
Improved Approximation for Vector Bin Packing

Nikhil Bansal∗ Marek Eliáš∗ Arindam Khan†

Abstract

We study the d-dimensional vector bin packing problem, a

well-studied generalization of bin packing arising in resource

allocation and scheduling problems. Here we are given a set

of d-dimensional vectors v1, . . . , vn in [0, 1]d, and the goal is

to pack them into the least number of bins so that for each

bin B, the sum of the vectors in it is at most 1 in every

dimension, i.e., ||
∑
vi∈B vi||∞ ≤ 1. For the 2-dimensional

case we give an asymptotic approximation guarantee of 1 +

ln(1.5)+ε ≈ (1.405+ε), improving upon the previous bound

of 1 + ln 2 + ε ≈ (1.693 + ε). We also give an almost tight

(1.5+ ε) absolute approximation guarantee, improving upon

the previous bound of 2 [23]. For the d-dimensional case, we

get a 1.5 + ln(d+1
2

) + ε ≈ 0.807 + ln(d + 1) + ε guarantee,

improving upon the previous (1+ln d+ε) guarantee [2]. Here

(1+ln d) was a natural barrier as rounding-based algorithms

can not achieve better than d approximation. We get around

this by exploiting various structural properties of (near)-

optimal packings, and using multi-objective multi-budget

matching based techniques and expanding the Round &

Approx framework to go beyond rounding-based algorithms.

Along the way we also prove several results that could be of

independent interest.

1 Introduction

We consider the d-dimensional vector bin packing prob-
lem (d-VP) defined as follows: Given a collection of d-
dimensional vectors v1, . . . , vn ∈ [0, 1]d, partition them
into the minimum number of feasible sets B1, . . . , Bm,
where a set Bj is feasible if the sum of the vectors
contained in it does not exceed 1 in any coordinate,
i.e., ‖

∑
v∈Bj v‖∞ ≤ 1. Usually, the vectors v1, . . . , vn

are referred to as items and the sets B1, . . . , Bm as bins.
d-VP is a natural generalization of the classical

bin packing problem (which corresponds to d = 1) to
the multiple resource setting. If we view the bins as
servers with d different resources (processing power,
memory, bandwidth etc.) and each item as a job

∗Eindhoven University of Technology, Netherlands. Email:

n.bansal@tue.nl, m.elias@tue.nl. Supported by NWO grant

639.022.211 and ERC consolidator grant 617951.
†Georgia Institute of Technology, Atlanta, GA, USA. Email:

akhan67@gatech.edu. Supported by NSF EAGER award grants
CCF-1415496 and CCF-1415498.

requiring some specified amount of each resource, then
d-VP corresponds to the problem of scheduling the jobs
feasibly on the fewest number of servers. Starting from
the classical work of Garey et al. [15], d-VP and its
variants1 such as the makespan minimization version
(aka vector scheduling) have been studied extensively
(e.g. [13, 8, 23, 34, 2]) both in the offline and online
settings. Even the two-dimensional case has received
a lot of attention motivated by novel applications in
layout design, logistics, loading and scheduling [32, 33,
7, 17, 31, 30]. In recent years, d-VP has been revisited
in connection with virtual machine placement in cloud
computing [27, 4, 1, 26, 6, 20].

In this paper, we focus on the offline problem. Al-
ready for bin packing an easy reduction from Partition
shows that it is NP-hard to determine whether the items
can be packed into two bins or not, and hence it cannot
be approximated better than 3/2. So, as is usual for
bin-packing, we say that an algorithm A has asymptotic
approximation ratio ρ if A(I) ≤ ρ · Opt(I) + o(Opt(I))
for any instance I. Here, Opt(I) denotes the optimum
value for I. If no o(Opt(I)) term is allowed, we call it an
absolute approximation ratio. If, for any given constant
ε > 0, there is an algorithm with ρ = (1 + ε), we say
that the problem admits an asymptotic polynomial-time
approximation scheme (APTAS).

Previous Results: For classical bin packing, de la
Vega and Lueker [10] gave the first APTAS based on
an elegant linear grouping technique. This result was
improved by Karmarkar and Karp [22] based on iterated
rounding techniques. The current best result is due
to Hoberg and Rothvoss [19] based on connections to
discrepancy [12, 29] and achieves a logarithmic additive
error.

However, d-VP behaves quite differently for d > 1.
Already for d = 2, Woeginger [34] showed that no
APTAS exists unless P = NP (however, the lower bound
on the ratio is quite small, less than 1.01). This is
still the best known lower bound for any constant d.
Interestingly, much stronger lower bounds are known

1There is another multi-dimensional generalization of bin
packing called d-dimensional Geometric Bin Packing (GBP),

where rectangular items are packed into unit-sized cubes [3].
However, we will not consider this here.

when d is part of the input. Based on a reduction from
graph coloring [18], Chekuri and Khanna [8] showed
that no d1/2−ε approximation is possible for any ε > 0,
unless NP = ZPP. This can be improved to d1−ε (this
simple reduction2 was pointed to us by Jan Vondrák).
Throughout this paper we focus on the case when d is
a fixed constant and not part of the input.

On the algorithmic side, a d+ ε asymptotic approx-
imation follows easily [10] from results for bin packing:
Partition the items into d classes based on which co-
ordinate of the item has the highest value, and apply
the APTAS for one-dimensional case to each of these d
classes separately. Interestingly, there is a very natural
barrier for improving upon the ratio of d. In particular,
any rounding-based algorithm, i.e., that rounds the sizes
of large items into an Od(1) number of types (a widely
used technique in bin packing and resource allocation
problems), cannot give a better than d approximation
(see Theorem 2.2). Thus any non-trivial algorithm must
implicitly or explicitly consider the original (unrounded)
sizes of items while packing them.

The first major result was obtained by Chekuri
and Khanna [8] who gave an O(log d) asymptotic ap-
proximation for the problem. This was improved to
(1 + ln d + ε), without the big-O, by Bansal, Caprara,
and Sviridenko, based on the so-called Round & Approx
framework (R&A) [2]. This gives a bound of about 1.693
and 2.099 for d = 2 and d = 3, which are presumably
the cases of most practical interest. The main idea of
the R&A method (details in Section 2) is the following:
if there is a “suitable” ρ approximation algorithm for a
packing problem, then one obtains a (1+ln ρ+ε) approx-
imation. In the original approach of [2], the definition of
a suitable algorithm involved a certain technical notion
of subset-obliviousness. Later, Bansal and Khan [3] sim-
plified and extended the applicability of this approach
(in the context of geometric bin-packing) by showing
that any rounding based algorithm is subset-oblivious.
As rounding-based algorithms cannot beat d and ex-
tending R&A beyond such algorithms was unclear, this
was a major barrier to improving the ratio of 1 + ln(d).

Given the large gap between the known lower and
upper bounds for the problem, it is of great interest to
improve these bounds at least for small values of d.

Our Results and Techniques. The main result of
this paper is the following theorem:

2Let G be a graph on n vertices. In the d-VP instance, there

will be d = n dimensions and n items, one for each vertex. For
each vertex i, we create an item i that has size 1 in coordinate i,
size 1/n in coordinate j for each neighbor j of i, and size 0 in all

other coordinates. It is easy to verify that a set of items S can be
packed in a bin if and only if S is an independent set in G.

Theorem 1.1. For any small constant ε > 0, there
is a polynomial time algorithm with an asymptotic
approximation ratio of (1 + ln(1.5) + ε) ≈ (1.405 + ε)
for 2-D vector packing.

This gives a substantial improvement upon the
current ≈ 1.693 bound for 2-D vector packing, but,
more importantly, it overcomes the barrier of 1 + ln d
mentioned above.

Theorem 1.1 is based on two (perhaps surprising)
ideas. First we give a (1.5+ε) asymptotic approximation
for any ε > 0, without the R&A framework. To do
this, we show that there exists a “well-structured” 1.5-
approximate solution, and then search (approximately)
over the space of such solutions. However, as this
structured solution (necessarily) uses unrounded item
sizes, it is unclear how to search over the space of
such solutions efficiently. So a key idea is to define
this structure carefully based on matchings, and use
an elegant recent algorithm for the multiobjective-
multibudget matching problem by Chekuri, Vondrák,
and Zenklusen [9]. As we show, this allows us to both
use unrounded sizes and yet enumerate the space of
solutions like in rounding-based algorithms. A more
detailed overview can be found in Section 3.

The second step is to apply the R&A framework
to the above algorithm, however, there are some dif-
ficulties. Firstly, the algorithm is not rounding-based.
Secondly, even proving subset obliviousness for round-
ing based algorithms for d-VP is more involved than
for geometric bin-packing. Roughly, in the geometric
version, items with even a single small coordinate have
small area, which makes it easier to handle, while in
d-VP such skewed items can cause problems. To get
around these issues, we use additional technical obser-
vations about the structure of d-VP.

Another consequence of the these techniques is the
following tight (absolute) approximation guarantee3,
improving upon the guarantee of 2 by Kellerer and
Kotov [23].

Theorem 1.2. For any small constant ε > 0, there is
a polynomial time algorithm with an absolute approxi-
mation ratio of (1.5 + ε) for 2-D vector packing.

We extend the approach for d = 2 to give a
(d+ 1)/2 + ε approximation (for d = 2, this is precisely
the 3/2 bound mentioned above). Then we show how to
incorporate it into R&A. However, applying the R&A
framework is more challenging here and instead of the

3Recall that 3/2 is tight even for 1-VP via the Partition
problem, and hence for 2-VP. So even though 1-VP and 2-VP

have very different asymptotic approximability, they have very
similar absolute approximability.

ideal 1+ln((d+1)/2) ≈ 0.307+ln d we get the following
(ln(d+ 1) + 0.807)-approximation:

Theorem 1.3. For any small constant ε > 0, there
is a polynomial time algorithm with an asymptotic
approximation ratio of (1.5 + ln d+1

2 + ε) ≈ ln(d + 1) +
0.807 + ε for d-VP.

This improves over the previous best approximation for
all d > 4. Moreover, note that our bound of (d+1

2 + ε)-
approximation also gives a 2+ε approximation for d = 3,
improving upon the previous bounds of 1 + ln 3 + ε ≈
2.099 + ε.

Along the way, we also prove several additional
results which could be of independent interest. For
example, in Section 5 we obtain several results related
to resource augmented packing which has been studied
for other variants of bin packing [21, 5]. We specifically
show the following.

Theorem 1.4. There is a polynomial time algorithm
for packing vectors into at most (1 + 2ε)Opt + 1 bins
with ε resource augmentation in (d−1) dimensions (i.e.,
bins have length (1 + ε) in (d− 1) dimensions and 1 in
the other dimension), where Opt denotes the minimum
number of unit bins needed to pack these items.

Organization of the paper. In Section 2, we state
basic definitions and explain the main tools which
are used throughout the paper. Section 3 describes
the main strategy and intuition behind our results,
whose actual exposition starts in Section 4. There we
prove Theorem 1.4 by describing the proposed APTAS
algorithm with resource augmentation. In Section 5,
we present a preliminary approximation algorithm for
d-VP with approximation ratio of (d + 1)/2, which
we later incorporate into R&A framework in Section
6, getting our final results for 2-dimensional case in
Subsection 6.1 (Theorem 1.1) and d-dimensional case
in Subsection 6.2 (Theorem 1.3). The algorithm with
absolute approximation guarantee of 3/2 proposed in
Theorem 1.2 is presented at the end of Section 5.

