
Behavioral Program Logic?

Eduard Kamburjan

Department of Computer Science, Technische Universität Darmstadt, Germany
kamburjan@cs.tu-darmstadt.de

Abstract. We present Behavioral Program Logic (BPL), a dynamic
logic for trace properties that incorporates concepts from behavioral
types and allows reasoning about non-functional properties within a se-
quent calculus. BPL uses behavioral modalities [s
 τ], to verify state-
ments s against behavioral specifications τ . Behavioral specifications gen-
eralize postconditions and behavioral types. They can be used to specify
other static analyses, e.g., data flow analyses. This enables deductive
reasoning about the results of multiple analyses on the same program,
potentially implemented in different formalisms. Our calculus for BPL
verifies the behavioral specification gradually, as common for behavioral
types. This vastly simplifies specification, calculus and composition of lo-
cal results. We present a sequent calculus for object-oriented actors with
futures that integrates a pointer analysis and bridges the gap between
behavioral types and deductive verification.

1 Introduction

When reasoning about concurrent programs, the intermediate states of an exe-
cution are of more relevance than when reasoning about sequential programs. In
an object-oriented setting, it does not suffice to specify pre- and postcondition
of some method m. Instead, the traces generated by m must be specified.

Recently, dynamic logics for trace properties have been developed [3, 7, 12]
to leverage well-established verification techniques from dynamic logic [1] to a
concurrent setting. The application of these approaches to real world models
of distributed systems [13, 25] revealed two shortcomings: (1) the composition
of method-local verification results to a guarantee for the whole system is not
automatic and (2) the specification of trace properties is too complex. Thus, the
current approaches are deemed as not practical for serious verification efforts.

Another group of verification techniques, behavioral types, aim “to describe
properties associated with the behavior of programs and in this way also describe
how a computation proceeds.” [20]. For object-oriented languages, behavioral
types can also be seen as specifications of traces of methods. Behavioral types,
especially session types [19], are restricted in their expressive power to easily
compose their local results to global guarantees, and are natural specifications
for protocols. However, they lack precision when handling state [5] or require

? This work is supported by the FormbaR project, part of AG Signalling/DB RailLab.

2 Eduard Kamburjan

additional static analyses [23]. For Active Objects [9] (object-oriented actors with
futures), a translation from session types to a trace logic has been given [23].

We introduce Behavioral Program Logic (BPL) to combine precise state rea-
soning from program logics with the relative simplicity of behavioral types and
enable the integration of static analyses into deductive reasoning. The main
difference to previous approaches in dynamic logic for trace properties is the
behavioral modality [s
 τ], which expresses that all traces of statement s sat-
isfy specification τ . The specification τ is not a formula, as the postcondition
of modalities in classical dynamic logic, but is a specification translated into a
monadic second order formula over traces. Similarly to behavioral types, τ may
contain syntactic elements and allows to syntactically match with s. Sequent cal-
culi for BPL may reduce s and τ in one rule. Contrary to previous dynamic logics
for traces, behavioral specifications are more succinct and easier to compose and
decompose by, e.g., using the projection mechanism of session types.

We distinguish between behavioral types, that have a sequent calculus of
the above kind, and behavioral specifications, which do not. Behavioral specifi-
cations interface with external properties, such as a data-flow points-to analysis.
Beyond integrating external analyses into the sequent calculus, this modularizes
the sequent calculus by expressing different properties with different behavioral
specifications. Behavioral specifications are clear interfaces that allow to close
proofs once more context is known and generalize proof repositories [6].

Our main contributions are (1) BPL, a trace program logic that integrates
deductive reasoning with static analyses (2) method types, a behavioral type in
BPL that generalizes method contracts, object invariants and local types for
Active Objects. Due to space constraints, we do not give (de-)compositions and
full semantics and refer to [23] and our technical report [22] for full details. We
introduce our programming language in Sec. 2 and BPL in Sec. 3. In Sec. 4 we
introduce method types. Sec. 5 summarizes previous approaches and concludes.

