br>System Name
|-
| 10<sup>0</sup>
| align="center" | One
| align="center" | One
| align="center" | εἷς (heîs)
|<span class="nounderlines">[[wikt:一|一]]</span>
|<span class="nounderlines">[[wikt:一|一]]</span>
Line 257 ⟶ 258:
| align="center" | Ten
| align="center" | Ten
| align="center" | δέκα (déka)
|<span class="nounderlines">[[wikt:十|十]]</span>
|<span class="nounderlines">[[wikt:十|十]]</span>
Line 264 ⟶ 266:
| align="center" | Hundred
| align="center" | Hundred
| align="center" | ἑκατόν (hekatón)
|<span class="nounderlines">[[wikt:百|百]]</span>
|<span class="nounderlines">[[wikt:百|百]]</span>
Line 271 ⟶ 274:
| align="center" | Thousand
| align="center" | Thousand
| align="center" | χίλιοι (khī́lioi)
|<span class="nounderlines">[[wikt:千|千]]</span>
|<span class="nounderlines">[[wikt:千|千]]</span>
Line 278 ⟶ 282:
| align="center" | Myriad
| align="center" | Myriad
| align="center" | μύριοι (mýrioi)
|<span class="nounderlines">[[wikt:萬|萬]]</span> (<span class="nounderlines">[[wikt:万|万]]</span>)
|<span class="nounderlines">[[wikt:萬|萬]]</span> (<span class="nounderlines">[[wikt:万|万]]</span>)
Line 285 ⟶ 290:
| align="center" | Ten myriad
| align="center" | Ten myriad
| align="center" | δεκάκις μύριοι (dekákis mýrioi)
| 十萬 (十万)
| 十萬 (十万)
Line 292 ⟶ 298:
| align="center" | Hundred myriad
| align="center" | Hundred myriad
| align="center" | ἑκατοντάκις μύριοι (hekatontákis mýrioi)
| 百萬 (百万)
| 百萬 (百万)
Line 299 ⟶ 306:
| align="center" | Thousand myriad
| align="center" | Thousand myriad
| align="center" | χιλιάκις μύριοι (khiliákis mýrioi)
| 千萬 (千万)
| 千萬 (千万)
Line 304 ⟶ 312:
|-
| 10<sup>8</sup>
| align="center" | Second Myriadmyriad
| align="center" | Octad
| align="center" | μυριάκις μύριοι (muriákis mýrioi)
|<span class="nounderlines">[[wikt:億|億]]</span> (<span class="nounderlines">[[wikt:亿|亿]]</span>)
|<span class="nounderlines">[[wikt:億|億]]</span> (<span class="nounderlines">[[wikt:亿|亿]]</span>)
| align="center" | Myllion
|-
| 10<sup>9</sup>
| align="center" | Ten second myriad
| align="center" | Ten octad
| align="center" | δεκάκις μυριάκις μύριοι (dekákis muriákis múrioi)
|十億 (十亿)
|十億 (十亿)
| align="center" | Ten myllion
|-
| 10<sup>10</sup>
| align="center" | Hundred second myriad
| align="center" | Hundred octad
| align="center" | ἑκατοντάκις μυριάκις μύριοι (hekatontákis muriákis múrioi)
|百億 (百亿)
|百億 (百亿)
| align="center" | Hundred myllion
|-
| 10<sup>11</sup>
| align="center" | Thousand second myriad
| align="center" | Thousand octad
| align="center" | χῑλῐάκῐς μυριάκις μύριοι (khīliákis muriákis múrioi)
|千億 (千亿)
|千億 (千亿)
| align="center" | Ten hundred myllion
|-
| 10<sup>12</sup>
| align="center" | Third myriad
| align="center" | Myriad Octadoctad
| align="center" | μυριάκις μυριάκις μύριοι (muriákis muriákis mýrioi)
|<span class="nounderlines">[[wikt:兆|兆]]</span>
| 萬億 (万亿)
| align="center" | Myriad myllion
|-
| 10<sup>13</sup>
| align="center" | Ten third myriad
| align="center" | Ten myriad octad
| align="center" | δεκάκις μυριάκις μυριάκις μύριοι (dekákis muriákis muriákis mýrioi)
| 十兆
| 十萬億 (十万亿)
| align="center" | Ten myriad myllion
|-
| 10<sup>14</sup>
| align="center" | Hundred third myriad
| align="center" | Hundred myriad octad
| align="center" | ἑκατοντάκις μυριάκις μυριάκις μύριοι (hekatontákis muriákis muriákis mýrioi)
| 百兆
| 百萬億 (百万亿)
| align="center" | Hundred myriad myllion
|-
| 10<sup>15</sup>