2 Preliminaries

Let us first fix some notation and definitions. We denote
[n] := {1, 2, . . . , n}, for n ∈ N. An instance I of d-VP is
specified by n items {v1, v2, . . . , vn}, where vi ∈ [0, 1]d

for each i ∈ [n]. For ` ∈ [d], v`i denotes `-th coordinate of
item vi. We will use the terms dimension and coordinate
interchangeably. Let β be a fixed parameter. We call
an item small, if all its coordinates are smaller than β,
otherwise it is large. A bin B has slack δ in dimension
` if

∑
v∈B v

` ≤ (1 − δ). For a set S of items, let σS
be the vector denoting the coordinate-wise sum of all

vectors in S, i.e., σS =
∑
vj∈S vj . We denote σS ≤ v if

σ`S ≤ v` for all dimensions ` ∈ [d]. Let LB be the set
of large items in a bin B. We call a configuration of big
items in B to be the vector

∑
vi∈LB vi. A configuration

of small items is the remaining space in the bin, i.e.,
vector 1−

∑
vi∈LB vi.

Rounding specification and Realizability: Con-
sider a partition R1 ∪ · · · ∪Rk of I into k classes, and a
function R : I → [0, 1]d which maps all items v ∈ Ri to
some item ṽi. We call the instance Ĩ := {R(v) | v ∈ I}
a rounding of I to k item types. Sometimes, in our al-
gorithms we do not know which items will be rounded
in what way. We have classes W1, . . . ,Wk ⊆ I, not nec-
essarily disjoint, and for each class Wi there will be an
item ṽi and a number wi specified, meaning that ex-
actly wi items from Wi are supposed to be rounded to
item ṽi. We call this a rounding specification. We say,
that a rounding specification is realizable for instance
I, if there is a rounding Ĩ and a function R : I → Ĩ that
satisfies the requirements of the rounding specification.
This can be checked, for example, by solving a suitable
flow problem. Being able to guess the right rounding
specification and test its realizability will be crucial in
Section 5.

Now we describe some standard tools and ideas that
are used repeatedly in the following sections.

Linear grouping: This is a simple but powerful idea
introduced by [10]. Let I = {v1, . . . , vn}, where v1 ≥
v2 ≥ · · · ≥ vn, be a (one-dimensional) bin packing
instance with large items and k be a fixed parameter.
Split I into groups, each containing k consecutive items
(except possibly for the last group). Construct a
rounding Ĩ of I by rounding all items in a group Wi

to the size of largest item (v(i−1)k+1) in Wi. We denote

W̃i the rounded items of Wi. This rounding satisfies
Opt(Ĩ) ≤ Opt(I)+k, as in the optimal packing of I, the
items of Wi can be replaced by items from W̃i+1 (since
they are smaller) and the k items of W̃1 can be packed
into k additional bins.

Multi-objective/multi-budget (MOMB) match-
ing problem: Here we are given a graph G := (V,E),
k linear functions f1, f2, . . . , fk : E → R+ (called de-
mands), ` linear functions g1, g2, . . . , g` : E → R+

(called budgets), and the goal is to find a matching M
satisfying fi(M) ≥ Di for all i ∈ [k] and gi(M) ≤ Bi
for all i ∈ `. Chekuri et al. [9] showed the following
elegant result:

Theorem 2.1. (see [9]) For any constant γ > 0 and
any constant number of demands and budgets k+`, there
is a polynomial time algorithm that finds a matching S,
such that

• Each linear budget constraint is satisfied: gi(S) ≤
Bi.

• Each linear demand is nearly satisfied: fi(S) ≥
(1− γ)Di.

Or else, returns a certificate that the instance is not
feasible with demands Di and budget Bi.

This algorithm plays an important role in our results,
and we describe its use in more detail later.

Configuration LP: This is a class of strong LP
relaxations that is widely used for bin packing type
problems. There is a variable for each feasible way
of packing a bin (called a bin configuration). This
allows the packing problem to be cast as a set covering
problem, where each item in the instance I must be
covered by some configuration. Let C denote the set
of all valid configurations for the instance I. The
configuration LP is defined as:
(2.1)

min
{∑
C∈C

xC :
∑
C3v

xC ≥ 1 ∀v ∈ I, xC ≥ 0 ∀C ∈ C
}

As the size of C can possibly be exponential in the size
of I, one typically considers the dual of this LP:
(2.2)

max
{∑
v∈I

wv :
∑
v∈C

wv ≤ 1 ∀C ∈ C, wv ≥ 0 ∀v ∈ I
}

The separation problem for the dual is the following
knapsack problem: Given set of weights wi, is there a
feasible configuration with total weight of items more
than 1? For d-VP, the dual separation problem is the
d-dimensional vector knapsack problem which could be
solved to within (1 + ε) accuracy [14]. This gives an
algorithm solving (2.1), by the well-known connection
between separation and optimization [16]. Note that the
factor 1 + ε appears in the objective function of (2.1)
only and not in the sizes of the items. In particular, the
configurations produced use the unrounded item sizes.

R&A Framework and Rounding Based Algo-
rithms: Here, we give a high-level idea of the R&A
Framework in [2]. We use it in Section 6 and give a
more detailed description there. Let I be an instance
and A be a suitable ρ-approximation algorithm for d-
VP. We proceed roughly as follows:

1. Solve configuration LP (2.1), let x∗ be the (near)-
optimal solution and z∗ :=

∑
C∈C x

∗
C .

2. Repeat d(ln ρ)z∗e times: select a random configu-
ration C from C, with probability x∗C/z

∗.

3. Pack the remaining set of unpacked items S in
additional bins using A.

Note, that an item i ∈ I lies in S with probability
about 1/ρ. Therefore, if we could claim that Opt(S) ≤
(1
ρ) · Opt(I), we get

d(ln ρ)z∗e+ A(S) ≤ d(ln ρ)z∗e+ ρ · Opt(S),

what is at most (1 + ln ρ)Opt(I), since z∗ ≤ Opt(I).
However, it is unclear how to relate Opt(S) and Opt(I).
The idea in [2] was to show, that if A is subset-
oblivious, then for a random subset S, value of A(S) is
essentially the same as (1/ρ)A(I), and therefore A(S) ≤
Opt(I). Usually, simple rounding-based algorithms can
be shown to be subset-oblivious. Unfortunately, such
algorithms are not very useful for d-VP as we show
below.

Limitations of rounding-based algorithms: Here
we show a lower bound for all rounding-based algo-
rithms. As rounding-based, we consider all algorithms
which round the coordinates of items up.

Theorem 2.2. Any algorithm that rounds up large co-
ordinates of items to Od(1) types can not achieve better
than d approximation for d-VP.

Proof. Let A be an algorithm that rounds large coordi-
nates of items to r (a constant) number of types. We
describe an instance for which the approximation ra-
tio of A is at least d(1 − 1

t), for arbitrary t ∈ N: Let
m := t · r, and γ > 0 be a suitably small constant. We
denote vi,` a vector having the `-th coordinate v`i,` equal
to (1− εi) and all other coordinates equal to εi/(d− 1),
where εi := γ

di . Instance I := {vi,` | i ∈ [m], ` ∈ [d]} has
an optimal packing into m bins Bi := {vi,`|` ∈ [d]} for
i ∈ [m]. Note, that this is the unique optimal packing,
since vi,` and vi′,`′ cannot be packed together for i 6= i′.

Now, let the rounding algorithm A round the large
coordinates of items to r types (1− δ1) < · · · < (1− δr).
We denote J := {ih|(1− εih) ≤ (1− δh) < (1− εih+1)}.
Only items vi,` for i ∈ J could possibly retain their own
sizes after rounding, all other items will have their large
coordinates rounded up to (1− ε′i), where ε′i ≤ εi/d.

Rounding just increases sizes of items, so the
rounded items from vi,` and vi′,`′ still cannot be packed
together for i 6= i′. Moreover, we claim that, for
i /∈ J , even vi,` and vi,`′ cannot be packed together
after the rounding. Let us consider the sum of `-th co-
ordinates of vi,` and vi,`′ : we know that v`i,` + v`i,`′ =
(1− εi) + εi

d−1 . However, since i /∈ J , it becomes at least
(1 − εi/d) + εi

d−1 > 1 after the rounding, and thereby
they cannot be packed together in one bin.

Therefore, the algorithm A cannot find a packing of
I into less than d ·

∣∣[m] \ J
∣∣ = d(m − r) bins and the

approximation ratio is at least d(m−r)
m = d(1− 1

t), since

m = tr. We can construct such an instance of arbitrary
size by taking multiple copies of I. 2

3 Overview and Roadmap

Before proving our results, we first give some intuition
behind the main ideas and techniques. The starting
point is the following simple observation. Suppose there
is an optimal packing P of I where each bin in B ∈ P
has some fixed slack δ in each dimension. Then one
can get an optimal packing easily using the following
resource augmentation result:

Theorem 3.1. (Chekuri, Khanna [8]) If a d-VP
instance can be packed in m bins, then for any δ > 0, a
packing in m bins of size (1 + δ, . . . , 1 + δ) can be found
in time poly(n, f(δ)) for some function f .

However this is too good to hope for, and there
can be a large gap between packings with and without
slack. For example in 2-dimensional case, if all items are
(0.5, 0.5), then Opt(I) = m/2, while any packing with
slack needs m bins. However, note that this instance,
or any instance where each bin has at most 2 items, can
be easily solved by matching. For d-dimensional case,
we can consider the instance from the proof of Theorem
2.2, or even simpler one can be constructed: We take
I = {vi,`|i ∈ [m], ` ∈ [d]}, where vi,` has coordinate `
equal to 1 − δ and the other coordinates equal to δ

d−1 .
Then, clearly, Opt = m, while Opt(1−δ) = md.

On the other hand, we can claim the following:

Lemma 3.1. (Structural lemma for d-VP) Fix
any δ < 1/5. For any packing P using m bins, there
exists a packing P ′ into at most dd+1

2 me bins, such that
for each bin B in P ′: (i) either B contains at most 2
items, or (ii) at least d− 1 of the dimensions in B has
slack at least δ.

We call such a packing P ′ a structured packing, this
lemma is proved in Section 5.1.

Finding structured packings: Our goal is to find
the structured packing P ′ efficiently. To handle bins
of type (ii), we show a variant of Theorem 3.1 that
requires resource augmentation only in d−1 dimensions
(instead of d). This is Theorem 1.4 and is proved in
Section 4. Now, if we knew which items were packed
in the matching bins (of type (i) above, i.e., bins that
contain at most two items), then an APTAS for P ′ would
follow by applying Theorem 1.4 on the remaining items.
However, it is unclear how to guess the items in the
matching bins efficiently, as their sizes are not rounded.

To get around this, we flip the idea on its head.
We observe that Theorem 1.4 for packing of bins with
slack is based on rounding item sizes, and hence only

requires knowledge of how many items of each size
type (according to its internal rounding) are present
in the instance. In fact, it works just with rounding
specifications instead of the real instance. So we guess
the right rounding specification, i.e. how the item
classes look like and how many items belong to each
of them and, in addition, numbers of items from each
class which are to be packed in the matching bins.
This leads precisely to the multi-objective budgeted
matching problem [9]. In particular, we consider a graph
with a vertex for each item and an edge between two
items if they can be packed together. For each of the
O(1) types of items we specify how many items from this
class are to be matched, and then apply Theorem 2.1 to
find a matching with the guessed quota of items from
each class. This way we can separate items which are
to be packed into matching bins and use Theorem 1.4
to pack the rest. This procedure gives 3/2-asymptotic
approximation for d = 2 and (d + 1)/2-approximation
for general d, and is described in Section 5.

Applying the R&A framework: We apply the R&A
framework in different ways depending on whether
d = 2 or d > 2. For d = 2, we first find a
packing into matching bins, and then we apply R&A on
remaining items. Roughly speaking, this works because
the remaining items are packed using the APTAS which
is rounding based. The proof has some additional
technical difficulties compared to the previous result on
2-dimensional geometric bin packing [3], due to skewed
items that are large in one dimension and small in
another. This is described in Section 6.1.