2 Preliminaries: An Actor Language with Futures

We introduce Behavioral Program Logic using a Core Active Object language [9]
(CAO) with futures, CAO uses strong encapsulation (i.e., all fields are object-
private) and cooperative scheduling. CAO is based on ABS [21] and we use a
locally abstract, globally concrete (LAGC) semantics [11]. An LAGC semantics
consists of two layers: A locally abstract (LA) layer for statements and methods,
and a globally concrete (GC) layer for objects and systems. The LA layer is
a denotational semantics that abstractly describes the behavior of a method
in every possible context, while the GC layer is an operational semantics that
concretizes the LA semantics of processes in a concrete context. LA semantics
enable one to analyze a method in isolation and Active Objects allow us to
demonstrate that BPL is suited for complex concurrency models.

Definition 1 (Syntax). Let ∼ range over &&, ||, +, -, *, /, >=, >, <, <=, v over vari-
ables, f over fields, C over class names, m over method names, i and n over N.
The syntax of CAO is defined in Fig. 1, where −→· denotes (possibly empty) lists.

Behavioral Program Logic 3

Prgm ::=
−−−→
Class Main Main ::= main{si} Class ::= class C (

−→
C f){

−−→
Field

−−−→
Meth} Field ::= D f = e;

Meth ::= D m(
−→
D v){s;return e;} D ::= Int | Bool | Fut<D> si ::= C v = C(−→v); si | v!m(−→e)

s ::= [D] l = e | [D] v = e.geti | [D] v = f!m(−→e) | skip | while(e){s} | if(e){s}else{s} | s;s
e ::= l | n | True | False | e ∼ e | !e | -e l ::= this.f | v

Fig. 1. Syntax of CAO.

A program consists of a set of classes and a main block. The main block
contains object instantiations and a method call to initialize the communication.
All objects are created at once, not in the order of their instantiations. A class
contains (1) parameter fields which reference other objects, (2) fields for data,
initialized upon creation and (3) methods. Multiple instances can share their
parameters. Parameters cannot be reassigned. As data types we use integers,
booleans and parametric futures. Each class has a run method that is started
upon creation. We omit run if it is empty.

Statement v = f!m(−→e) calls method
1 class T(Comp S, Log L){

2 Int test(Int i){

3 Fut<Int> f = S!cmp(i);

4 Int r = f.get0;
5 if(r < 0){

6 r = -r;

7 f = L!log(i);

8 }

9 return r;

10 }

11 }

Fig. 2. An example method

m asynchronously on the object f with
parameters −→e . A fresh future is gener-
ated and stored in v. This future identifies
the called process. We say that the called
process will resolve the future by execut-
ing return e and storing the value of e in
the future. The synchronizing statement
v = e.geti reads from the future in e into
v. Until the future is resolved, the reading
process blocks its object. The identifier i
is used to distinguish multiple synchro-
nization points. The other statements, ex-
pressions and methods are standard.

Example 1. Fig. 2 shows a simple method that passes its input to Comp.cmp and
reads the result. If the result is negative, its sign is inverted and the original
input data is logged by Log.log. The possibly inverted result is returned.

The semantics of a method is a set of symbolic traces, to describe the be-
havior of the method in every possible context, i.e., for every possible heap, call
parameters and accessed futures. Additionally to semantic values (semantic val-
ues are, e.g., object identifiers, rationals, futures etc.), symbolic traces contain
symbolic expressions. Structurally, symbolic expressions mirror syntactic expres-
sions, but do not contain variables or fields. Instead they contain symbolic values
and symbolic fields. Symbolic values have no operations defined on them and act
as placeholders. They are replaced by semantic values once the method is run-
ning and the context is known. Symbolic fields are special symbolic values that
contain the name of the field they are abstracting.

Definition 2 (Symbolic Expressions). Let v range over semantic values, v
over symbolic values, i over N and this.fi over symbolic fields. Symbolic expres-

4 Eduard Kamburjan

sions e are defined below. We highlight symbolic elements by underlining.

e ::= e ∼ e | !e | -e | v | v | this.fi

To model the points where processes, objects and futures interact, traces
contain events as markers for visible communication.

Definition 3 (Events). Events are defined by the following grammar.

ev ::= invEv(X, X′, f , m,−→e) | invREv(X, f , m,−→e) | futEv(X, f , m, e) | futREv(X, f , m, e, i) | noEv

Event invEv(X, X′, f , m,−→e) models a call from X to X′ on method m with fu-
ture f and call parameters −→e . The future and the callee may be symbolic:
locally it is not possible to know the used future and the called object. Event
invREv(X, f , m,−→e) is the callee view on a call. The object X here is the callee, the
caller is not visible to the callee. Event futEv(X, f , m, e) models the termination
of a process for future f , computing method m in object X and returning e. Event
futREv(X, f , m, e, i) models a geti statement in object X on the future f , which
was computed by m and returned e. Finally, noEv models an internal step.

