Differentially Private Release of Synthetic
Graphs

Marek Elias
EPFL

Joint work with
Michael Kapralov, Janardhan Kulkarni, Yin Tat Lee

Elias, Kapralov, Kulkarni, Lee: Differentially Private Release of Synthetic Graphs slide: 1/15



Private network analysis
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Private network analysis

Social networks:
» contain valuable information about our societies

> stability of the society, information spread

Elias, Kapralov, Kulkarni, Lee: Differentially Private Release of Synthetic Graphs slide: 2/15



Private network analysis

Social networks:
» contain valuable information about our societies

> stability of the society, information spread

Network analysis in a private manner?
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A synthetic graph approximating all cuts

Input:
» graph G(V, E) with edge-weights w

Output:

» differentially private graph G’ with weights w’
> forany ] C V: w/(L,]) =w(l,])
> i.e., preserving weight of (I, J)-cuts
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A synthetic graph approximating all cuts

Input:
» graph G(V, E) with edge-weights w

Output:

» differentially private graph G’ with weights w’
> forany ] C V: w/(L,]) =w(l,])
> i.e., preserving weight of (I, J)-cuts

Edge-level privacy:
> neighboring graphs differ by a single edge
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Known results

Randomized response
» Gupta, Roth, Ullman'12

> W, =we + (e, where (. ~ Lap(1/€) i.i.d.

» additive error: O(n°/?)

» useful only for graphs with > n3/2

edges

Kn

Ce ~Lap(1/e€)
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Known results

Randomized response
» Gupta, Roth, Ullman'12
> W, =we + (e, where (. ~ Lap(1/€) i.i.d.
> additive error: O(n*/?)

» useful only for graphs with > n3/2

edges

Kn

Ce ~Lap(1/e€)

Other results
> Blocki, Blum, Datta, Sheffet '12;  Upadhyay '13
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Known results

Exponential mechanism: Naive version
» score Oexp(n?’)) possible output graphs by their error
> return a sample from this distribution

» error proportional to 1”

1Only for cuts of type (S, V\ S)
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Exponential mechanism: Improved version

> fundamental result: existence of sparsifiers

> preserve cut sizes' with a small multiplicative error
» number of edges: O(n)

1Only for cuts of type (S, V\ S)
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Known results

Exponential mechanism: Naive version
» score Oexp(n?’)) possible output graphs by their error
> return a sample from this distribution

» error proportional to 1”

Exponential mechanism: Improved version

> fundamental result: existence of sparsifiers

> preserve cut sizes' with a small multiplicative error
» number of edges: O(n)
» only exp(O(nlogn)) possible sparsifiers!

» additive error: 1 log 11, multiplicative error due to sparsification

» Drawback: exponential time!

1Only for cuts of type (S, V\ S)
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Our result

Input:
» graph G*st. ) . wi=m

Output:
> (e, 5)-DP synthetic graph G with weights w
> with probability (1 —v):
> forall ] c V: w(L,]) —w*(L]) < O(,/mn)

> i.e. purely additive error
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Our result

Input:
» graph G*st. ) . wi=m

Output:
> (e, 5)-DP synthetic graph G with weights w
> with probability (1 —v):
> forall ] C V: w(L]) —w*(L])| < O(y/mn/e - log*(n/s))
> i.e. purely additive error

» first polytime alg. with non-trivial guarantee for sparse graphs

Lower bounds for purely additive error

Q(/mn/e)
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Should we use sparsification?

Algorithm by Spielman and Srivastava
> sample edges by their effective resistance
» number of edges: O(x2nlogn)

» multiplicative error: (1 + )
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Should we use sparsification?

Algorithm by Spielman and Srivastava
> sample edges by their effective resistance
» number of edges: O(x2nlogn)

» multiplicative error: (1 + )

Problem:
> only existing edges are sampled
> edge e in the output = e was present in the input!

> not private
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Our approach

Find cut approximator using convex optimization
» mirror descent
> iterative technique

> we can choose target precision
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Our approach

Find cut approximator using convex optimization
» mirror descent
> iterative technique

> we can choose target precision

Make each iteration private
» mirror descent only needs gradient as an input

> sanitize each gradient evaluation
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Our approach

Find cut approximator using convex optimization
» mirror descent
> iterative technique

> we can choose target precision

Make each iteration private
» mirror descent only needs gradient as an input

> sanitize each gradient evaluation

Bound the total privacy

» Advanced composition theorem
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Convex objective

> input graph G*: weights w*, adjacency matrix A*
» current solution G: weights w, adjacency matrix A
> letD=A—A*
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Convex objective