To achieve our result for d > 2, we use a different
kind of structured packing. Instead of matching bins
we consider compact bins containing at most d items.
There is no analogous results to Theorem 2.1 for multi-
objective budgeted d-dimensional matching. However,
we can procede in the following way. First we apply
random sampling (part of R&A) to the whole instance.
This step decreases the numbers of items belonging to
compact bins to roughly one or two and that allows us to
use Theorem 2.1 to pack them. Then we apply APTAS
of Theorem 1.4 to the remaining items. The details are
more complicated and we refer the reader to Section 6.2.

4 Vector Packing with Resource Augmentation

In this section we consider packing when resource aug-
mentation is allowed in (d − 1)-dimensions. We call
these dimensions to be augmentable, and the only other
dimension, which we are not allowed to augment, we
call non-augmentable. Without loss of generality, we
assume the last dimension to be the non-augmentable
dimension. In this section we provide an APTAS algo-

rithm for this variant of vector packing and prove The-
orem 1.4. Due to space limitation, we omit some of the
proofs in this section. For the detailed proofs, we refer
the readers to [24].

Theorem 1.4 (restated). Let ε > 0 be a constant
and I be an instance of d-VP having an optimal packing
into m unit-size bins. Then there is a polynomial
time algorithm for packing vectors of I into at most
(1+2ε)m+1 bins with ε resource augmentation in (d−1)
dimensions (i.e., bins have size (1+ε) in the first (d−1)
dimensions and size 1 in the last one).

Here is the overview of the algorithm. Given ε
and a guess of the optimal value m, we describe a
procedure that either returns a feasible packing into
(1+2ε)m+1 bins with ε resource augmentation in (d−1)
dimensions, or shows that the guess is incorrect. First,
we choose β = ε/2d and classify items into large and
small. Recall, that we call an item large, if it is ≥ β in
at least one coordinate, otherwise it is small. Then we
round the large items into a constant number of classes
and pack them using dynamic programming. This part
contributes a major slice of the overall time complexity.
Afterwards we replace the rounded items by the original
ones and the final step is to pack the small items using
linear programming into the residual space of the bins
and possibly into some additional bins if needed.

4.1 Rounding of large items. We apply different
rounding to augmentable and non-augmentable coordi-
nates. Coordinates 1, . . . , d−1 (those with the resource
augmentation allowed) are rounded to the multiples of

α, where α = ε2

2d2 , and the d-th coordinate is rounded
using linear grouping.

Rounding of augmentable coordinates: We create
an instance Q̂ rounded in the first d − 1 coordinates
by replacing each large item pi of I with an item q̂i as
follows:

q̂`i :=

{
dp`i/αeα if ` ∈ {1, . . . , (d− 1)},
p`i if ` = d.

We classify the original instance I into classes {Wu|u ∈
{1, . . . , d 1αe}

d−1} where Wu := {pi | q̂i` = u` · α ∀` ∈
[d− 1]}, creating rA := (d 1αe)

d−1 classes altogether.

Rounding of the non-augmentable coordinate:
Let λ := εβ

2d be a constant. We apply rounding of
the last coordinate using linear grouping on each Wu

separately, splitting it into a := d 1λe groups in the
following way: Let p1, . . . , pku , where ku := |Wu|, be
the items of Wu sorted in nonincreasing order according

to their last coordinate. For each j = 1, . . . , a − 1 we
define class Wu,j having b := dλkue items as follows:
Wu,j := {p(j−1)b+1, . . . , pjb}. The last class Wu,a :=
{p(a−1)b+1, . . . , pku} might contain less than b items.
The first resp. the largest item in each group we call
round vector. To get the final rounded instance Q we
replace each vector pi ∈Wu,j by qi, where

q`i := q̂`i for ` ∈ [d− 1],

qdi := max{pd | p ∈Wu,j}.

Thus we round-up the dth dimension to the dth coor-
dinate of the round vector of the group and the other
coordinates are rounded to multiples of α.

After the rounding, the items of I are classified
into rL := d1/λe · rA = d 1λe · (d

1
αe)

(d−1) item classes.
Thus any configuration of rounded items in a bin can
be described as tuple (k1, k2, . . . , krL) where ki indicates
the number of vectors of the i’th class. As there can be
at most d/β large items in a bin, there are at most
(d/β)rL possible bin configurations. We show that this
rounding procedure fulfills the following lemma:

Lemma 4.1. Let I be an instance of d-dimensional
vector packing and P = {I1, . . . , Im} be a packing of I
into m unit bins. Let Q be the rounding of large items of
I using the described procedure. Then there is a packing
of Q′ ⊆ Q into m bins of type (1 + ε, 1 + ε, . . . , 1 + ε, 1)
such that:

1. Number of leftover items is small: |Q \Q′| ≤ εm
2

2. For i ∈ [m], the configuration of small items in Qi
is the same or larger than the configuration of small
items in Ii in all dimensions.

Proof. Let Wu,j be the classes the rounding as de-
scribed above, and denote pu,j ∈Wu,j the round vector
of the class Wu,j . We construct a packing of rounded
instance as follows: First, we remove all small items
from the packing. Then, for each u, we remove items
Wu,1 \ {pu,1} from the packing P and put roundings
of items in Wu,2 \ {pu,2} in their places. In gen-
eral, we place roundings of items Wu,j+1 \ {pu,j+1} in
place of items Wu,j \ {pu,j} for each u, leaving items⋃
u(Wu,1 \{pu,1}) unpacked. The round vectors pu,j we

replace by their roundings qu,j in their original places.
Let us denote Q1, . . . , Qm the content of the packing
bins after this replacement procedure.

Now, we show how many items remain unpacked.
The size of

⋃
u(Wu,1 \ {pu,1}) is∑

u

(|Wu,1| − 1) ≤
∑
u

(dλ|Wu|e − 1) ≤
∑
u

λ|Wu|,

i.e. it is at most λ|Q|, since |Q| =
∑
u |Wu|. As each

large item is bigger than β in at least one coordinate,

there cannot be more than d
β large items in any bin Ii.

Thereby, for λ = ε
2dβ, at most λ dβm ≤

εm
2 large items

were left unpacked.
Now we prove part (2), which also implies packa-

bility of Qi into augmented bins. The last dimension is
the easiest. Let Li be the set of large items in the bin Ii
and recall that the small configuration is 1 −

∑
p∈Li p.

We have replaced each large item of bin Ii by an item
which is same or smaller in the last coordinate. There-
fore, for the small configuration in dimension d, we have
1 −

∑
q∈Qi q

d ≥ 1 −
∑
p∈Li p

d. Let us now consider di-

mension ` ∈ [d−1]. As we know, there are at most d
β in

Ii and each of them increased in rounding by at most α.
Therefore the total increase in coordinate ` in Qi can be
at most d

βα = ε, as α = ε
dβ. And since this dimension

is augmented, the small configuration in dimension ` is
at least (1 + ε)−

∑
q∈Qi q

` ≥ 1−
∑
p∈Li p

`. 2

4.2 Packing of large items. There is a constant
number of item types rL in Q, thus there are only
r ≤ (dβ)

rL
, number of possible configurations of a single

bin. We call M := (m1, . . . ,mr) a bin configuration,
where mi specifies number of bins in the packing of
type i. Since m ≤ n, this gives us O(mr), a polynomial
number of configurations of large items for m bins. If
we know the right bin configuration, we pack Q using
the following lemma:

Lemma 4.2. ([8, Lemma 2.3]) Let M = (m1, . . .mr)
be a bin configuration. There is an algorithm with
running time O

(
(dnβ)rL ·m

)
to decide if there is a packing

of Q that respects M .

Lemma 4.3. Let I1, . . . , Im be some optimal packing of
I. In polynomial time, we can find a packing of Q into
bins Q1, . . . , Qm plus at most b εm2 c additional bins, such
that small configuration of each bin Qi is same or larger
than the bin Ii in every dimension for i ∈ [m].

Proof. Lemma 4.1 says that there is a packing of Q′

respecting such a bin configuration which has small
configuration of the first m bins at least the same as
P. Since there are O(mr) possible bin configurations,
we can try all of them and find the packing of Q′ using
Lemma 4.2. Since |Q \ Q′| ≤ b εm2 c, we can pack them
separately into at most b εm2 c additional bins. 2

4.3 Packing of small items. To pack the small vec-
tors, we use an assignment LP as in [8]. However in [8],
as resource augmentation was allowed in all dimensions,
small vectors could have been packed without using any
additional bins. In our case we need extra bins.

Lemma 4.4. Let I1, . . . , Im be some packing of I and
Q1, . . . , Qm be a packing of Q′ into m bins of type

(1+ε, 1+ε, . . . , 1+ε, 1) such that the small configuration
of each bin Qi is the same or larger than the bin Ii in
every dimension. Then we can pack all the small items
of I into residual space of bins Q1, . . . , Qm and at most⌈
m
2 · (ε+ ε2

d)
⌉

additional bins.

Proof. Let us denote S to be the set of all small items
in I and for each bin Bj and each coordinate ` ∈ [d]
we denote b`j :=

∑
q∈Qi q

`. We formulate the following
assignment LP with variables xij saying whether item
pi ∈ S should be packed into bin Bj .

m∑
j=1

xij = 1 ∀pi ∈ S

|S|∑
i=1

xijp
`
i ≤ (1 + ε)− b`j ∀j ∈ [m], ` ∈ [d− 1]

|S|∑
i=1

xijp
`
i ≤ 1− b`j ∀j ∈ [m], ` ∈ [d]

xij ≥ 0 ∀i, j

This LP is feasible, since there was a feasible packing
into a same or even smaller space of those bins. Let us
consider a basic solution x to this LP. The integrally
assigned items we can pack directly, the others we pack
into additional bins. Let us denote F the set of items
assigned fractionally. We claim that |F | ≤ dm, then

we need at most
⌈
dm
b 1
β c

⌉
≤
⌈
dm
b 2dε c

⌉
≤ dm2 (ε + ε2

d)e bins

to pack them, since each item is smaller than β in all
coordinates. This follows from polyhedral theory: x
is a basic solution and therefore satisfies at least m|S|
constraints with equality. There are dm+|S| non-trivial
constraints, thus at most dm + |S| variables can be
strictly positive. As each item is assigned to at least
one bin, number of items assigned fractionally to more
bins, i.e. the size of F , can be at most dm. 2

4.4 Algorithm. In Algorithm 1, a summary of the
algorithm is given.

Proof. [of Theorem 1.4] If there is a packing of I into
m unit bins, from Lemma 4.1 we know that there is a
packing of rounded instance Q of large items of I into
m′ := m+ b εm2 c unit bins having still enough space for
the small items S. Moreover, Lemmas 4.3 and 4.4 assure
us that we can indeed find the packing of Q ∪ S into

m′′ := m+b εm2 c+d
m
2 · (ε+ ε2/d)e ≤ m+m ·(ε+ ε2

2d)+1
augmented bins in polynomial time. Therefore, if this
procedure fails, we know that our guess of m was too
small. We can find the right guess using binary search
between 1 and n in log n attempts.

Guess m := Opt(I)
A. Rounding:

Create rounding Q of large items of I
B. Packing of large items.

B1. Guess bin configuration of m+ d εm2 e bins of
size (1 + ε, . . . , 1 + ε, 1)
B2. Pack items in Q into configuration M , or

return to Guessing phase
C. Packing of small items.

Pack small items using assignment LP, or
return to Guessing phase.

