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The k-server problem

I One of the central problems in Online Algorithms

I Introduced by Manasse, McGeoch, Sleator '90

De�nition of the problem:

I We have k servers in a metric space S

I At time t:
I Request arrives at some point σt ∈ S
I We have to decide what server to move to σt

I Target: minimize the total distance traveled by the servers
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The k-server problem

I k servers in a metric space S

I At time t:
I Request arrives at some point σt ∈ S
I We have to decide what server to move to σt

a

b

c

σ = ( ? ? ? ?, , , , . . . )

t = 0:
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The k-server problem

I k servers in a metric space S

I At time t:
I Request arrives at some point σt ∈ S
I We have to decide what server to move to σt

a

b

c

σ = ( c b ? ?, , , , . . . )

t = 2:

cost:
dist(c,b)
+dist(a,b)
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Competitive ratio

Performance evaluation:

R(σ) =
ALGk(σ)

OPTk(σ)
; Competitive ratio = max

σ
(R(σ))

I ALGk(σ): cost of the online algorithm with k servers

I OPTk(σ): cost of the optimal o�ine solution for k servers

Achievable ratio is of order Θ(k) (in deterministic case):

I LB: k for any metric space of at least k+ 1 points (Manasse,

McGeoch, Sleator '90)

I UB: k for DC in tree metrics (Chrobak et al. '91; Chrobak, Larmore '91)

I UB: 2k− 1 for the Work Function Algorithm by (Koutsoupias,

Papadimitriou '95)

Bansal, Eliá², Je», Koumoutsos: (h,k)-Server Problem slide: 4/17



Competitive ratio

Performance evaluation:

R(σ) =
ALGk(σ)

OPTk(σ)
; Competitive ratio = max

σ
(R(σ))

I ALGk(σ): cost of the online algorithm with k servers

I OPTk(σ): cost of the optimal o�ine solution for k servers

Achievable ratio is of order Θ(k) (in deterministic case):

I LB: k for any metric space of at least k+ 1 points (Manasse,

McGeoch, Sleator '90)

I UB: k for DC in tree metrics (Chrobak et al. '91; Chrobak, Larmore '91)

I UB: 2k− 1 for the Work Function Algorithm by (Koutsoupias,

Papadimitriou '95)

Bansal, Eliá², Je», Koumoutsos: (h,k)-Server Problem slide: 4/17



The (h,k)-server problem

Servers as a precious resource:

I Does adding new servers help to decrease the cost?
I Standard setting:

I If we add more servers to ALG, we also compare it to OPT

with more servers
I Does not tell us whether the cost of ALG decreased or not

The (h,k)-server problem:

I h: # of servers of OPT; k: # of servers of ALG

I Fix h and add new servers only to ALG, i.e. k > h:

ALGh(σ)

OPTh(σ)
≈ h ALGk(σ)

OPTh(σ)
≈ constant?

Bansal, Eliá², Je», Koumoutsos: (h,k)-Server Problem slide: 5/17



The (h,k)-server problem

Servers as a precious resource:

I Does adding new servers help to decrease the cost?
I Standard setting:

I If we add more servers to ALG, we also compare it to OPT

with more servers
I Does not tell us whether the cost of ALG decreased or not

The (h,k)-server problem:

I h: # of servers of OPT; k: # of servers of ALG

I Fix h and add new servers only to ALG, i.e. k > h:

ALGh(σ)

OPTh(σ)
≈ h ALGk(σ)

OPTh(σ)
≈ constant?

Bansal, Eliá², Je», Koumoutsos: (h,k)-Server Problem slide: 5/17



The (h,k)-server problem

Servers as a precious resource:

I Does adding new servers help to decrease the cost?
I Standard setting:

I If we add more servers to ALG, we also compare it to OPT

with more servers
I Does not tell us whether the cost of ALG decreased or not

The (h,k)-server problem:

I h: # of servers of OPT; k: # of servers of ALG

I Fix h and add new servers only to ALG, i.e. k > h:

ALGh(σ)

OPTh(σ)
≈ h ALGk(σ)

OPTh(σ)
≈ constant?