> input graph G*: weights w*, adjacency matrix A*
» current solution G: weights w, adjacency matrix A
> letD=A—A*

Grothendieck problem:

F(D) = max{ <g g) e X; Xis symmetric, X = 0, Xj; = 1Vi}

» constant-factor approximation of maxy jcv ‘W(I, J) —w*(I, ])‘

> Xi; € [—1,1] for each 1,j X1/2
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Convex objective

> input graph G*: weights w*, adjacency matrix A*
» current solution G: weights w, adjacency matrix A
> letD=A—A*

Grothendieck problem:

F(D) = max{ <g g) e X; Xis symmetric, X = 0, Xj; = 1Vi}

» constant-factor approximation of maxy jcv ‘W(I, J) —w*(I, ])‘

> Xi; € [—1,1] for each 1,j X1/2

Properties:

» F(D) is convex
» VFD)=X*
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Minimization problem

Optimization problem:
min {F(A(w) —A%); D we= m}
€

» minimization of convex function
» bounded gradient: (VF(D));; € [-1,1]
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Minimization problem

Optimization problem:
min {F(A(w) —A%); D we= m}
€

» minimization of convex function
» bounded gradient: (VF(D));; € [-1,1]

Mirror descent theorem:

> after T = m/n iterations:
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Stochastic gradient

. . 1/2
Stochastic gradient: JL transform X

> release X1/2(, where ( ~ N(0,1)
> stochastic gradient: Sx = X/2g¢Tx1/2
> E[Sx] =X
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Stochastic gradient

. . 1/2
Stochastic gradient: JL transform X

> release X1/2(, where ( ~ N(0,1)
> stochastic gradient: Sx = X/2g¢Tx1/2
> E[Sx] =X

Privacy of the gradient at iteration t:

X =VFAWY)—A") and X = VF(A(w!V) — A7)
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Stochastic gradient

. . 1/2
Stochastic gradient: JL transform X

> release X1/2(, where ( ~ N(0,1)
> stochastic gradient: Sx = X/2g¢Tx1/2
> E[Sx] =X

Privacy of the gradient at iteration t:

X=VFAMWY)—A") and X = VFA(WV)) — A9
» X1/2¢ and X1/2¢ have similar distribution:

pdfx (x) < e - pdfg (x) w.p. (1— &)

€0 = O(log %0) : \/trX*1(>~( —X)X—1(X=X)

> this implies (€g, dg)-DP
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Regularization

F(D) = max{ (103 13) oX+W(X); Xis symmetric, X = 0, X = 1}
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Regularization
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> Y(X) =Alogdet X

> A determines the stability but also error
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Regularization

F(D) = max{ (103 13) oX+W(X); Xis symmetric, X = 0, X = 1}

> Y(X) =Alogdet X

> A determines the stability but also error

Claim:
» If A* and A* differ in a single edge, then

\/tr XX = X)X (X —X) <O(1/A)
» crucial property of W: D2W(X)[E, E] = —Atr X 'EX 'L
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Summing up

To get (€,0)-DP:

» we choose
A~e 1y/m/n

Elias, Kapralov, Kulkarni, Lee: Differentially Private Release of Synthetic Graphs slide: 13/15



To get (€,0)-DP:

» we choose

We solve

F(D) = max{ (103 13) oX+Alogdet X; X symmetric PSD, Xi; = 1}

n {F(A —Aw)); ;We = m}

» using T = m/n iterations of mirror descent
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To get (€,0)-DP:

» we choose

We solve

F(D) = max{ (103 13) oX+Alogdet X; X symmetric PSD, Xi; = 1}

n {F(A —Aw)); ;We = m}

» using T = m/n iterations of mirror descent
» privacy (by Advanced composition thm): %ﬁ= €

> error due to low number of iterations: O(./mn)

1

> error due to regularization: Anlogn < Ofe mn)
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Open problems

Matching the guarantee of the exponential mechanism
» multiplicative error (1 4+mn), additive error O(nlogn)
» in polynomial time?
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» in polynomial time?

Node level privacy

» neighboring graphs differ in whole vertex neighborhoods
> any upper or lower bounds?
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Open problems

Matching the guarantee of the exponential mechanism
» multiplicative error (1 4+mn), additive error O(nlogn)
» in polynomial time?

Node level privacy

» neighboring graphs differ in whole vertex neighborhoods
> any upper or lower bounds?

Is our result implementable?

> using some convex optimization tool
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Questions?

European Research Council

Establahed by th Eurpean Commision

https://elias.ba30.eu/
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