Replace items in Q by original ones

Algorithm 1: d-VP with resource augmen-
tation in (d− 1) dimensions

Since we were rounding up, we can replace all
rounded items qi in the packing of Q∪S by correspond-
ing unrounded pi, getting a feasible packing of I into
the same number of augmented bins. Note that until
now we did not use any exact information about the
large items of I during the packing. Actually, in this
moment we can pack even similar large items from a
completely different instance instead, we just need it to
have the same rounding specification as I. We use this
observation in the following section. 2

5 Finding a well-structured approximation
solution for vector packing

Now we describe our preliminary approximation algo-
rithm, which is incorporated into R&A framework in
Section 6. Here is the main theorem of this section:

Theorem 5.1. Given any constant ε, such that 0 < ε <
1

56d2 , and a d-VP instance I, there is a polynomial time

algorithm to pack I into at most d(d+1
2)Opt(I)e · (1 +

2ε) + 1 unit bins.

This already gives (1.5 + ε) and (2 + ε) asymptotic
approximations for 2-VP and 3-VP improving upon the
current best guarantees of (1.693 + ε) and (2.099 + ε)
respectively.

The algorithm proceeds as follows: Instead of op-
timal packing which is hard to find, it is trying to find
the smallest structured packing, which we can find much
easier. Now let us define structured packing, where δ is
a suitably small constant whose value will be specified
later.

Definition 5.1. A packing P is structured if each bin
B ∈ P satisfies one of the following:

• B consists of precisely one single large item v. We
denote BS the collection of such bins.

• B consists of precisely two large items vi, vj. We
denote BT the collection of such bins.
• B has δ-slack in at least d − 1 dimensions. The

collection of bins with δ-slack in dimensions [d]\{`}
is denoted by B`. If B has δ-slack in all dimensions
we assign it (arbitrarily) to B1.

Lemma 3.1 assures us about the existence of small
structured packings and its proof is contained in Subsec-
tion 5.1. Together with the following lemma it already
implies Theorem 5.1.

Lemma 5.1. Let ε > 0 be a constant and I be an in-
stance of d-dimensional vector packing having a struc-
tured packing into m′ bins, then there is a polyno-
mial time algorithm that pack items in I into at most
(1 + 2ε)m′ + 1 bins.

Note, that the imprecision term is the same as in
Theorem 1.4 and, indeed, is coming from the APTAS
algorithm of the previous section which is used to pack
bins of type B`, for ` ∈ [d]. Therefore, we set δ in the
definition of structured packing to ε

1+ε . This way, if
we have a bin B ∈ B` and we pack it using APTAS
with resource augmentation by ε from Section 4, we
get a feasible packing, since it is easy to check that
(1 − δ) · (1 + ε) = 1, for δ = ε

1+ε . Proof of Lemma
5.1 including the main algorithm of this section is in
Subsection 5.2. Subsection 5.3 contains the algorithm
proving our result on absolute approximation ratio for
2-VP, Theorem 1.2.

5.1 Existence of small structured packing The
goal of this subsection is to prove the following theorem:

Lemma 3.1 (restated). Let I be an instance of d-
dimensional vector packing. Any optimal packing of
I into m bins can be transformed to a packing into
dd+1

2 me bins of types BS ,BT ,B1, . . . ,Bd.

Case d = 1 is trivial. Thus we start by considering
d = 2, which is not very difficult. For d > 2, the proof
is more complicated and we split the proof into cases
when d is odd and when d is even.

Lemma 5.2. Let δ < 1/5, and let B be a bin of 2-VP
that is not structured. Then at least one of the following
holds:

1. There is a large item p ∈ B such that p ≤ (1/2, 1/2)
and p is > δ in at least one coordinate.

2. There is a subset R of items in B such that∑
p∈R p ≤ (2δ, 2δ) and either:

(i) B \R has δ-slack in some dimension, or
(ii) |B \R| ≤ 2.

Proof. Let T denote the set of items v ∈ B such that
v ≤ (δ, δ). As there can be at most two items in a bin
with some coordinate strictly > 1/2 (at most one item
for each coordinate), if there is no p satisfying the first
requirement, we know that |B \ T | ≤ 2.

If (
∑
v∈T v) ≤ (δ, δ), we set R := T and |B \R| ≤ 2,

as desired. Otherwise, (
∑
v∈T v) is greater than δ in at

least one dimension. So we greedily add items of T to
R until B \R contains δ slack in at least one dimension.
Since T only contains items < (δ, δ), the items of R can
not sum to more than δ + δ ≤ 2δ in any coordinate. 2

The proof of Lemma 3.1 for d = 2 follows easily
from the following statement:

Lemma 5.3. For any two unstructured bins B1 and B2

in I, their items can be repacked into three structured
bins.

Proof. As δ < 1/5, we have 4δ < (1− δ) and 1/2 + δ <
(1− δ). From each B1 and B2, let us remove either the
large item p or a set R (as in Lemma 5.2), and pack
them into a new bin B′. We first note that if either pi
or Ri is removed from some bin Bi, then Bi becomes
structured (it either has δ-slack in some dimension, or at
most 2 items). Second, if the repacked items are p1 and
p2, then B′ is structured as it has exactly 2 large items.
Otherwise, if at least one item is of type Ri, then B′

has δ-slack in both dimensions as both 1/2 + 2δ ≤ 1− δ
and 2δ + 2δ ≤ 1− δ. 2

The idea of the proof for d > 2 is the following:
we continue removing large items from B each creating
slack in one or more dimensions, until slack in at least
(d − 1) dimensions is created. However, it can happen
that there are no more large items left in B and there
is still not enough slack in some dimensions. This case
might lead to the following problem. If we select the
set R of items to be removed from B greedily, at some
point it can happen that the sum of the items in R is
already over (1 − δ) in some of the dimensions, while
still much less than δ in the others. However, using
a more sophisticated LP-based argument we can find
a set R which will create slack in required dimensions
and still be relatively small in all dimensions. Let κ be
a constant, dependent only on d, whose value we will
choose later. Now let us prove the following lemma:

Lemma 5.4. Let B be a bin and C be the set of dimen-
sions where the sum of items in B is more than (1− δ).
If all items in B are smaller than δ in all coordinates of
C, then we can find R ⊆ B such that the sum of items
in R is at least δ in coordinates of C, but at most κδ in
all coordinates, for some constant κ > 0.

min
∑
pi∈B′

xi∑
pi∈B′

xip
`
i ≥ δ ∀ ` ∈ C,

∑
pi∈B′

xip
`
i ≤ 2δ ∀ ` ∈ [d],

0 ≤ x`i ≤ 1 ∀ i ∈ B′, ` ∈ [d].

(5.3)

Proof. We restrict our attention to the items of B′ ⊆ B
which are smaller than 3δd in all dimensions. In fact,
this way we do not loose much volume in coordinates
of C, since there can be at most d · 1

3δd items in B \B′
and all of them are at most δ in all coordinates in C.
Therefore,

∑
p∈B′ p

` ≥ (1 − δ) − δ d
3δd ≥ 1 − δ − 1/3,

for ` ∈ C. We formulate LP (5.3) for items in B′.
To show the feasibility of this LP, let us consider the
solution x′ = (2δ, . . . , 2δ): For coordinate ` ∈ C we have∑
pi∈B′ p

`
ixi ≥ (1−δ−1/3)2δ = 2δ−2δ2−2δ/3 ≥ δ, for

δ < 1/6. On the other hand, for any coordinate ` ∈ [d],∑
pi∈B′ p

`
ixi ≤ 2δ, since

∑
pi∈B′ p

`
i ≤ 1.

Let us fix a basic optimal solution x to (5.3) and
set R := {pi|xi > 0}. We claim that the sum

∑
pi∈S pi

is at most κδ in each dimension for some constant κ
dependent just on d. Let F denote the set of fractional
variables xi. We know that each basic solution to the
LP (5.3) fulfils at least |B′| constraints with equality.
Apart from constraints 0 ≤ x`i ≤ 1, which would make
the variable integral if fulfilled with equality, there are
at most (|C| + d) ≤ 2d nontrivial constraints and they
allow us |F | ≤ 2d. Since each item is at most 3δd in all
coordinates, we get

∑
pi∈S pi ≤ 2δ + 2d · 3δd ≤ 7δd2 as

d ≥ 2. Hence, the claim follows by taking κ := 7d2. 2

Now we are ready to proof Lemma 3.1 for d odd.
This is the key lemma used in the proof.

Lemma 5.5. If d is odd then at least one of the follow-
ing holds: either

(i) there is V ⊆ B, such that |V | ≤ d − 1 and B \ V
has slack in at least d− 1 dimensions, or

(ii) there are V,R ⊆ B, such that |V | ≤ d − 2,∑
p∈R p ≤ κδ, and B \ (V ∪ R) has slack in all

dimensions.

Proof. Let C be the set of coordinates in which B
contains slack less than δ. In each step we select
v ∈ B with the largest coordinate when restricted to
dimensions currently in C. If v is at least δ in that
coordinate, we add it to V . Otherwise if v is < δ in
that coordinate, or if |C| is already ≤ 1, we stop.

If |C| ≤ 1, we are in case (i) and we have finished,
since each item in V removed at least one dimension

from C and thereby |V | ≤ d − 1. If not, we have
|V | ≤ d − 2 and we know that all items in B \ V have
all coordinates in C smaller than δ. Thanks to Lemma
5.4 we can find R ⊆ B \ V satisfying (ii). 2

Proof. [of Lemma 3.1 for d odd] Let B1, . . . , Bm are
bins in optimal packing of I. For each i ∈ [m], we
claim that we can remove some items from Bi and
pack them separately into at most (d− 1)/2 additional
structured bins. To this end, let us apply Lemma 5.5
to bin Bi. In case (i) we can just pack items in V in
pairs into at most d−1

2 bins creating bins of type BT and
eventually BS . In case (ii) we consider two subcases. If
|V | ≤ d − 3, we pack R into a separate bin (it has
slack in all dimensions) and pack V in pairs into at
most d−3

2 bins of type BT or BS , thereby using at most
d−3
2 +1 = d−1

2 additional structured bins. If |V | = d−2,
we claim that there is an item v ∈ V which is greater
than 1/2 in at most one coordinate. This is clearly true,
since items in V create slack in d − 2 dimensions and
there cannot be two items bigger than 1/2 in the same
coordinate. We pack v together with R into the same
bin (contains slack in at least d-1 dimensions) and we
pack the rest of V in pairs into d−3

2 additional bins.
In both cases (i) and (ii) we are left with Bi \ V and
Bi \ (V ∪ R) respectively, with slack in at least d − 1
dimensions what completes the proof. 2

In the case when d is even, we have to proceed
more carefully. From each bin Bi we remove some items
which can be packable into d−2

2 structured bins plus we
are allowed a residue set Ri (similarly to case d = 2 in
Lemma 5.2) roughly smaller than 1/2 in all coordinates,
that can be packed together with any residue Rj of some
other bin into a structured bin.

Lemma 5.6. If d is even then at least one of the
following holds:

(i) There are V,R ⊆ B, such that |V | ≤ d − 2, for
R (possibly empty) we have

∑
p∈R p ≤ κδ, and

B \ (V ∪R) has slack in at least (d−1) dimensions.

(ii) There is V ⊆ B, such that |V | = d − 2 and B \ V
has slack in exactly d− 2 dimensions.

