Squeeze theorem: Difference between revisions

Content deleted Content added
Tags: Mobile edit Mobile web edit
 
(46 intermediate revisions by 34 users not shown)
Line 1:
{{Short description|Method for finding limits in calculus}}
{{Redirect|Sandwich theorem|the result in measure theory|Ham sandwich theorem}}
{{refimprovemore citations needed|date=April 2010}}
{{Redirect|Sandwich theorem|the result in measure theory|Ham sandwich theorem|Sandwich theory (physics)|Sandwich theory}}
 
[[File:(x^2)sin(x^(-1)).png|thumb|300px|Illustration of the squeeze theorem]]
[[File:Sandwich lemma.svg|thumb|300px|When a sequence lies between two other converging sequences with the same limit, it also converges to this limit.]]
 
In [[calculus]], the '''squeeze theorem''', (also known as the '''pinchingsandwich theorem''', among other names{{efn|Also known as the '''sandwichpinching theorem''', the '''sandwich rule'', the ''police theorem'', the ''between theorem'' and sometimes the '''squeeze lemma'''. In Italy, the theorem is also known as the ''theorem of carabinieri''.}}) is a [[theorem]] regarding the [[limit of a function|limit]]. Inof Italy,a the[[Function theorem(mathematics)|function]] that is alsobounded knownbetween astwo '''theoremother of Carabinieri'''functions.
 
The squeeze theorem is used in calculus and [[mathematical analysis]]. It is, typically used to confirm the [[limit]] of a function via comparison with two other functions whose limits are known or easily computed. It was first used geometrically by the [[mathematician]]smathematicians [[Archimedes]] and [[Eudoxus of Cnidus|Eudoxus]] in an effort to compute [[pi|{{pi}}]], and was formulated in modern terms by [[Carl Friedrich Gauss]].
 
In many languages (e.g. French, German, Italian, Hungarian and Russian), the squeeze theorem is also known as the '''two policemen (and a drunk) theorem''', or some variation thereof.{{citation needed|date=February 2018}} The story is that if two policemen are escorting a drunk prisoner between them, and both officers go to a cell, then (regardless of the path taken, and the fact that the prisoner may be wobbling about between the policemen) the prisoner must also end up in the cell.
 
== Statement ==
The squeeze theorem is formally stated as follows.<ref>{{cite book|last1=Sohrab|first1=Houshang H.|title=Basic Real Analysis| date=2003|publisher=[[Birkhäuser]]|isbn=978-1-4939-1840-9|page=104|edition=2nd|url=https://books.google.com/books?id=QnpqBQAAQBAJ&pg=PA104}}</ref>
{{math theorem|
<blockquote>
Let ''{{mvar|I''}} be an [[interval (mathematics)|interval]] havingcontaining the point ''{{mvar|a'' as a limit point}}. Let ''{{mvar|g''}}, ''{{mvar|f''}}, and ''{{mvar|h''}} be [[function (mathematics)|functions]] defined on ''{{mvar|I''}}, except possibly at ''{{mvar|a''}} itself. Suppose that for every ''{{mvar|x''}} in ''{{mvar|I''}} not equal to ''{{mvar|a''}}, we have
: <math display="block">g(x) \leq f(x) \leq h(x) </math>
 
: <math>g(x) \leq f(x) \leq h(x) </math>
 
and also suppose that
: <math display="block">\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L. </math>
 