Bansal, Eliá², Je», Koumoutsos: (h,k)-Server Problem slide: 5/17



Known results for the (h,k)-server problem

Uniform metrics:

I Corresponds to the paging problem

I Tight bounds of k/(k− h+ 1) by Sleator, Tarjan '85
I This equals 2 for k = 2h and approaches 1 for k→ ∞
I Later generalized to weighted star metrics by Young '94

General metrics:

I Lower bound of 2 irrespective of k by Bar Noy and Schieber
for the line

I Upper bound for WFA by Koutsoupias '99:
I 2h for general metrics and h+ 1 for line irrespective of k

I No o(h) result known, even if k→∞
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Our results

Lower bound of Ω(h) for DC and WFA:

I In depth-2 trees for DC and depth-3 trees for WFA

General lower bound for depth-2 trees:

I No algorithm can achieve a ratio better than 2.4 irrespective
of k

New (deterministic) algorithm for bounded-depth trees:

I Its competitive ratio in a depth-d tree is

O
(
d · 2d+1

)
for k→ ∞

O
(
d · (2d/ε)d+1

)
for k = (1+ ε)h

I First bound sublinear in h for a metric which is not uniform
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Roadmap for the rest of this talk

1. De�nition of the depth-d trees

2. Lesson to learn from the lower bounds for DC and WFA

3. Description of our algorithm

4. New potential function based on Excess and De�ciency

5. Open problems
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Trees of bounded depth

r

level 0

level 1

level 2

level d
...

Depth-d tree:

I Rooted tree

I Each path from root to leaf has d edges

I Requests only in leaves
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Trees of bounded depth

r

level 0

level 1

level 2

level d
...

Elementary subtrees:

I Subtrees of depth one

I They form a uniform metric

I In uniform metric: if k > 2h, we can be 2-competitive (ST'85)
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Drawbacks of DC and WFA

kL kR

L R

s

I DC and WFA bring help too slowly

I If cost of x is incurred in the subtree R, DC moves s by
≈ x/kR

I Our algorithm is more aggressive: we move s by ≈ x
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New algorithm: Paradigm

r

level 0

level 1

level 2

level d
...

Basic paradigm of the algorithm:

I Similar to DC by Chrobak et al.

I Servers are allowed to stay anywhere

I We move servers adjacent to the request
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New algorithm: Paradigm

r

level 0

level 1

level 2

level d
...

Basic paradigm of the algorithm:

I Each adjacent server keeps moving towards the request until
I its path to the request is blocked by some other server
I request is served

I Key part of our algorithm: careful choice of the speeds
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Algorithm: Phase 1

2
7

5
7

1
2

1
2

I One unit of speed divided between the servers in the
elementary subtree containing the requested point

I Second unit of speed is divided to the other incoming servers
proportionally to the number of servers they represent
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Algorithm: Phase 2

1

2
4

1
4

1
4

I The descending server is moving with the speed 1

I Second unit of speed is divided to the other incoming servers
proportionally to the number of servers they represent
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Analysis: New potential function

Excess and de�ciency:

I Let T be a subtree rooted at a vertex at level i

I kT : number of ALG's servers in T

I hT : number of OPT's servers in T

I If kT > βhT , T is excessive; otherwise it is de�cient

I Excess threshold β depends on i and on k/h
I β = 2 for elementary subtrees if k/h is large
I For subtrees rooted in higher levels β increases geometrically

r

level 0

level 1

level 2

level d
... subtree rooted

at level 2
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Analysis: New potential function

The new potential:

Φ =

d∑
i=1

(αEi Ei + α
D
i Di)

I Ei and Di measure the excess/de�ciency in subtrees rooted at
level i

I αEi and αDi are coe�cients (dependent only on i and k/h)

Core of the analysis:

I Proof that ALG always decreases enough excess or de�ciency

Bansal, Eliá², Je», Koumoutsos: (h,k)-Server Problem slide: 15/17



Open problems

Is dependence on d necessary?

I A constant independent on d would imply a randomized
O(logn)-competitive algorithm for any metric on n points

Can we achieve a similar result for other metrics?

I e.g. line would be very interesting
I Current best is k

k+1
(h+ 1) for DC

Is there a metric which allows a lower bound bigger than 2.4?

I Maybe even for trees of higher depth
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Thank You
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Can the ratio become worse with k increasing?

Answer: Yes!

Performance of DC algorithm in the line and trees:

I In the standard setting optimal for line and trees

I Competitive ratio for DC is precisely

k

k+ 1
(h+ 1)

I Equals h for k = h, and increases towards h+ 1 for k→ ∞
Competitive ratio of WFA in the line:

I Equals h for k = h, but increases to h+ 1/3 for k = 2h.
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