Proof. We proceed in a similar way to Lemma 5.5. We
maintain C as a set of dimensions in which there is still
no δ slack yet and in each step we add such item to V
which is largest in coordinates of C. If we manage to
create slack in at least d − 2 coordinates this way and
using at most d− 2 items, requirement (ii) is satisfied.
Otherwise we use Lemma 5.4 to find R which creates
slack in all the other dimensions. 2

Proof. [of Lemma 3.1, for the case when d(> 2) is even]
Let B1, . . . , Bm are bins in optimal packing of I. For

each i ∈ [m], we split content of Bi into d
2 structured-

packing bins plus one residue set Ri containing either a
single item p of size ≤ 1/2 in all coordinates or several
small items summing up to at most (1/2− δ) in at least
(d − 1) dimensions and at most 1/2 in the other one.
Afterwards, we can pack residues Ri and Rj from two
different bins together creating either a bin with slack
in at least (d− 1) dimensions or a bin of type BT . This
way we create a structured packing of I into at most
d
2m+ dm2 e = dd+1

2 me bins.
Now, let us show that for each i ∈ [m], we can

decompose Bi in the desired way. Let us apply Lemma
5.6 to Bi. In case (i) we are done: we can pack V
in pairs into at most d−2

2 bins of type BT or BS and
choose Ri := R. Remaining B \ (V ∪R) has slack in at
least (d − 1) dimensions, and thus can be converted to
a structured packing.

Now we consider the case (ii). Note, that here we
have a nice correspondence between the dimensions of
[d] \ C and the items in V . We know, that each item
in V is responsible for creating slack in one particular
dimension, so we can write V = {v`| ` ∈ [d] \ C},
where B \ {v`} has slack in dimension `. We will use
this property later. We apply Lemma 5.2 to the two
dimensions in C. Here are the possible outputs of this
Lemma:

(1) There is p ∈ Bi \ V which is at least δ in some
coordinate of C and is at most 1/2 in both.

(2) There is R ⊆ Bi \ V which sums to at most 2δ in
coordinates of C, and either

(i) Bi \ (V ∪ R) has slack in at least (d − 1)
dimensions, or

(ii) for Q := Bi\(V ∪R) we have |Q| ≤ 2 and each
item inQ is larger than 1/2 in some coordinate
of C.

In case (1) p is in fact ≤ 1/2 in all coordinates, because
from dimensions [d] \ C the larges items are already
contained in V and therefore p cannot be larger than
1/2 there. We set Ri := {p} and pack V in pairs into
at most d−2

2 additional bins and we are done.
Now we consider case (2). Let us denote CR ⊆

[d] \ C to be the set of dimensions where R sums to
more than 1/2− δ.

In case (2i), if |CR| ≤ 1, then we can pack V in
pairs and set Ri := R, since the sum of items in R is at
most 2δ in coordinates of C. Otherwise if |CR| > 1, let
V ′ := {vi ∈ V | i /∈ CR}. We know that |V ′| ≤ d − 4,
since |CR| ≥ 2. Then B \ (V ′ ∪R) has slack in at least
(d−1) dimensions. We packB\(V ′∪R) into a structured
bin. Similarly we can pack R into another structured
bin as it has slack in all dimensions. For items in V ′ we
can pack them in pairs into at most d−4

2 bins of type
BS and BT , setting Ri := ∅.

In case (2ii), if |CR| ≤ 1, we can set Ri := R
and pack V in pairs. Otherwise if |CR| > 1, let
VR := {vi ∈ V | i ∈ CR} (note that |VR| ≥ 2),
and V ′ := (V \ VR) ∪ Q, |V ′| ≤ d − 2. We select
v′, v′′ ∈ V ′ arbitrarily. Since R and VR contain slack
in all dimensions, R ∪ {v′} and VR ∪ {v′′} contain slack
in at least (d−1) dimensions and we can pack tham into
slack bins, and V ′′ := V ′\{v′, v′′} into at most d−4

2 bins
of type BT and BS , since |V ′′| = |V ′| − 2 = d− 4. 2

5.2 Finding the best structured packing. Let
us assume, that we are given a partition of I into
subinstances IS , IT and I1, . . . , Id consisting of items
which are packed into mS bins of type BS , mT bins
of type BT , and m` bins of type B`, for ` ∈ [d]
respectively in some optimal structured packing. Then
we can easily pack items of IS , each item separately,
into exactly mS bins, IT we can pack using matching
into exactly mT bins, and I` we can pack into (1 +
2ε)m` + 1 bins using the Algorithm 1 from the previous
section. Together with Lemma 3.1 which proves the
existence of small structured packings this would give
us the approximation bound promised by Theorem 5.1.
Note, that we just need to have a realizable rounding
specification for the Algorithm 1 to work (see proof of
Theorem 1.4). We cannot start with separating IS and
IT directly, we need to make sure, that the leftover
items will have the same rounding specification as in
the optimal structured packing. Therefore we proceed
as follows: We guess the rounding classes for the d
instances of Algorithm 1 and classify all large items to
the rounding classes. Afterwards, we guess how many
items from which rounding class should be separated to
IS and IT . Having right guesses, we are able to pack
IS and IT , and the leftover items will have the right
rounding specification.

To describe the algorithm, we use similar notations
as in Section 4. When we use the Theorem 1.4, we
choose the same ε as the one in the statement of The-
orem 5.1, see the discussion in the beginning of Section
5. Please recall the following constants depending on
ε from the rounding procedure in Section 4: rA is the
number of rounding classes Wu of augmentable coordi-
nates, each of them contains d 1λe classes of linear group-
ing, making rL = rA · d 1λe classes Wu,j altogether.

5.2.1 Preprocessing stage: In the beginning, we
separate the set S of small items of I. This can be
done in linear time. We denote I ′ := I \ S.

5.2.2 Guessing stage: In this stage we guess all pa-
rameters which need to be guessed. After all parameters
are assigned, we proceed to the next stage, the actual

packing algorithm, to determine whether there exists
some packing with respect to the current guess of the
parameter. If no, we return here to try another guess.
This stage could be also called the stage of enumeration,
since in the most of the guessed parameters we might
have to enumerate all possible values in the worst case.

Guessing bin numbers: First we guess m′, the
number of bins in the smallest structured packing of
I. We can do it using binary search between 1 and
n, since, we can claim that m′ is greater than our
current guess if the Packing stage fails (we prove this
claim later). After guessing m′, we guess its partition
into bins of types BS ,BT and B1, . . . ,Bd, i.e. numbers
mS ,mT ,m1, . . . ,md. They all are in a range from 1
to m′, so we guess d + 2 numbers, each of them for
sure in range 1 to n. So, even if we have to try
all the possibilities, it is always polynomial number of
attempts.

Guessing rounding specification: For each ` ∈
[d], we define the rounding classes Wu

` according to
the first part of the rounding procedure in Section 4
(rounding of augmentable coordinates). For each `, we
have rA (a constant) number of classes. This part is easy
and deterministic. However, each class Wu

` should be
subdivided into d 1λe classes according to part Rounding
of the non-augmentable coordinate in Section 4. In
Section 4, this part was deterministic too, it consisted
of ordering all elements of the class and selecting d 1λe
round vectors. However, we do not know which items
belong to instance I` and will be rounded according to
Wu
` . Therefore the round vectors need to be guessed

among all items of size corresponding to the class Wu
` .

Although many of these choices might not be valid, it
does not hurt us, since we claim that the number of all
possibilities is polynomial: Clearly, none of the classes
Wu
` contains more than n items. So there are at most

d ·rA ·n(d
1
λ e) possible choices of round vectors. This way

we can prepare d · rL rounding classes Wu,j
` .

For each Wu,j
` , let wu,j` be the number of items

which are supposed to belong to this rounding class in
the packing using APTAS in Section 4. Now for each
item in bins of type BS and BT , we also assign them to a
rounded size class whose size is larger than the size of the
item. For each class Wu,j

` , let su,j` , tu,j` be the number

of items assigned to class Wu,j
` which should be packed

into bins of type BS and BT respectively. Now for each
class we guess the number hu,j` = su,j` + tu,j` + wu,j` .

Verifying realizability: It can happen, that pre-
ceding guesse of rounding classes and numbers hu,j`
might not be realizable for the instance I ′, e.g., for some
class Wu,j

` , there can be less than hu,j` items in I of the
corresponding size. To find out whether there exists an
assignment of items in I ′ into the rounding classes re-

specting numbers hu,j` we use a technique from [28]. We
specify the following flow network G := (V,E):

• we have vertices s and t for source and sink,

• a vertex for each item and for each class Wu,i
` ,

• edge of capacity 1 from s to each item,

• for each item, we have an edge of capacity 1 from
the item to all d possible rounding classes which
the item could belong to,

• we add an edge of capacity hu,j` from each class

Wu,j
` to t.

Using the algorithm of Dinic [11] we find a maximum
integral flow from s to t in time O(|E| · |V |2) ≤ O(n +
nd+drL) · (n+drL)2 = Od,ε(n

3). If it does not saturate
some edge outgoing from s or incoming to t, this means
that we either cannot assign some item to any class,
or some class cannot have the required number of
items assigned. In either case, we know that no valid
assignment exists and the rounding specification is not
realizable and we need to go back to the guessing stage
and make another guess. Otherwise we can proceed to
the following step.

Guessing wu,j` , su,j` and tu,j` : Now for each class

Wu,j
` , we guess numbers wu,j` . Actually, for a fixed

u and `, they will be always the same except for the
last one, so we need to guess just two values wu,1`

and w
u,d 1

λ e
` . Note, that the choice of these numbers

finishes the preparation of the rounding specification
for the d instances for packing by APTAS with resource
augmentation.

Also for each class Wu,j
` , we guess numbers su,j` , tu,j`

determining the number of items assigned to class Wu,j
`

which should be packed into bins of type BS and BT
respectively. For rL classes we guess two numbers which
are without any doubts in range between 1 and n,
therefore there are at most n2rL possible guesses.

Lemma 5.7. For any instance I there is a right choice
of parameters guessed in guessing stage. All parameters
in the guessing phase can be guessed in polynomial time.

Proof. We defined instance of d-VP as a set of vectors
vi ∈ [0, 1]d. Therefore any instance has some packing
(e.g. packing each item separately) and, thanks to
Lemma 3.1, a structured packing. For the structured
packing we can generate rounding classes according to
the rounding procedure in Section 4 and set numbers
wu,j` , su,j` , and tu,j` according to the placement of items
of the rounding class in the packing.

All steps in the guessing stage (as noted at the
end of each part) can be done in polynomial time, and
thereby the whole stage takes polynomial time. 2

5.2.3 Packing stage: Now we describe how to pack
the items according to the guesses from the guessing
stage.

Packing of IT : To find a packing of IT into bins of
type BT , we construct a graph (I ′, E), where (pi, pj) ∈
E if pi and pj fit together into a bin. When creating
G, we consider the original unrounded sizes of items,
although they are already assigned to some rounding
class. We want to find a matching such that from
each class Wu,j

` , exactly tu,j` items are matched. We
formulate the following LP:∑

xuv ≤ 1 for all vertices v ∈ V ,∑
u∈Wu,j

`

xuv = tu,j` for all classes Wu,j
` ,

0 ≤ xe ≤ 1 for all edge e ∈ E.

Note that this is a matching LP with rL (a constant)
number of additional linear constraints. We can solve
this LP in polynomial time, see Theorem 2.1 using
an algorithm of Chekuri, Vondrák, and Zenklusen [9].
This algorithm either returns a matching which covers
between tu,j` and (1− γ)tu,j` items from each class Wu,j

`

or it returns a certificate that this LP is infeasible (See
Theorem 2.1). We choose parameter γ := ε. If the
LP is infeasible, then either the rounding classes or the
numbers tu,j` are incorrect and we should try another
guess. Otherwise, we pack the matched items, each
pair into a single bin, and we are left with at most εtu,j`
residual unmatched items in each class, those we select
arbitrarily. Note, that

∑
tu,j` = 2mT (otherwise guesses

are invalid), and therefore there are at most 2εmT

residual items. We can pack each of them in a separate
bin, using in this stage (1− ε)mT + 2εmT ≤ (1 + ε)mT

bins in total.
Packing of IS: From each class Wu,j

` we select

arbitrary su,j` items not belonging to IT and pack them
into separate mS bins.