: <math>\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L. </math>
 
Then <math>\lim_{x \to a} f(x) = L.</math>
}}
</blockquote>
 
* The functions <math display="inline">{{mvar|g</math>}} and <math display="inline">{{mvar|h</math>}} are said to be [[upper bound|lower and upper bounds]] (respectively) of <math display="inline">{{mvar|f</math>}}.
* Here, <math display="inline">{{mvar|a</math>}} is ''not'' required to lie in the [[interior (topology)|interior]] of <math display="inline">{{mvar|I</math>}}. Indeed, if <math display="inline">{{mvar|a</math>}} is an endpoint of <math display="inline">{{mvar|I</math>}}, then the above limits are left- or right-hand limits.
* A similar statement holds for infinite intervals: for example, if <{{math display|1="inline">''I'' = (0, \infty&infin;)</math>}}, then the conclusion holds, taking the limits as <{{math display="inline">|''x'' \rightarrow \infty</math>&infin;}}.
This theorem is also valid for sequences. Let <{{math>|(a_n''a{{sub|n}}''), (c_n''c{{sub|n}}'')</math>}} be two sequences converging to <math>\ell</math>{{mvar|ℓ}}, and <{{math>|(b_n''b{{sub|n}}'')</math>}} a sequence. If <math>\forall n\geqslantgeq N, N\in\mathbb{N}</math> we have <{{math>a_n\leqslant|''a{{sub|n}}'' b_n\leqslant c_n</math>''b{{sub|n}}'' ≤ ''c{{sub|n}}''}}, then <{{math>|(b_n''b{{sub|n}}'')</math>}} also converges to <math>\ell</math>{{mvar|ℓ}}.
 
===Proof===
FromAccording to the above hypotheses we have, taking the [[limit inferior]] and superior:
:<math display="block">L=\lim_{x \to a} g(x)\leq\liminf_{x\to a}f(x) \leq \limsup_{x\to a}f(x)\leq \lim_{x \to a}h(x)=L,</math>
so all the inequalities are indeed equalities, and the thesis immediately follows.
 
A direct proof, using the <{{math>|(\''&epsilon;'', \''&delta;'')</math>}}-definition of limit, would be to prove that for all real <{{math display="inline">\|''&epsilon;'' > 0</math>}} there exists a real <{{math>\|''&delta;'' > 0</math>}} such that for all <math>{{mvar|x</math>}} with <math>|x - a| < \delta,</math>, we have <math>|f(x) - L| < \epsilonvarepsilon.</math>. Symbolically,
 
: <math display="block"> \forall \epsilonvarepsilon > 0, \exists \delta > 0 : \forall x, (|x - a | < \delta \ \Rightarrow |f(x) - L |< \epsilonvarepsilon).</math>
 
As
 
: <math display="block">\lim_{x \to a} g(x) = L </math>
 
This means that
: {{NumBlk||<math display="block"> \forall \varepsilon > 0, \exists \ \delta_1 > 0 : \forall x\ (|x - a| < \delta_1 \ \Rightarrow \ |g(x) - L |< \varepsilon).\qquad (1)</math>|{{EquationRef|1}}}}
 
: <math> \forall \varepsilon > 0, \exists \ \delta_1 > 0 : \forall x\ (|x - a| < \delta_1 \ \Rightarrow \ |g(x) - L |< \varepsilon).\qquad (1)</math>
 
and
: <math display="block">\lim_{x \to a} h(x) = L </math>
 
means that
: {{NumBlk||<math display="block"> \forall \varepsilon > 0, \exists \ \delta_2 > 0 : \forall x\ (|x - a | < \delta_2\ \Rightarrow \ |h(x) - L |< \varepsilon),\qquad (2)</math>|{{EquationRef|2}}}}
 
: <math> \forall \varepsilon > 0, \exists \ \delta_2 > 0 : \forall x\ (|x - a | < \delta_2\ \Rightarrow \ |h(x) - L |< \varepsilon),\qquad (2)</math>
 
then we have
 
: <math display="block">g(x) \leq f(x) \leq h(x) </math>
: <math display="block">g(x) - L\leq f(x) - L\leq h(x) - L</math>
 
We can choose <math>\delta:=\min\left\{\delta_1,\delta_2\right\}</math>. Then, if <math>|x - a| < \delta</math>, combining ({{EquationNote|1}}) and ({{EquationNote|2}}), we have
 
: <math display="block"> - \varepsilon < g(x) - L\leq f(x) - L\leq h(x) - L\ < \varepsilon, </math>
: <math display="block"> - \varepsilon < f(x) - L < \varepsilon ,</math>,
 
which completes the proof. <math>\blacksquare</math>[[Q.E.D]]
 
The proof for sequences is very similar, using the <math>\epsilonvarepsilon</math>-definition of athe limit of a sequence.
 