| align="center" | Thousand third myriad
| align="center" | Thousand myriad octad
| align="center" | χιλιάκις μυριάκις μυριάκις μύριοι (khiliákis muriákis muriákis mýrioi)
| 千兆
| 千萬億 (千万亿)
| align="center" | Ten hundred myriad myllion
|-
| 10<sup>16</sup>
| align="center" | Fourth myriad
| align="center" | Second octad
| align="center" | μυριάκις μυριάκις μυριάκις μύριοι (muriákis muriákis muriákis mýrioi)
|<span class="nounderlines">[[wikt:京|京]]</span>
|<span class="nounderlines">[[wikt:兆|兆]]</span>
| align="center" | Byllion
|-
| 10<sup>17</sup>
| align="center" | Ten fourth myriad
| align="center" | Ten second octad
| align="center" | δεκάκις μυριάκις μυριάκις μυριάκις μύριοι (dekákis muriákis muriákis muriákis mýrioi)
| 十京
| 十兆
| align="center" | Ten byllion
|-
| 10<sup>18</sup>
| align="center" | Hundred fourth myriad
| align="center" | Hundred second octad
| align="center" | ἑκατοντάκις μυριάκις μυριάκις μυριάκις μύριοι (hekatontákis muriákis muriákis muriákis mýrioi)
| 百京
| 百兆
| align="center" | Hundred byllion
|-
| 10<sup>19</sup>
| align="center" | Thousand fourth myriad
| align="center" | Thousand second octad
| align="center" | χιλιάκις μυριάκις μυριάκις μυριάκις μύριοι (khiliákis muriákis muriákis muriákis mýrioi)
| 千京
| 千兆
| align="center" | Ten hundred byllion
|-
| 10<sup>20</sup>
| align="center" | Fifth myriad
| align="center" | Myriad second octad
| align="center" | μυριάκις μυριάκις μυριάκις μυριάκις μύριοι (muriákis muriákis muriákis muriákis mýrioi)
|<span class="nounderlines">[[wikt:垓|垓]]</span>
| 萬兆
| align="center" | Myriad byllion
|
|-
| 10<sup>21</sup>
| align="center" | Ten fifth myriad
| align="center" | Ten myriad second octad
| align="center" | δεκάκις μυριάκις μυριάκις μυριάκις μυριάκις μύριοι (dekákis muriákis muriákis muriákis muriákis mýrioi)
| 十垓
| 十萬兆
| align="center" | Ten myriad byllion
|-
| 10<sup>22</sup>
| align="center" | Hundred fifth myriad
| align="center" | Hundred myriad second octad
| align="center" | ἑκατοντάκις μυριάκις μυριάκις μυριάκις μυριάκις μύριοι (hekatontákis muriákis muriákis muriákis muriákis mýrioi)
| 百垓
| 百萬兆
| align="center" | Hundred myriad byllion
|-
| 10<sup>23</sup>
| align="center" | Thousand fifth myriad
| align="center" | Thousand myriad second octad
| align="center" | χιλιάκις μυριάκις μυριάκις μυριάκις μυριάκις μύριοι (khiliákis muriákis muriákis muriákis muriákis mýrioi)
| 千垓
| 千萬兆
| align="center" | Ten hundred myriad byllion
|-
| 10<sup>24</sup>
| align="center" | Sixth myriad
| align="center" | Third octad
| align="center" | μυριάκις μυριάκις μυριάκις μυριάκις μυριάκις μύριοι (muriákis muriákis muriákis muriákis muriákis mýrioi)
|<span class="nounderlines">[[wikt:秭|秭]]</span> (in China); <span class="nounderlines">[[wikt:𥝱|𥝱]]</span> (in Japan)
| 億兆
Line 341 ⟶ 450:
| align="center" | Seventh myriad
| align="center" | Myriad third octad
|
|<span class="nounderlines">[[wikt:穰|穰]]</span>
| 萬億兆
| align="center" | Myriad myllion byllion
|
|-
| 10<sup>32</sup>
| align="center" | Eighth myriad
| align="center" | Fourth octad
|
|<span class="nounderlines">[[wikt:溝|溝]]</span> (<span class="nounderlines">[[wikt:沟|沟]]</span>)
|<span class="nounderlines">[[wikt:京|京]]</span>
Line 355 ⟶ 466:
| align="center" | Ninth myriad
| align="center" | Myriad fourth octad
|
|<span class="nounderlines">[[wikt:澗|澗]]</span> (<span class="nounderlines">[[wikt:涧|涧]]</span>)
| 萬京