Packing of I1, . . . , Id by APTAS: Please note, that
we still do not know the instances I`, for ` ∈ [d]. We
know just their rounding specifications (we have guessed
them). However, using rounding specification we can
reconstruct roundings of their large items. For each
` ∈ [d], we proceed as follows: Let Q` be rounding of
large items from I`. We assume that I` has a packing
into bins I1` , . . . , I

m`
` of type B`. Recall, that these bins

have slack δ in all dimensions except for `. Therefore,
(after swapping coordinates ` and d if needed) we can
use Lemma 4.3 to pack Q` into unit bins Q1

` , . . . , Q
m`
`

and d εm`2 e additional (unit) bins. This is thanks to our
choice of δ: bins with slack δ in d−1 dimensions become
unit bins after resource augmentation. Pleas note, that
there is a guessing of the bin configuration hidden in

Lemma 4.3.
We know that S is the set of small items of the

instance
⋃
` I` which has a packing {Ii`| i ∈ [m`], ` ∈

[d]}. Moreover, the small configuration of Qi` is same or
larger than small configuration of Ii` in all dimensions
for each i and `, as claimed by Lemma 4.3. Therefore we
can use Lemma 4.4 to pack S into residual space of bins

Qi` and at most
⌈∑

m`
2 · (ε+ ε2

d)
⌉

additional bins. If the

packing procedure failed, we have either guessed wrong
bin configuration when packing some Q`, or, if we have
already tried all of them, we have wrong guesses of the
rounding specification or numbers m`. Afterwards, we
replace items of Q` by unrounded items according to
the assignment found in realizability verification step.

Proof. [Proof of Lemma 5.1] The guessing stage takes
polynomial time by Lemma 5.7. For a correct guess,
IT items are packed into (1 + ε)mT bins, IS items are
packed into exactly mS bins. Remaining I` type items
are packed in

∑
`(m`+b εm`2 c) bins and small items into

additional
∑
`
m`
2 · (ε+ ε2

d)+1 bins. This makes at most

(1+ε+ ε2

2d)
∑
`m`. Puting this together, we use at most

mS + (1 + ε)mT + (1 + ε+
ε2

2d
)
∑
`

m` ≤ (1 + ε+
ε2

2d
)m′

bins, as m′ = mS +mT +
∑
`m`. 2

1. Separate set S of small items
Guessing stage:

2. Guess m′,mS ,mT ,m1, . . . ,md

3. For each ` ∈ [d]: create classes Wu,j
` and

guess a number (wu,j` + tu,j` + su,j`) for each class
4. Check validity of the guesses using flow-net

5. Guess numbers wu,j` , tu,j` , su,j`
Packing stage:

6. Find multiobjective matching and pack IT
into bins BT
7. Select IS arbitrarily according to numbers
su,j` and pack it into bins BS
8. For each ` ∈ [d]: Pack I` into B` using
Algorithm 1
9. If any step fails, then go to the next guess in
Guessing stage.
10. return packing BS ,BT ,B1, . . . ,Bd

Algorithm 2: d-VP with ((d+1)
2 + ε)-

asymptotic approximation

Proof. [of Theorem 5.1] From Lemma 3.1, there exists
a packing of I into m′ := dd+1

2 Opt(I)e bins of type
BS ,BT ,B1, . . . ,Bd. Thanks to Lemma 5.1, we can find

a packing of I in polynomial time into (1 + ε + ε2

2d)m′

bins, what is at most dd+1
2 Opt(I)e · (1 + ε+ ε2

2d) + 1. 2

5.3 Tight absolute approximation of (3/2+ε) for
2-VP We give an algorithm with absolute approxima-
tion ratio of (1.5 + ε) for 2-VP. Note that even for 1-D
bin packing the lower bound on absolute approximation
is 3/2. So even though 1-D BP and 2-VP are quite dis-
tinct in asymptotic approximability, they are arbitrarily
close in the absolute approximability setting.

Theorem 1.2 (restated). For any constant ε > 0,
there is a polynomial time algorithm with an absolute
approximation ratio of (1.5 + ε) for 2-VP.

Proof. First, note that the problem is trivial if Opt = 1.
Let ε′ = ε/2. By Theorem 5.1, we can get a packing
into (3/2 + ε′)Opt + c2 bins in polynomial time. There
are two cases.
Case A. Opt > c2/ε: In this case (3/2 + ε′)Opt + c2 ≤
3Opt/2 + (2ε′)Opt ≤ (1.5 + ε)Opt.
Case B. Opt ≤ c2/ε

′: Let c1 = c2/ε
′. As Opt ≤ c1,

there are at most c1d/β large items, and thus there are
only a constant number of large configurations. So in
polynomial time, we can find the large configurations
in optimal packing and small vectors can be added
using assignment LP except at most dc1 number of
small items. We can pack these small items into one
additional bin by choosing β small enough such that
βdc1 ≤ 1. This gives a solution with value at most
Opt + 1 ≤ (3/2)Opt. 2

6 Improved Approximation using R&A
Framework

In this section, we combine the ideas from the previous
section with the R&A framework to obtain improved ap-
proximation guarantees. We describe the 2-dimensional
case in section 6.1 which is simpler, and then consider
the d-dimensional case in section 6.2. As our algorithms
do not round all the big items, we will apply the R&A
framework in a somewhat non-standard way.

We begin by describing the implication of the R&A
framework that we need, as stated in Theorem 6.1.

Let I be a d-VP instance, and let z∗ denote the
optimum value of the configuration LP for I. Recall,
that in the R&A framework, we pick a parameter ρ > 1
and sample (ln ρ)z∗ configurations from the LP solution,
and then pack the residual items J separately.

Let I ′ ⊂ I be a subset of items (in our applications
I ′ will consist of small items and big items that are

rounded in some good packing). Let Ĩ be the rounding
of items in I ′ such that all big items are rounded to
t1 (constant) types, and suppose that there is some
packing P of Ĩ into m bins. Then we have the following:

Theorem 6.1. If we apply the R&A framework to I
with parameter ρ and J ′ = J ∩ I ′ is the residual set of
elements in I ′, then for any small constant ε > 0, with
high probability, there is a rounded packing PJ′ of J ′

into (1+ε′)m
ρ + c bins where c only depends on ε and ρ.

Before proving the result, we need the following
concentration inequality [25].

Lemma 6.1. (Independent Bounded Difference Inequal-
ity) [25] Let X = (X1, . . . , Xn) be a family of in-
dependent random variables, with Xj ∈ Aj for j =
1, . . . , n, and f :

∏n
j=1Aj → R be a function such that

f(x)− f(x′) ≤ cj , whenever the vectors x and x′ differ
only in the j-th coordinate. Let E[f(X)] be the expected
value of the random variable f(X). Then for any t ≥ 0,

P[f(X)− E(f(X)) ≥ t] ≤ exp(−2t2/

n∑
i=1

c2j).

Proof. (Theorem 6.1). The idea is simple but slightly
technical. Consider some optimum rounded packing
P of Ĩ into m bins. We first write an auxiliary
configuration LP (on Ĩ) that approximates the value
of m to within an O(1) additive error.

As there are t1 (constant) types of big items and
there can be at most d/β big items in a configuration,
there are (d/β)t1 types of big configurations and thus
(d/β)t1 types of small configurations. Let t2 (≤ (d/β)t1)
be the number of types of small configurations in P. Let
Rj be the set of big items of j’th type for j ∈ [t1] and
Sj be the set of small items belonging to j’th type of
small configurations for j ∈ [t2] in P Let |Rj | = rj for
j ∈ [t1] and let sj be the number of bins with small
configuration of type j for j ∈ [t2] . Let hCj be the
number of items of type Rj in configuration C and
gCj = 1 if configuration C has small configuration of

type j. Consider the following auxiliary LP (Ĩ) where C
is the set of configurations of Ĩ:

min
∑
C∈C

xC∑
C∈C

hCj xC ≥ rj ∀ j ∈ [t1],∑
C∈C

gCj xC ≥ sj ∀ j ∈ [t2],

xC ≥ 0 ∀ C ∈ C.

(6.4)

Note that in LP (Ĩ) we essentially consider small
configurations of each bin as a single item. Let t =

t1 + t2. As the LP has t (which is a constant) number of
constraints and the optimal integral solution of LP (Ĩ)
has value m,

(6.5) m ≤ LP (Ĩ) + t.

Let ε1 > 0 be a small constant that we will choose
later. Now define another instance J ′′ such that it
contains rj(1 + ε1)/ρ big items of type j ∈ [t1] and
sj′(1 + ε1)/ρ items of type j′ ∈ [t2] such that the size of
each item in type j′ is equal to the size of j′’th type of
small configuration. So J ′′ is a shrunk down version of
Ĩ where each small configuration is replaced by a single
item of that same size.

Now consider the following LP (J ′′):

min
∑
C∈C

xC

∑
C∈C

hCj xC ≥
rj(1 + ε1)

ρ
∀ j ∈ [t1],

∑
C∈C

gCj xC ≥
sj(1 + ε1)

ρ
∀ j ∈ [t2],

xC ≥ 0 ∀ C ∈ C.

(6.6)

As the right hand side of constraints in LP (Ĩ) and

LP (J ′′) differ by a factor of (1+ε1)
ρ , we get:

(6.7)
(1 + ε1)

ρ
LP (Ĩ) = LP (J ′′).

Let Opt(J ′′) be the optimal integral solution to LP (J ′′).
Let J denote the set of residual items after applying
R&A to I. Suppose we apply the same rounding as in
Ĩ to the items in J . Let us denote this instance to be
J̃ . We will show that the items in J̃ can be packed in
(1 + ε2)Opt(J ′′) bins, for a small positive constant ε2
that we will choose later.

Lemma 6.2. Opt(J̃) ≤ (1 + ε2)Opt(J ′′).

Proof. As J is the set of uncovered residual items after
(ln ρ)z∗ iterations of randomized rounding. For any
item i ∈ I,

P(i ∈ J) ≤ (1−
∑
C3i

x∗C/z
∗)(ln ρ)z

∗
(6.8)

≤ (1− 1/z∗)(ln ρ)z
∗
≤ 1/ρ.

Here we use that
∑
C3i x

∗
C ≥ 1 for all i ∈ I.

So E[|Ri∩J |] ≤ |Ri|/ρ for all i ∈ [t1]. Now we show
concentration around the mean using Lemma 6.1.

Consider the function fBi (x) = Ri ∩ J , i.e., the
number of items of type Ri in J . This is a function

of X = (X1, . . . , Xd(ln ρ)z∗e), i.e., d(ln ρ)z∗e independent
random variables (selected configurations in randomized
rounding phase of R & A framework) where Xi cor-
responds to the configuration selected in ith iteration.
Changing the value of any Xi may lead to the selection
of a different configuration C ′ in place of configuration
C in that iteration. So if vectors x and x′ differ only in
j’th coordinate,

fBi (x)− fBi (x′) ≤ max{|Ri ∩ C|, |Ri ∩ C ′|} ≤ 1/β,

as there can be at most β (big) items of type Ri in a
bin.

Therefore, by Lemma 6.1,

P[fBi (X)− E(fBi (X)) ≥ γz∗] ≤ exp

(
−2(γz∗)2

d(ln ρ)z∗e/β2

)
.