== Statement for series ==
There is also the squeeze theorem for series, which can be stated as follows:{{cn|date=March 2018}}
<blockquote>Let <math>\sum_n a_n, \sum_n c_n</math> be two convergent series. If <math>\exists N\in\mathbb{N} </math> such that <math>\forall n>N, a_n\leqslant b_n \leqslant c_n </math>then <math>\sum_n b_n </math> also converges.</blockquote>
 
=== Proof ===
Let <math>\sum_n a_n, \sum_n c_n</math> be two convergent series. Hence, the sequences <math>\left(\sum_{k=1}^n a_n\right)_{n=1}^{\infty}, \left(\sum_{k=1}^n c_n\right)_{n=1}^{\infty} </math> are Cauchy. That is, for fixed <math>\epsilon>0 </math>,
 
<math>\exists N_1\in\mathbb{N} </math> such that <math>\forall n>m>N_1, \left|\sum_{k=1}^na_n-\sum_{k=1}^ma_n\right|<\epsilon \Longrightarrow \left|\sum_{k=m+1}^n a_n\right|<\epsilon \Longrightarrow -\epsilon<\sum_{k=m+1}^n a_n<\epsilon </math> (1)
 
and similarly <math>\exists N_2\in\mathbb{N} </math> such that <math>\forall n>m>N_2, \left|\sum_{k=1}^nc_n-\sum_{k=1}^mc_n\right|<\epsilon \Longrightarrow \left|\sum_{k=m+1}^n c_n\right|<\epsilon \Longrightarrow -\epsilon<\sum_{k=m+1}^n c_n<\epsilon </math> (2).
 
We know that <math>\exists N_3\in\mathbb{N} </math> such that <math>\forall n>N_3, a_n\leqslant b_n \leqslant c_n </math>. Hence, <math>\forall n>m>\max\{N_1,N_2,N_3\} </math>, we have combining (1) and (2):
 
<math>a_n\leqslant b_n\leqslant c_n \Longrightarrow \sum_{k=m+1}^n a_n \leqslant \sum_{k=m+1}^n b_n \leqslant \sum_{k=m+1}^n c_n \Longrightarrow -\epsilon< \sum_{k=m+1}^n b_n <\epsilon \Longrightarrow \left|\sum_{k=m+1}^n b_n\right|<\epsilon \Longrightarrow \left|\sum_{k=1}^n b_n-\sum_{k=1}^m b_n\right|<\epsilon </math>.
 
Therefore <math>\left(\sum_{k=1}^n b_n\right)_{n=1}^{\infty} </math>is a Cauchy sequence. So <math>\sum_n b_n </math> converges. <math>\blacksquare</math>
 
== Examples ==
Line 88 ⟶ 65:
=== First example ===
 
[[File:Inst_satsen.png|thumb|right|250px|''x''<supmath>x^2</sup>&nbsp; \sin\left(\tfrac{1/''}{x''}\right)</math> being squeezed in the limit as {{mvar|x}} goes to 0]]
 
The limit
 
: <math display="block">\lim_{x \to 0}x^2 \sin\left( \tfrac{1}{x} \right)</math>
 
cannot be determined through the limit law
 
: <math display="block">\lim_{x \to a}(f(x) \cdot g(x)) =
\lim_{x \to a}f(x) \cdot \lim_{x \to a}g(x),</math>
 
because
 
: <math display="block">\lim_{x\to 0}\sin\left( \tfrac{1}{x} \right)</math>
 
does not exist.
Line 107 ⟶ 84:
However, by the definition of the [[sine function]],
 
: <math display="block">-1 \le \sin\left( \tfrac{1}{x} \right) \le 1. </math>
 
It follows that
 
: <math display="block">-x^2 \le x^2 \sin\left( \tfrac{1}{x} \right) \le x^2 </math>
 
Since <math>\lim_{x\to 0}-x^2 = \lim_{x\to 0}x^2 = 0</math>, by the squeeze theorem, <math>\lim_{x\to 0} x^2 \sin\left(\tfrac{1}{x}\right)</math> must also be 0.
 