Local traces consist of a selection condition, a set of symbolic expressions that
express when a trace executes and a history, a sequence of events and states.

Definition 4 (Local Semantics and Traces). A heap ρ maps from fields to
symbolic expressions and a local state σ maps variables to symbolic expressions.
Pairs of local states and heaps are object states and we write

(
σ
ρ

)
. The evaluation

function JeK(σρ) maps a syntactic expression to a symbolic expression.

A local trace θ has the form sc.hs, where sc is a set of symbolic expressions,
called selection condition, and hs is a non-empty sequence, called history, such
that every odd-indexed element is an object state and every even-indexed element
an event. The semantics of methods and statements is defined by a function
J·KX,f,m,(σρ) where X is the object name, f the future the method is resolving, m

the method name and
(
σ
ρ

)
the current object state. Future, object name and state

may be symbolic. The semantics of a method m with body s is, for a symbolic
(
σ
ρ

)
:

JmKX,f,m,(σρ) =

{
∅ .
〈(

σ

ρ

)
, invREv(X, f , m,−→e)

〉
◦ θ | θ ∈ JsKX,f,m,(σρ)

}
where −→e is extracted from the parameter names in σ. E.g., for a method Int m(

Int a, Rat b) we set −→e = 〈σ(a), σ(b)〉. Fig. 3 shows selected rules. All variables
are initialized, futures with no, a special future that is never resolved.

The rules for assignment both update the local state or the heap, and add
a noEv event. The rule for branching evaluates both branches and adds the
corresponding guard evaluation to the selection condition. The rule for get is
similar to the variable assignment, but receives a fresh symbolic value and stores
it in the local state. As the event, a resolving reaction event is added, which
stores the accessed future and the fresh symbolic value. The rule for method

Behavioral Program Logic 5

Jv = eKX,f,m,(σρ) =

{
∅ .

〈(
σ

ρ

)
, noEv,

(
σ[v 7→ JeK(σρ)]

ρ

)〉}
Jthis.fK(σρ) = ρ(f)

JvK(σρ) = σ(v)

Jthis.f = eKX,f,m,(σρ) =

{
∅ .

〈(
σ

ρ

)
, noEv,

(
σ

ρ[f 7→ JeK(σρ)]

)〉}
J-eK(σρ) =

 - JeK(σρ) if JeK(σρ) symbolic
r
− JeK(σρ)

z
otherwise

Jreturn eKX,f,m,(σρ) =

{
∅ .

〈(
σ

ρ

)
, futEv

(
X, f, m, JeK(σρ)

)
,

(
σ

ρ

)〉}
JskipKX,f,m,(σρ) =

{
∅ .

〈(
σ

ρ

)〉}
Jif(e){s}else{s’}KX,f,m,(σρ) =

{
sc ∪ {JeK(σρ)}B hs

∣∣∣scB hs ∈ JsKX,f,m,(σρ)
}

∪
{
sc ∪ {J!eK(σρ)}B hs

∣∣∣scB hs ∈ Js’KX,f,m,(σρ)
}

Jv = e.getiKX,f,m,(σρ) =

{
∅ .

〈(
σ

ρ

)
, futREv

(
X, JeK(σρ) , m, v, i

)
,

(
σ[v 7→ v]

ρ

)〉}
where v is fresh

Jv = f!n(−→e)KX,f,m,(σρ) =

{
∅ .

〈(
σ

ρ

)
, invEv

(
X, JfK(σρ) , v, n,

−−−→
JeK(σρ)

)
,

(
σ[v 7→ v]

ρ

)〉}
where v is fresh

Jwhile(e){s}KX,f,m,(σρ) = Jif(e){s; while(e){s};skip}else{skip}KX,f,m,(σρ)

Js;s’KX,f,m,(σρ) =

{
sc ∪ sc′ . hs ◦ hs′

∣∣∣∣∣sc . hs ◦
〈(

σ′

ρ′

)〉
∈ JsKX,f,m,(σρ), sc

′ . hs′ ∈ Js’KX,f,m,(σ′ρ′)

}

Fig. 3. Selected rules of the LA semantics of statements and expression. Evaluation
JeK of semantic values has its natural definition.