Thus in the asymptotic case (when z∗ is sufficiently
large, i.e. at least ln ρ·t1t2

γ2β2) we can take union bound
over all t1 cases and with high probability for all large
item classes, fBi (X) − E(fBi (X)) < γz∗. In particular,

we set γ =
ε23

t1t2ρ
for some small positive constant ε3

to be choosen later. As in the packing LP for J ′′,

we have (1+ε1)
ρ |Ri| big items of type Ri, we can pack

E(fBi (X)) ≤ |Ri|/ρ items in J̃ in the slots of same
type items in J ′′. And all the remaining large items

are packed into at most t1γz
∗ ≤ ε23z

∗

t2ρ
≤ ε23Opt(J′)

t2
in

separate extra bins.

We now consider the small items. Consider a small
configuration of type j := (h1, . . . , hd). Let Sj be the
set of items in all small configurations of type j and
sj be the number of small configurations of type j.
Let function fkSj be

∑
v∈Sj∩J v

k. 1
hk

, i.e., the length of

items in Sj ∩ J in k’th dimension scaled by a factor 1
hk

.
Intuitively the scaling makes each dimension of Sj to be
one. This is again function of d(ln ρ)z∗e independent
random variables (selected configurations). Thus as
above, whenever the vectors x and x′ differ only in one
coordinate, we get:

fkSj (x)− fkSj (x
′)

≤ max{
∑

v∈Sj∩C
vk.

1

hk
,
∑

v∈Sj∩C′
vk.

1

hk
} ≤ 1

hk
· hk ≤ 1.

Thus by Lemma 6.1,

P[fkSj (X)− E(fkSj (X)) ≥ γz∗] ≤ exp

(
−2(γz∗)2

d(ln ρ)z∗e)

)
.

Now if sj <
ε3z
∗

t1t2
, one can pack these small items

in all t2 classes of small configurations into at most
ε3z
∗/t1 additional bins. Otherwise if sj ≥ ε3z

∗

t1t2
, then

with high probability, fkSj (X) ≤ (
sj
ρ +γz∗) ≤ (1+ε3)· sjρ .

Thus, all small items in Sj ∩ J can be packed into the

corresponding small configurations of (1+ε3)
ρ sj bins in

J ′′ fractionally by assigning each item to each bin with
ρ

(1+ε3)sj
fraction.

Using an assignment LP we can get an integral
packing of all items into corresponding small configura-

tions of (1+ε3)
ρ sj bins except possibly up to dd · (1+ε3)ρ sje

items. However as the original sizes of these items are ≤
β in all dimensions, we can pack them in O(dβ (1+ε3)

ρ sj)
additional bins.

So asymptotically, the number of bins Opt(J̃) in the
optimal packing of (J̃) is:

(1 + ε3)Opt(J ′′) +
ε3Opt(J

′′)

t1
+

d(dβ + β2d)
(1 + ε3)

ρ
Opt(J ′′)e+

ε23Opt(J
′′)

t2

which is at most (1 + ε2)Opt(J ′′) for a suitable ε2. 2

So asymptotically when z∗ is sufficiently large,

Opt(J) ≤ Opt(J̃)

≤ (1 + ε2)Opt(J ′′) (Lemma 6.2)

≤ (1 + ε2)(LP (J ′′) + t)

≤ (1 + ε1)(1 + ε2)LP (Ĩ)

ρ
+O(1) (Lemma 6.7)

≤ (1 + ε′)LP (Ĩ)/ρ+O(1)

≤ (1 + ε′)Opt(Ĩ)/ρ+ c.

This completes the proof. 2

6.1 Approximation Algorithm for 2-D vector
packing: Now we show a (1 + ln(3/2))-asymptotic ap-
proximation algorithm for 2-VP. The main idea is the
following: Recall that in the 3/2-asymptotic approxi-
mation, we cannot round all the big items. So, we will
apply Theorem 6.1 suitably with I ′ as those big items
that are rounded, plus small times (i.e. I \ I ′ consists
of arguments that will be unrounded, and placed using
matching). We then show how to analyze the perfor-
mance of this algorithm.

Consider some optimum packing of I. Call a bin B
to be compact, if it has a subset of items K with |K| ≤ 2
and (

∑
v∈K v) ≥ (1− δ, 1− δ). We call other remaining

bins to be noncompact. We will show that R&A can be
applied to non-compact bins successfully. Let mC and
mN denote the number of compact and non-compact
bins respectively and let m = mC +mN . The algorithm
is described in the figure (Algorithm 3) and works as
follows.

A. Guessing stage:

A1. Guess Opt(I),mC , and mN , and take ε = ε′

6 ,
A2. For each ` ∈ [d]:

Create classes Wu,j
` and guess corresponding

round vectors and wu,j` , cu,j` , the number of
items in compact and noncompact bins in each
size classes,

B. Packing stage:
B1. Use MOMB matching on the original item
sizes to pack cu,j` items from class Wu,j

` into
(1 + δ)mC bins,
B2. Apply R&A to the configuration LP with
ρ = 3/2; B3. Apply Theorem 6.1 to pack the
remaining items S using algorithm 2 into
mN + 4εm+ c+ 3 bins, B4. If packing in Step
B1 or B3 fails, go to next guess.

Algorithm 3: (1.405 + ε′)-approximation for
2-VP

Separating compact bins: We separate pairs of
large items belonging to the compact bins using an
idea similar to the preceding section. First, we guess
rounding classes Wu,j

` for rounding of the non-compact

bins together with the numbers cu,j` , wu,j` of items from
each class which are to be packed into compact bins and
noncompact bins, respectively. The graph G = (I, E)
is a little bit different: we add edge between v and v′,
if they form a compact bin together. Then we find a
MOMB matching in G satisfying guessed requirements
cu,j` , and pack the matched items into roughly mC

separate bins.
Single large items bigger than (1 − δ) in both

coordinates can be separated easily in linear time. As
shown in Lemma 6.4 below, the volume of the small
items in compact bins is negligible, so they cause no
harm to the R&A part (they can be packed into at most
2δmC ≤ 2δm additional bins). Therefore, we do not
need to separate them.

Packing non-compact bins using R&A: We
apply R&A to the configuration LP of the original in-
stance with ρ = 3/2 (we could also define a configu-
ration LP on the instance obtained by removing the
large items in compact bins, but it does not help in
the analysis). This uses at most dm · ln ρe bins in this
step. Let S denote the set of residual items (minus the
large compact items already matched above). Now, we
use an important property of non-compact bins, that
is proved formally in Lemma 6.3: the items from mN

non-compact bins can be rounded to constant number of
types and repacked into 3

2mN bins Therefore, applying
Theorem 6.1, Opt(S) ≤ mN/ρ ≤ 2

3mN . Then we pack S

using the 3
2 -approximation algorithm into roughly mN

bins. Altogether, we used roughly mC + dln ρem+mN

bins.
We now prove the two lemmas mentioned above.

Lemma 6.3. All items in mN non-compact bins can be
packed into d3mN/2e(1 + 2ε) bins where large items are
rounded to a constant number of types.

Proof. From structural properties in Lemma 5.2, for
non-compact bins either there is a large item p ∈ B
such that p ≤ (1/2, 1/2) and p is > δ in at least one
coordinate, or there is a subset R of items in B such
that

∑
p∈R p ≤ (2δ, 2δ) and B \ R has δ-slack in some

dimension. Thus the removal of item(s) p orR from such
bin B creates δ slack in B in at least one dimension. So
from the proof of Lemma 5.3, any two such bins can be
repacked into 3 bins such that either it has slack δ in
one dimension or it contains two p type items. Now if
the bins have δ-slack in at least one dimension, using
Algorithm 1 we can get a rounded packing loosing only
a factor (1 + ε + ε2/d) ≤ (1 + 2ε) for small ε. On the
other hand, for bins containing two p type items, one
can just round p type items into (1/2,1/2). So for mN

non-compact bins we can produce a rounded-packing in
d3mN/2e(1 + 2ε) rounded bins. 2

Lemma 6.4. All items in mC compact bins can be
packed into (1 + 2δ)mC + 1 bins where mC bins contain
single or two items and remaining 2δmC+1 bins contain
only small items.

Proof. Given mC compact bins, we can remove the
items ≤ (δ, δ) in the compact bins and greedily pack
them into additional d mCb1/δce ≤ 2δmC + 1 extra bins for

small values of δ. 2

6.1.1 Analysis of the Algorithm

Theorem 1.1 (restated). For any small constant
ε′ > 0, the algorithm above (Algorithm 3) has an
asymptotic approximation ratio of (1 + ln(1.5) + ε′) ≈
(1.405 + ε′) for 2-D vector packing.

Proof. The binary search to find m (:= Opt(I)) takes
O(log n) time. For each guess there are O(n2) guesses
for mC ,mN . Also as there are total tL (constant)
number of round vectors, they can be guessed in O(ntL)
time. Thus in polynomial time we can guess the suitable
values for the guessing stage in the algorithm.

Now there are three steps in the packing stage of the
algorithm. In the first step we pack (1+δ)mC number of
bins using multi-objective multi-budget matching on the
original item sizes. In the randomized rounded step of
R&A with ρ = 3/2 we use at most d(ln ρ)z∗e ≤ ln ρ·m+1

bins. In the last step we pack the remaining items in
S into mN + 4εm + cm + 3 number of bins. So, for
any feasible solution the total number of bins needed
(1+δ)mC +(ln ρ)m+mN +4εm+O(1) which is atmost
(1 + ε′ + ln ρ)(mC + mN) + O(1) bins, where ε′ = 6ε.
This gives (1 + ln(3

2) + ε′) asymptotic approximation if
the algorithm returns a feasible solution.

To complete the proof we need to show that the
algorithm always returns a feasible packing for a correct
guess.

In the packing using matching step, we create an
edge between two nodes vi and vj only if they form
a compact bin together, i.e., vi + vj ≥ (1 − δ, 1 − δ).
Note that we can always separate very large items
vi ≥ (1 − δ, 1 − δ) and pack them separately. In this
step the items we pack in mC bins might not be the
same items in the compact bins in the optimal solution.
However the packed items in these mC bins are very
similar to those items in the compact bins. We pack cij`
items from W ij

` using MOMB matching into (1 + δ)mC

bins as in Section 5 with ν = δ. So, for a correct guess
at the end of packing using matching, each class W ij

`

has only ≈ (cij` + wij`)− cij` = wij` items left.
So after packing using matching, from Lemma

6.3 and 6.4 remaining items have a rounded packing
in By Theorem 6.1, S can be packed into at most
((3mN/2)(1+2ε)/ρ+2δmC+2)(1+ε) ≤ mN +4ε(mN +
mC) + c+ 3 bins. This concludes the proof. 2

6.2 Improved Approximation for d-
Dimensional Vector Packing: For d-VP, we
adopt a somewhat different approach. The main
problem is that there can be d items in a bin such
that if their sizes are rounded up, then we need Ω(d)
many bins to pack them. So we cannot afford to round
such items, and they must be packed together using
some matching. However, there are no good results for
multiobjective d-dimensional matching. So we work
somewhat indirectly to use the result for (standard)
matching.

The starting point are the following two structural
properties for d-VP.

Lemma 6.5. If there exists a feasible packing P of µn1
items into n1 bins, a packing into (µ+1)

2 ·n1 bins can be
found in polynomial time.

Proof. It suffices to show a packing into (µ+1)
2 · n1 bins

where each bin contains one or two items. This packing
can then be found using maximum matching. Let x be
the number of bins in P containing an odd number of
items. Pack one item from each such bin into a separate
bin by itself. Each bin now has an even number of items,
which can be packed in (µn1−x)/2 bins using matching,

giving a packing with x + (µn1 − x)/2 ≤ (µn1 + n1)/2
bins. 2

Lemma 6.6. For any ε > 0, if there is a feasible packing
of a d-VP instance I into m bins, then there is a packing
into at most (2 + ε)m+ 1 bins such that m bins contain
at most (d−1) items, and all other bins have O(1) types
of large items and small configurations.