=== Second example ===
[[File:Limit_sin_x_x.svg|thumb|upright=1.5|Comparing areas:<br/>
<math>\begin{alignarray}{cccccc}
&\, A(\triangle ADFADB) & \geqleq & A(\text{sector }\, ADB) & \geqleq & A(\triangle ADBADF) \\[4pt]
\Rightarrow &\, \frac{1}{2} \cdot \tan(sin x) \cdot 1 & \geqleq & \frac{x}{2\pi} \cdot \pi & \geqleq & \frac{1}{2} \cdot \sin(tan x) \cdot 1 \\[4pt]
\Rightarrow & \,sin x & \leq & x & \leq & \frac{\sin( x)}{\cos( x)} \geq x \geq[4pt]
\sin(x)\\ \Rightarrow &\, \frac{\cos( x)}{\sin( x)} & \leq & \frac{1}{x} & \leq & \frac{1}{\sin( x)} \\[4pt]
\Rightarrow &\, \cos( x) & \leq & \frac{\sin( x)}{x} & \leq & 1
\end{alignarray} </math>]]
 
Probably the best-known examples of finding a limit by squeezing are the proofs of the equalities
<math display="block">
 
: <math>
\begin{align}
& \lim_{x\to 0} \frac{\sin( x)}{x} =1, \\[10pt]
& \lim_{x\to 0} \frac{1 - \cos( x)}{x} = 0.
\end{align}
</math>
 
The first limit follows by means of the squeeze theorem from the fact that<ref>Selim G. Krejn, V.N. Uschakowa: ''Vorstufe zur höheren Mathematik''. Springer, 2013, {{ISBN|9783322986283}}, pp. [https://books.google.decom/books?id=-yXMBgAAQBAJ&pg=PA80 80-81] (German). See also [[Sal Khan]]: [https://www.khanacademy.org/math/ap-calculus-ab/limits-from-equations-ab/squeeze-theorem-ab/v/proof-lim-sin-x-x ''Proof: limit of (sin x)/x at x=0''] (video, [[Khan Academy]])</ref>
The first limit follows by means of the squeeze theorem from the fact that
 
: <math display="block"> \cos x \leq \frac{\sin( x)}{x} \leq 1 </math><ref>Selim G. Krejn, V.N. Uschakowa: ''Vorstufe zur höheren Mathematik''. Springer, 2013, {{ISBN|9783322986283}}, pp.
[https://books.google.de/books?id=-yXMBgAAQBAJ&pg=PA80 80-81] (German). See also [[Sal Khan]]: [https://www.khanacademy.org/math/ap-calculus-ab/limits-from-equations-ab/squeeze-theorem-ab/v/proof-lim-sin-x-x ''Proof: limit of (sin x)/x at x=0''] (video, [[Khan Academy]])</ref>
 
for ''{{mvar|x''}} close enough to 0. The correctness of which for positive {{mvar|x}} can be seen by simple geometric reasoning (see drawing) that can be extended to negative {{mvar|x}} as well. The second limit follows from the squeeze theorem and the fact that
 
: <math display="block"> 0 \leq \frac{1 - \cos( x)}{x} \leq x </math>
for ''{{mvar|x''}} close enough to 0. This can be derived by replacing <{{math>\|sin( ''x)</math>''}} in the earlier fact by <math display="inline"> \sqrt{1-\cos(x)^2 x}</math> and squaring the resulting inequality.
 
These two limits are used in proofs of the fact that the derivative of the sine function is the cosine function. That fact is relied on in other proofs of derivatives of trigonometric functions.
Line 141 ⟶ 124:
 
It is possible to show that
: <math display="block"> \frac{d}{d\theta} \tan\theta = \sec^2\theta </math>
 
: <math> \frac{d}{d\theta} \tan\theta = \sec^2\theta </math>
 
by squeezing, as follows.
 
Line 150 ⟶ 131:
In the illustration at right, the area of the smaller of the two shaded sectors of the circle is
 
: <math display="block"> \frac{\sec^2\theta\,\Delta\theta}{2}, </math>
 
since the radius is {{math|sec&nbsp; ''&theta;θ''}} and the arc on the [[unit circle]] has length&nbsp;{{math|Δ''&theta;θ''}}. Similarly, the area of the larger of the two shaded sectors is
 
: <math display="block"> \frac{\sec^2(\theta + \Delta\theta)\,\Delta\theta}{2}. </math>
 
What is squeezed between them is the triangle whose base is the vertical segment whose endpoints are the two dots. The length of the base of the triangle is&nbsp; {{math|tan(''&theta;θ''&nbsp; +&nbsp; Δ''&theta;θ'')&nbsp;&minus;&nbsp;tan( ''&theta;θ'')}}, and the height is&nbsp;1. The area of the triangle is therefore
 