| align="center" | Myriad tryllion
|
|-
| 10<sup>40</sup>
| align="center" | Tenth myriad
| align="center" | Fifth octad
|
|<span class="nounderlines">[[wikt:正|正]]</span>
| 億京
| align="center" | Myllion tryllion
|
|-
| 10<sup>44</sup>
| align="center" | Eleventh myriad
| align="center" | Myriad fifth octad
|
|<span class="nounderlines">[[wikt:載|載]]</span> (<span class="nounderlines">[[wikt:载|载]]</span>)
| 萬億京
| align="center" | Myriad myllion tryllion
|
|-
| 10<sup>48</sup>
| align="center" | Twelfth myriad
| align="center" | Sixth octad
|
|<span class="nounderlines">[[wikt:極|極]]</span> (<span class="nounderlines">[[wikt:极|极]]</span>) (in China and in Japan)
| 兆京
| align="center" | Byllion tryllion
|
|-
| 10<sup>52</sup>
| align="center" | Thirteenth myriad
| align="center" | Myriad sixth octad
|
|<span class="nounderlines">[[wikt:恆河沙|恆河沙]]</span> (<span class="nounderlines">[[wikt:恒河沙|恒河沙]]</span>) (in China)
| 萬兆京
| align="center" | Myriad byllion tryllion
|
|-
| 10<sup>56</sup>
| align="center" | Fourteenth myriad
| align="center" | Seventh octad
|
|<span class="nounderlines">[[wikt:阿僧祇|阿僧祇]]</span> (in China); <span class="nounderlines">[[wikt:恒河沙|恒河沙]]</span> (in Japan)
| 億兆京
| align="center" | Myllion byllion tryllion
|
|-
| 10<sup>60</sup>
| align="center" | Fifteenth myriad
| align="center" | Myriad seventh octad
|
|<span class="nounderlines">[[wikt:那由他|那由他]]</span>, <span class="nounderlines">[[wikt:那由多|那由多]]</span> (in China)
| 萬億兆京
| align="center" | Myriad myllion byllion tryllion
|
|-
| 10<sup>64</sup>
| align="center" | Sixteenth myriad
| align="center" | Eighth octad
|
|<span class="nounderlines">[[wikt:不可思議|不可思議]]</span> (<span class="nounderlines">[[wikt:不可思议|不可思议]]</span>) (in China), <span class="nounderlines">[[wikt:阿僧祇|阿僧祇]]</span> (in Japan)
|<span class="nounderlines">[[wikt:垓|垓]]</span>
Line 411 ⟶ 530:
| align="center" | Seventeenth myriad
| align="center" | Myriad eighth octad
|
|<span class="nounderlines">[[wikt:無量大數|無量大數]]</span> (<span class="nounderlines">[[wikt:无量大数|无量大数]]</span>) (in China)
| 萬垓
| align="center" | Myriad quadyllion
|
|-
| 10<sup>72</sup>
| align="center" | Eighteenth myriad
| align="center" | Ninth octad
|
|<span class="nounderlines">[[wikt:那由他|那由他]]</span>, <span class="nounderlines">[[wikt:那由多|那由多]]</span> (in Japan)
| 億垓
| align="center" | Myllion quadyllion
|
|-
| 10<sup>80</sup>
| align="center" | Twentieth myriad
| align="center" | Tenth octad
|
|<span class="nounderlines">[[wikt:不可思議|不可思議]]</span> (in Japan)
| 兆垓
| align="center" | Byllion quadyllion
|
|-
| 10<sup>88</sup>
| align="center" | Twenty-second myriad
| align="center" | Eleventh Octadoctad
|
|<span class="nounderlines">[[wikt:無量大数|無量大数]]</span> (in Japan)
| 億兆垓
| align="center" | Myllion byllion quadyllion
|
|-
| 10<sup>128</sup>
| align="center" | Thirty-second myriad
|
| align="center" | Sixteenth octad
|
|
Line 444 ⟶ 568:
|-
| 10<sup>256</sup>
| align="center" | Sixty-fourth myriad
|
| align="center" | Thirty-second octad
|
|
Line 451 ⟶ 576:
|-
| 10<sup>512</sup>
| align="center" | 128th myriad
|
| align="center" | Sixty-fourth octad
|
|
Line 458 ⟶ 584:
|-
| 10<sup>1,024</sup>
| align="center" | 256th myriad
|
| align="center" | 128th octad
|
|
Line 465 ⟶ 592:
|-
| 10<sup>2,048</sup>
| align="center" | 512th myriad
|
| align="center" | 256th octad
|
|
Line 472 ⟶ 600:
|-
| 10<sup>4,096</sup>
| align="center" | 1024th myriad