Proof. Let B1, . . . , Bm be a feasible packing of I. Each
bin Bi, for i ∈ 1, . . . ,m, we apply an argument similar
to the one in the proof of Lemma 5.5. Let δ = ε/(14d2).

Consider bin Bi. Let C be the list of coordinates
where Bi has slack less than δ. First, we remove large
items from Bi iteratively such that each removal creates
slack in at least one coordinate of C. Call these removed
items Vi. If |C| ≤ 1, we are done with bin Bi.

However, if |C| > 1 and there are no large items
whose removal would create slack in some coordinate of
C, then all items currently in Bi must be smaller than δ
in all coordinates in C. In this case, we use Lemma 5.4
to find a setRi such that

∑
p∈Ri p ≤ κδ in all dimensions

and Bi \ (Vi ∪Ri) contains slack in all dimensions.
We pack Vi in a separate bin B′i, and clearly this

bin contains at most d − 1 items. The items in Ri
for i = 1, . . . ,m, can be packed greedily into at most
2mκδ = εm bins in total such that each bin still has δ
slack in each dimension.

As all bins except the B′i for i = 1, . . . ,m, have slack
in at least d− 1 dimensions, the items in these bins can
be rounded as discussed in previous sections. 2

We now use these results to give our algorithm
(Algorithm 4).

Let m := Opt(I). Consider the packing in (2 +
ε)m+ 1 bins in Lemma 6.6. Let ID be the set of items
in those m bins containing at most (d − 1) items. Let
IN = I \ ID, are the items in the remaining rounded
bins.

We apply R&A to I with ρ = (d+1)/2 and let J be
the residual set of items. The algorithm will pack (after
suitable guessing) the items in ID ∩ J using Lemma 6.5
and MOMB matching. As we will see later this will use
about 3m/2 bins.

The items in IN ∩ J are be packed into nearly
m(1 + ε)/ρ bins using Theorem 6.1, we show that
remaining items have a rounded packing into nearly
m
ρ +O(1) bins.

6.2.1 Analysis

Theorem 1.3 (restated). For any constant ε with
ε < 1

3d2 , there is a poly-time algorithm (Algorithm 4)

A. Guessing stage:
A1. Guess m := Opt(I) and create rounding
classes Wu,j

` .
B. Packing stage:

B1. Choose ρ = (d+1)
2 and solve configuration

LP and apply randomized rounding for
dLP (I) · ln(ρ)e iterations,
B2. Let J be the set of items left at the end of
randomized rounding. Guess numbers
µij` = |(ID ∩ J) ∩W ij

` |, ν
ij
` = |(IN ∩ J) ∩W ij

` |,
B3. Use MOMB matching to pack µu,j` items

from classes Wu,j
` into

(1 + 3ε)(d− 1)m/(2ρ) + (1 + ε)m/2 +O(1) bins,
B4. Pack remaining items using Algorithm 2 in
(1 + 10ε)m/ρ+O(1) bins,
B5. If packing in Step B3 or B4 fails, go to next
guess.

Algorithm 4: (ln(d + 1) + 1.5 − ln 2 + O(ε))-
approximation for d-VP.

with an asymptotic approximation ratio of (1.5 + ln(d+
1)− ln 2 + ε) ≈ ln(d+ 1) + 0.807 + ε for d-VP.

Proof. Let m = Opt(I).
The R&A step uses up to ln ρ ·m+1 bins. We count

the number of bins used in other steps.
By (6.8), for any item i ∈ I, P(i ∈ J) = 1/ρ, and

hence E[|ID ∩S|] = (d− 1)m/ρ. Using Lemma 6.1 as in
Theorem 6.1, we have that with high probability,

|ID ∩ S| ≤
(1 + ε)E[|ID ∩ S|]

ρ
+O(1).

By Lemma 6.5 (and multi-objective multi-budget
matching) these items from ID ∩ S can be packed into(

(d− 1 + ρ)

2ρ

)
m+O(εm)

bins.
Finally, as there is a rounded-packing of items in IN

into m(1 + ε) bins, by Theorem 6.1, there is a packing

of IN ∩ S into m(1+ε)(1+ε)
ρ +O(1) bins.

Putting this all together, the number of bins needed
is at most

m · ln(ρ) + (1 +O(ε))m

(
(d− 1 + ρ)

2ρ
+

1

ρ

)
+O(1)

≤ (1 +O(ε))m ·
(

ln(ρ) + 1/2 +
(d+ 1)

2ρ

)
The choice of ρ = (d+1)/2 optimizes the expression

above, to give an ln(d + 1) + 3/2 − ln 2 asymptotic
approximation. 2

We note that all algorithms in the paper can
be derandomized using the potential function based
standard arguments in [2].

The algorithm above improves the previous 1 +
ln d approximation for all d > 4. For d = 2 and
3, the algorithms in the previous sections give an
approximation of (1.405 + ε) and (2 + ε) which also
improves previously known bounds for these cases.

7 Conclusion

Given our current knowledge, it is possible that for each
constant d there exists a (say) 2 approximation algo-
rithm for d-VP running in time nf(d) for some arbitrary
function f . Resolving this is an extremely interesting
question. Our bounds can probably be improved fur-
ther for small values of d by proving and using multi-
objective multi-budget variant of d-dimensional match-
ing for d > 2. However, this approach is unlikely to
give a (1 − δ) ln d approximation for large d, given the
Ω(d/ ln d) lower bound for d-dimensional matching.

Acknowledgments. We thank Prasad Tetali for help-
ful discussions.

References

[1] Yossi Azar, Ilan R. Cohen, Seny Kamara, and
Bruce Shepherd, Tight bounds for online vector bin
packing, in STOC, 2013, pp. 961–970.

[2] Nikhil Bansal, Alberto Caprara, and Maxim
Sviridenko, Improved approximation algorithms for
multidimensional bin packing problems, in FOCS, 2006,
pp. 697–708.

[3] Nikhil Bansal and Arindam Khan, Improved ap-
proximation algorithm for two-dimensional bin pack-
ing, in SODA, 2014, pp. 13–25.

[4] Nikhil Bansal, Kang-Won Lee, Viswanath Na-
garajan, and Murtaza Zafer, Minimum congestion
mapping in a cloud, in PODC, 2011, pp. 267–276.

[5] Nikhil Bansal and Maxim Sviridenko, Two-
dimensional bin packing with one-dimensional re-
source augmentation, Discrete Optimization, 4 (2007),
pp. 143–153.

[6] Nikhil Bansal, Tjark Vredeveld, and Ruben
van der Zwaan, Approximating vector scheduling:
Almost matching upper and lower bounds, in LATIN,
2014, pp. 47–59.

[7] Alberto Caprara and Paolo Toth, Lower bounds
and algorithms for the 2-dimensional vector packing
problem, Discrete Applied Mathematics, 111 (2001),
pp. 231–262.

[8] Chandra Chekuri and Sanjeev Khanna, On mul-
tidimensional packing problems, SIAM J. Comput., 33
(2004), pp. 837–851.

[9] Chandra Chekuri, Jan Vondrák, and Rico Zen-
klusen, Multi-budgeted matchings and matroid in-

tersection via dependent rounding, in SODA, 2011,
pp. 1080–1097.

[10] Wenceslas Fernandez de la Vega and George S.
Lueker, Bin packing can be solved within 1+epsilon in
linear time, Combinatorica, 1 (1981), pp. 349–355.

[11] E. A. Dinic, An algorithm for solution of a problem
of maximum flow in a network with power estimation,
Soviet Mathematics Doklady, 11 (1970), p. 12771280.

[12] Friedrich Eisenbrand, Dömötör Pálvölgyi, and
Thomas Rothvoß, Bin packing via discrepancy of
permutations, ACM Transactions on Algorithms, 9
(2013), p. 24.

[13] Hans Frenk, János Csirik, Martine Labbé, and
Shuzhong Zhang, On the multidimensional vector
bin packing, University of Szeged. Acta Cybernetica,
(1990), pp. 361–369.

[14] Alan M. Frieze and M. R. B. Clarke, Approx-
imation algorithms for the m-dimensional 0–1 knap-
sack problem: Worst-case and probabilistic analyses,
European Journal of Operational Research, 15 (1984),
pp. 100–109.

[15] Michael R. Garey, Ronald L. Graham, David S.
Johnson, and Andrew C. Yao, Resource constrained
scheduling as generalized bin packing, Journal of Com-
binatorial Theory, Series A, 21 (1976), pp. 257–298.

[16] Martin Grötschel, László Lovász, and Alexan-
der Schrijver, Geometric algorithm and combina-
torial optimization, Algorithms and Combinatorics:
Study and Research Texts, Springer-Verlag, Berlin,
(1988).

[17] Bernard T. Han, George Diehr, and Jack S.
Cook, Multiple-type, two-dimensional bin packing
problems: Applications and algorithms, Annals of Op-
erations Research, 50 (1994), pp. 239–261.

[18] Johan Håstad, Clique is hard to approximate within
n1−ε, in FOCS, 1996, pp. 627–636.

[19] Rebecca Hoberg and Thomas Rothvoß, A loga-
rithmic additive integrality gap for bin packing, CoRR,
abs/1503.08796 (2015).

[20] Sungjin Im, Nathaniel Kell, Janardhan Kulka-
rni, and Debmalya Panigrahi, Tight bounds for on-
line vector scheduling, in FOCS (to appear), 2015.

[21] Klaus Jansen and Roberto Solis-Oba, Rectangle
packing with one-dimensional resource augmentation,
Discrete Optimization, 6 (2009), pp. 310–323.

[22] Narendra Karmarkar and Richard M. Karp, An
efficient approximation scheme for the one-dimensional
bin-packing problem, in FOCS, 1982, pp. 312–320.

[23] Hans Kellerer and Vladimir Kotov, An approxi-
mation algorithm with absolute worst-case performance
ratio 2 for two-dimensional vector packing, Operations
Research Letters, 31 (2003), pp. 35–41.

[24] Arindam Khan, Approximation algorithms for multi-
dimensional bin packing, PhD Thesis, Georgia Institute
of Technology, Atlanta, USA, 2015.

[25] Colin McDiarmid, Concentration, in Probabilis-
tic methods for algorithmic discrete mathematics,
Springer, 1998, pp. 195–248.

[26] Adam Meyerson, Alan Roytman, and Brian
Tagiku, Online multidimensional load balancing, in
APPROX, 2013, pp. 287–302.

[27] Rina Panigrahy, Kunal Talwar, Lincoln Uyeda,
and Udi Wieder, Heuristics for vector bin packing.
http://research.microsoft.com, 2011.

[28] Lars Dennis Prädel, Approximation Algorithms
for Geometric Packing Problems, PhD thesis, Kiel,
Christian-Albrechts-Universität, 2012.

[29] Thomas Rothvoß, Approximating bin packing within
O(log OPT * log log OPT) bins, in FOCS, 2013, pp. 20–
29.

[30] S. C. Sarin and W. E. Wilhelm, Prototype models
for two-dimensional layout design of robot systems, IIE
transactions, 16 (1984), pp. 206–215.

[31] Hadas Shachnai and Tami Tamir, Approximation
schemes for generalized two-dimensional vector packing
with application to data placement, Journal of Discrete
Algorithms, 10 (2012), pp. 35–48.

[32] Frits C. R. Spieksma, A branch-and-bound algorithm
for the two-dimensional vector packing problem, Com-
puters & operations research, 21 (1994), pp. 19–25.

[33] D. Vercruyssen and H. Muller, Simulation in pro-
duction, A report of the University of Gent, Belgium,
(1987).

[34] Gerhard J. Woeginger, There is no asymptotic
ptas for two-dimensional vector packing, Information
Processing Letters, 64 (1997), pp. 293–297.