{v<0}B〈
(σ ∪ {f 7→ no, r 7→ 0}, ρ), invREv(X, f, T.test, 〈i〉)

〉
◦〈

(σ ∪ {f 7→ no, r 7→ 0}, ρ), invEv(X,S, f ′, Comp.cmp, 〈i〉)
〉
◦〈

(σ ∪ {f 7→ f ′, r 7→ 0}, ρ), futREv(X, f ′, Comp.cmp, v, 0)
〉
◦〈

(σ ∪ {f 7→ f ′, r 7→ v}, ρ), noEv
〉
◦〈

(σ ∪ {f 7→ f ′, r 7→ −v}, ρ), invEv(X,L, f ′′, Log.log, 〈i〉)
〉
◦〈

(σ ∪ {f 7→ f ′′, r 7→ −v}, ρ), futEv(X, f, T.test,−v)
〉
◦〈

(σ ∪ {f 7→ f ′′, r 7→ −v}, ρ)
〉

{v>=0}B〈
(σ ∪ {f 7→ no, r 7→ 0}, ρ), invREv(X, f, T.test, 〈i〉)

〉
◦〈

(σ ∪ {f 7→ no, r 7→ 0}, ρ), invEv(X,S, f ′, Comp.cmp, 〈i〉)
〉
◦〈

(σ ∪ {f 7→ f ′, r 7→ 0}, ρ), futREv(X, f ′, Comp.cmp, v, 0)
〉
◦〈

(σ ∪ {f 7→ f ′, r 7→ v}, ρ), futEv(X, f, T.test, v)
〉
◦〈

(σ ∪ {f 7→ f ′, r 7→ v}, ρ)
〉

Fig. 4. LA semantics of T.test, with σ = {i 7→ i}, ρ = {S 7→ S, L 7→ L}.

calls is analogous, but uses a fresh future for the call instead of a fresh read
value. The added event is an invocation event with the evaluated parameters.
Fig. 4 shows the two traces in the semantics of Ex. 1.

Symbolic traces represent a set of concrete traces, which contain only se-
mantic values and correspond to possible behaviors of the statement. The set of
concrete traces represented by a symbolic trace is a vast overapproximation and
we only consider selected traces: concrete traces used in some terminating run of
a given program. For a formal definition and the GC semantics, we refer to [22].

Definition 5 (Selected Traces). A trace θ continues trace θ′, written θ � θ′,
if its history is a suffix of the history of θ′, with all symbolic elements replaced
by concrete values, such that this substitution evaluates all expressions in the
selection condition to true. A trace θ is selected in a program Prgm, if it is used
during some run of Prgm. Let m be the method containing s.

6 Eduard Kamburjan

JsKPrgm
X,f,m,(σρ)

= {θ∈JsKX,f,m,(σρ) | ∃θ
′∈JmKX,f,m,(σρ). θ � θ

′∧ θ used in a terminating run of Prgm}

We use a first-order state (FOS) logic to express properties of states and a
monadic second-order (MSO) logic to express properties of traces. The MSO
logic embeds the FOS by using FOS formulas similar to predicates on states.
Similarly, it uses terms that allow to specify events.

Definition 6 (FOS Syntax). Let p range over predicate symbols, f over func-
tion symbols, x over logical variable names and S over sorts. As sorts we take all
data types D, all class names and additionally N and Heap. The logical heaps are
functions from field names to semantic values. Formulas ϕ and terms t are de-
fined by the following grammar, where v are program variables, consisting of local
variables and the special variables heap and result, and f are all field names.

ϕ ::= p(
−→
t) | t .= t | ϕ ∨ ϕ | ¬ϕ | ∃x ∈ S. ϕ t ::= x | v | f | f(

−→
t)

We demand the usual constants, (e.g., 0, True) and that each operator defined
in syntactic expressions e is a function symbol, so one can directly translate a
syntactic expression into a FOS term. We additionally assume the following
function symbols to handle heaps: select(t, t) | store(t, t, t), where select(h, f)
reads field f from heap h and store(h, f, t) stores the value of t in field f of heap
h. As only one object is considered, we do not require an object parameter.

Definition 7 (FOS Semantics). Interpretation I maps function names to
functions and predicate names to predicates. Assignment β maps logical variable
to semantic values of the resp. sort. Evaluation of terms in state

(
σ
ρ

)
is defined

as a function JtK(σρ),I,β and satisfiability of formulas by a relation
(
σ
ρ

)
, β, I |= ϕ.