|
| align="center" | 512th octad
|
|
Line 479 ⟶ 608:
|-
| 10<sup>8,192</sup>
| align="center" | 2048th myriad
|
| align="center" | 1024th octad
|
|
Line 486 ⟶ 616:
|-
| 10<sup>16,384</sup>
| align="center" | 4096th myriad
| align="center" | 2048th octad
|
|
|<span class="nounderlines">[[wikt:恆河沙|恆河沙]]</span> (<span class="nounderlines">[[wikt:恒河沙|恒河沙]]</span>)
|
|
| align="center" | Duodecyllion
|-
| 10<sup>32,768</sup>
| align="center" | 8192nd myriad
| align="center" | 4096th octad
|
|
|<span class="nounderlines">[[wikt:阿僧祇|阿僧祇]]</span>
|
|
| align="center" | Tredecyllion
|-
| 10<sup>65,536</sup>
| align="center" | 16384th myriad
| align="center" | 8192nd octad
|
|
|<span class="nounderlines">[[wikt:那由他|那由他]]</span>, <span class="nounderlines">[[wikt:那由多|那由多]]</span>
|
|
| align="center" | Quattuordecyllion
|-
| 10<sup>131,072</sup>
| align="center" | 32768th myriad
| align="center" | 16384th octad
|
|
|<span class="nounderlines">[[wikt:不可思議|不可思議]]</span> (<span class="nounderlines">[[wikt:不可思议|不可思议]]</span>)
|
|
| align="center" | Quindecyllion
|-
| 10<sup>262,144</sup>
| align="center" | 65536th myriad
| align="center" | 32768th octad
|
|
|<span class="nounderlines">[[wikt:無量大數|無量大數]]</span> (<span class="nounderlines">[[wikt:无量大数|无量大数]]</span>)
|
|
| align="center" | Sexdecyllion
|-
| 10<sup>524,288</sup>
| align="center" | 131072nd myriad
|
| align="center" | 65536th octad
|
|
Line 528 ⟶ 664:
|-
| 10<sup>1,048,576</sup>
| align="center" | 262144th myriad
|
| align="center" | 131072nd octad
|
|
Line 535 ⟶ 672:
|-
| 10<sup>2,097,152</sup>
| align="center" | 524288th myriad
|
| align="center" | 262144th octad
|
|
Line 542 ⟶ 680:
|-
| 10<sup>4,194,304</sup>
| align="center" | 1048576th myriad
|
| align="center" | 524288th octad
|
|
Line 549 ⟶ 688:
|-
| 10<sup>2<sup>32</sup></sup>
| align="center" | 1073741824th myriad
|
| align="center" | 536870912nd octad
|
|
Line 556 ⟶ 696:
|-
| 10<sup>2<sup>42</sup></sup>
| align="center" | 1099511627776th myriad
|
| align="center" | 549755813888th octad
|
|
Line 563 ⟶ 704:
|-
| 10<sup>2<sup>52</sup></sup>
|
|
|
Line 570 ⟶ 712:
|-
| 10<sup>2<sup>62</sup></sup>
|
|
|
Line 577 ⟶ 720:
|-
| 10<sup>2<sup>72</sup></sup>
|
|
|
Line 584 ⟶ 728:
|-
| 10<sup>2<sup>82</sup></sup>
|
|
|
Line 591 ⟶ 736:
|-
| 10<sup>2<sup>92</sup></sup>
|
|
|
Line 598 ⟶ 744:
|-
| 10<sup>2<sup>102</sup></sup>
|
|
|
Line 605 ⟶ 752:
|-
| 10<sup>2<sup>1,002</sup></sup>
|
|
|
Line 612 ⟶ 760:
|-
| 10<sup>2<sup>10,002</sup></sup>
|
|
|
Line 870 ⟶ 1,019:
 
==Basis of counting system==
Not all peoples use [[Counting|counting]], at least not verbally. Specifically, there is not much need for counting among hunter-gatherers who do not engage in commerce. Many languages around the world have no numerals above two to four (if they are actually numerals at all, and not some other part of speech)—or at least did not before contact with the colonial societies—and speakers of these languages may have no tradition of using the numerals they did have for counting. Indeed, several languages from the Amazon have been independently reported to have no specific number words other than 'one'. These include [[Nadahup languages|Nadëb]], pre-contact [[Mocoví language|Mocoví]] and [[Pilagá language|Pilagá]], [[Culina-Madijá language|Culina]] and pre-contact [[Jarawara language|Jarawara]], [[Jabutí language|Jabutí]], [[Canela language|Canela-Krahô]], [[Botocudo|Botocudo (Krenák)]], [[Chiquitano language|Chiquitano]], the [[Campa languages]], [[Arabela language|Arabela]], and [[Jivaroan languages|Achuar]].