: <math display="block"> \frac{\tan(\theta + \Delta\theta) - \tan(\theta)}{2}. </math>
 
From the inequalities
 
: <math display="block"> \frac{\sec^2\theta\,\Delta\theta}{2} \le \frac{\tan(\theta + \Delta\theta) - \tan(\theta)}{2} \le \frac{\sec^2(\theta + \Delta\theta)\,\Delta\theta}{2} </math>
 
we deduce that
 
: <math display="block"> \sec^2\theta \le \frac{\tan(\theta + \Delta\theta) - \tan(\theta)}{\Delta\theta} \le \sec^2(\theta + \Delta\theta),</math>
 
provided&nbsp;{{math|Δ''&theta;θ''&nbsp; >&nbsp; 0}}, and the inequalities are reversed if&nbsp;{{math|Δ''&theta;θ''&nbsp; <&nbsp; 0}}. Since the first and third expressions approach {{math|sec<sup>2</sup>''&theta;θ''}} as {{math|Δ''&theta;θ''&nbsp; &nbsp; 0}}, and the middle expression approaches (''<math>\tfrac{d''/''}{d&\theta;'')&nbsp;} \tan&nbsp;''&\theta;'',</math> the desired result follows.
 
=== Fourth example ===
 
The squeeze theorem can still be used in multivariable calculus but the lower (and upper functions) must be below (and above) the target function not just along a path but around the entire neighborhood of the point of interest and it only works if the function really does have a limit there. It can, therefore, be used to prove that a function has a limit at a point, but it can never be used to prove that a function does not have a limit at a point.<ref>{{cite book|chapter=Chapter 15.2 Limits and Continuity| pages=909–910|title=Multivariable Calculus|year=2008|last1=Stewart|first1=James|authorlink1 author-link1=James_Stewart_James Stewart (mathematician)| edition=6th|isbn=0495011630978-0495011637}}</ref>
 
: <math display="block">\lim_{(x,y) \to (0, 0)} \frac{x^2 y}{x^2+y^2}</math>
 
cannot be found by taking any number of limits along paths that pass through the point, but since
 
<math display="block">\begin{array}{rccccc}
: <math>0 \leq \frac{x^2}{x^2+y^2} \leq 1</math>
: <math>-\left |& y0 & \rightleq & \vertdisplaystyle \leqfrac{x^2}{x^2+y^2} y& \leq \left& | y1 \right \vert </math>[4pt]
: <math>-\left -|y| \leq y \rightleq |y| \vertimplies & -|y| & \leq & \displaystyle \frac{x^2 y}{x^2+y^2} & \leq \left& | y| \right \vert </math>[4pt]
{
: <math>\lim_{(x,y) \to (0, 0)} -\left | y \right \vert = 0</math>
: <math> {\displaystyle \lim_{(x,y) \to (0, 0)} \left -|y \right \vert| = 0</math>} \atop
: <math>0 {\leq displaystyle \lim_{(x,y) \to (0, 0)} \frac{x^2 y}{x^2+y^2} \ \leq |y| = 0</math>}
} \implies & 0 & \leq & \displaystyle \lim_{(x,y) \to (0, 0)} \frac{x^2 y}{x^2+y^2} & \leq & 0
\end{array}</math>
 
therefore, by the squeeze theorem,
 
: <math display="block">\lim_{(x,y) \to (0, 0)} \frac{x^2 y}{x^2+y^2} = 0.</math>
 
== References ==
=== Proof Notes===
{{refimprove|date=April 2010}}
{{notelist}}
 
=== References ===
<references />
 
Line 197 ⟶ 183:
* [http://demonstrations.wolfram.com/SqueezeTheorem/ Squeeze Theorem] by Bruce Atwood (Beloit College) after work by, Selwyn Hollis (Armstrong Atlantic State University), the [[Wolfram Demonstrations Project]].
* [https://proofwiki.org/wiki/Squeeze_Theorem Squeeze Theorem] on ProofWiki.
 
{{Portal bar|Mathematics}}
 
[[Category:Limits (mathematics)]]
[[Category:Functions and mappings]]
[[Category:Articles containing proofs]]
[[Category:Theorems inabout calculusreal number sequences]]
[[Category:Theorems in real analysis]]