<ref>{{Cite web |url=http://www2.gslt.hum.gu.se/dissertations/hammarstrom.pdf |title=Hammarström (2009, page 197) "Rarities in numeral systems" |access-date=2010-06-16 |archive-url=https://web.archive.org/web/20120308070048/http://www2.gslt.hum.gu.se/dissertations/hammarstrom.pdf |archive-date=2012-03-08 |url-status=dead }}</ref> Some languages of Australia, such as [[Warlpiri language|Warlpiri]], do not have words for quantities above two,<ref>UCL Media Relations, [http://www.ucl.ac.uk/media/library/aboriginal "Aboriginal kids can count without numbers"] {{Webarchive|url=https://web.archive.org/web/20180620234700/http://www.ucl.ac.uk/media/library/aboriginal |date=2018-06-20 }}</ref><ref>{{cite journal |last1=Butterworth |first1=Brian |last2=Reeve |first2=Robert |last3=Reynolds |first3=Fiona |last4=Lloyd |first4=Delyth |title=Numerical thought with and without words: Evidence from indigenous Australian children |journal=PNAS |date=2 September 2008 |volume=105 |issue=35 |pages=13179–13184 |doi=10.1073/pnas.0806045105 |pmid=18757729 |pmc=2527348 |bibcode=2008PNAS..10513179B |quote=[Warlpiri] has three generic types of number words: singular, dual plural, and greater than dual plural. |doi-access=free }}</ref><ref>The Science Show, [http://www.abc.net.au/rn/scienceshow/stories/2008/2375526.htm Genetic anomaly could explain severe difficulty with arithmetic] {{Webarchive|url=https://web.archive.org/web/20100301113203/http://www.abc.net.au/rn/scienceshow/stories/2008/2375526.htm |date=2010-03-01 }}, Australian Broadcasting Corporation</ref> and neither did many [[Khoisan languages]] at the time of European contact. Such languages do not have a word class of 'numeral'.
 
Most languages with both numerals and counting use base 8, 10, 12, or 20. Base 10 appears to come from counting one's fingers, base 20 from the fingers and toes, base 8 from counting the spaces between the fingers (attested in California), and base 12 from counting the knuckles (3 each for the four fingers).<ref>Bernard Comrie, "[http://ling.cass.cn/pdf/TypNum_China_10ho.pdf The Typology of Numeral Systems] {{Webarchive|url=https://web.archive.org/web/20110514035109/http://ling.cass.cn//pdf/TypNum_China_10ho.pdf |date=2011-05-14 }}", p.&nbsp;3</ref>
 
===No base===
Many languages of [[Melanesia]] have (or once had) counting systems based on parts of the body which do not have a numeric base; there are (or were) no numerals, but rather nouns for relevant parts of the body—or simply pointing to the relevant spots—were used for quantities. For example, 1–4 may be the fingers, 5 'thumb', 6 'wrist', 7 'elbow', 8 'shoulder', etc., across the body and down the other arm, so that the opposite little finger represents a number between 17 ([[Torres Strait Island languages|Torres Islands]]) to 23 ([[Eleman language|Eleman]]). For numbers beyond this, the torso, legs and toes may be used, or one might count back up the other arm and back down the first, depending on the people.{{cn|date=August 2024}}
 
===2: binary===
{{main article|Binary numeral system}}
Binary systems are based on the number 2, using zeros and ones. With only two symbols binary is used for things with coding like computers.
Binary systems are based on the number 2, using zeros and ones. Due to its simplicity, only having two distinct digits, binary is commonly used in computing, with zero and one often corresponding to "off/on" respectively.
 
===3: ternary===
Line 886 ⟶ 1,036:
===4: quaternary===
{{Main|Quaternary numeral system}}
Quaternary systems are based on the number 4. Some [[Austronesian peoples|Austronesian]], [[Melanesians|Melanesian]], [[Sulawesi]], and [[Papua New Guinea]] ethnic groups, count with the base number four, using the term ''asu'' or ''aso'', the word for [[dog]], as the ubiquitous village dog has four legs.<ref name="Ryan, Peter p&nbsp;219">Ryan, Peter. ''Encyclopaedia of Papua and New Guinea''. Melbourne University Press & University of Papua and New Guinea,:1972 {{isbn|0-522-84025-6}}.: 3 pages p&nbsp;219.</ref> This is argued by anthropologists to be also based on early humans noting the human and animal shared body feature of two arms and two legs as well as its ease in simple arithmetic and counting. As an example of the system's ease a realistic scenario could include a farmer returning from the market with fifty ''asu'' heads of pig (200), less 30 ''asu'' (120) of pig bartered for 10 ''asu'' (40) of goats noting his new pig count total as twenty ''asu'': 80 pigs remaining. The system has a correlation to the [[dozen]] counting system and is still in common use in these areas as a natural and easy method of simple arithmetic.<ref name="Ryan, Peter p&nbsp;219"/><ref>Aleksandr Romanovich Luriicac, Lev Semenovich Vygotskiĭ, Evelyn Rossiter. ''Ape, primitive man, and child: essays in the history of behavior''. CRC Press: 1992: {{isbn|1-878205-43-9}}.</ref>
 
===5: quinary===
Line 943 ⟶ 1,093:
Hexadecimal systems are based on the number 16.
 
The traditional [[Chinese units of measurement]] were base-16. For example, one jīn&nbsp;(斤) in the old system equals sixteen [[tael]]s. The [[suanpan]] (Chinese [[abacus]]) can be used to perform hexadecimal calculations such as additions and subtractions.<ref>{{Cite web|url=http://totton.idirect.com/soroban/Hex_as/|title=算盤 Hexadecimal Addition & Subtraction on a Chinese Abacus|website=totton.idirect.com|access-date=2019-06-26|archive-date=2019-07-06|archive-url=https://web.archive.org/web/20190706221609/http://totton.idirect.com/soroban/Hex_as/|url-status=live}}</ref>
 
South Asian monetary systems were base-16. One rupee in Pakistan and India was divided into 16 annay. A single [[Indian anna|anna]] was subdivided into four [[paisa]] or twelve [[Pie (Indian coin)|pies]] (thus there were 64 paise or 192 pies in a rupee). The anna was [[Legal tender#Demonetization|demonetised]] as a currency unit when India [[Decimalisation|decimalised]] its currency in 1957, followed by Pakistan in 1961.
Line 1,011 ⟶ 1,161:
 
==Further reading==
* Crespo Cantalapiedra, I. (2023). ''[https://zenodo.org/records/10225997 La diversidad en las lenguas: los numerales] {{Webarchive|url=https://web.archive.org/web/20240224123657/https://zenodo.org/records/10225997 |date=2024-02-24 }}''. Online book (in Spanish).
* {{cite book|author=James R. Hurford|title=The Linguistic Theory of Numerals|year=2010|orig-year=1975|publisher=Cambridge University Press|isbn=978-0-521-13368-5|author-link=James R. Hurford}}