For the special variable heap we set JheapKX,f,m,(σρ) = ρ and for the heap

functions we follow JavaDL [1] and demand, e.g., the following connection axiom
for all heaps h, all fields f and terms t: I(select)(I(store)(h, f, t), f) = t.

The models for the MSO logic are local traces and the whole semantic do-
main. This allows to quantify over method names etc. – it is not a logic over
finite sequences. In additional to standard MSO constructs, we use [ttr]

.
= t to

say that the event at position ttr of the trace is equal to the term t. Similarly,
[ttr] ` ϕ expresses that the state at position ttr is a model for the FOS formula ϕ.

Definition 8 (MSO Syntax). Let p,f ,x range over the same sets as before, S
over sorts. As sorts we take all data types D and additionally I, the set of trace
indices, O, the set of all object names, Fut, the set of all futures of all types, the
supertype Any, the set of all well-typed expressions and M, the set of all method
names. Formulas ψ are defined as follows. Terms ttr are standard.

ψ ::=p(
−→
ttr) | ψ ∨ ψ | ¬ψ | ttr ⊆ ttr | ∃x ∈ S. ψ | ∃X ⊆ S. ψ | [ttr]

.
= ttr | [ttr] ` ϕ

The predicate isEvent(i) that holds iff θ[i] is an event. For each type of event,
there is a function symbol that maps its parameters to an event of its type and
a predicate that holds iff the given position is an event of that kind, e.g.,

isfutEv(i) ⇐⇒ ∃f ∈ Fut. ∃o ∈ O. ∃m ∈ M. ∃v ∈ Any. [i]
.
= futEv(o, f,m, v)

Behavioral Program Logic 7

Definition 9 (MSO Semantics). The semantics of terms and event terms is
defined by a function J·KI,β. The satisfiability of MSO-formulas is defined by a
relation θ, I, β |= ψ. The semantics of our extensions follows.

θ, I, β |= [ttr1]
.
= ttr2 ⇐⇒ 1 ≤ Jttr1KI,β ≤ |θ| ∧ θ[Jttr1KI,β] = Jttr2KI,β

θ, I, β |= [ttr] ` ϕ ⇐⇒ 1 ≤ JttrKI,β ≤ |θ| ∧ θ[JttrKI,β] is a state ∧ θ[JttrKI,β], I, β |= ϕ

Example 2. Let r = f.get0 be the statement from Ex. 1. The following MSO-
formula expresses that if all values read from futures of cmp is positive, and every
future read at point 0 is from cmp, then after the read the value of r is positive.

(∀i ∈ I. (∀v ∈ Int. [i]
.
= futREv(, , cmp, v,)→ v > 0)∧

∀i ∈ I. (∀m ∈ M. [i]
.
= futREv(, ,m, , 0)→ m

.
= cmp))

→ ∀i ∈ I. ([i]
.
= futREv(, , , , 0)→ [i+ 1] ` r > 0)

Relativization [17], an established technique in abstract model theory [15],
syntactically restricts a formula ψ on a substructure defined by another formula
ψ′. It is denoted ψ[x ∈ S \ ψ′], where x is a free variable in ψ′ of S sort. Each
quantifier of S sort is restricted to elements that fulfill ψ′.

Example 3. Formula ϕ expresses that every trace-element is either an event, or
a state with r > 0. The relativization with ψ expresses that ϕ holds for every
index above 9. Both traces of Fig. 2 satisfy ϕ[j ∈ I \ ψ], neither satisfies ϕ.

ϕ = ∀i ∈ I. isEvent(i) ∨ [i] ` r > 0 ψ = j ≥ 9

ϕ[j ∈ I \ ψ] = ∀i ∈ I. i ≥ 9→ (isEvent(i) ∨ [i] ` r > 0)

We use common abbreviations, e.g., ∀x ∈ S. ϕ for ¬∃x ∈ S. ¬ϕ and true and
shorten comparisons of Bool terms by writing, e.g., i > j instead of i > j

.
= True.

3 Behavioral Program Logic

Behavioral Program Logic (BPL) is an extension of FOS with behavioral modal-
ities [s
α τ] that contain a statement s and a behavioral specification (τ, α).
A behavioral specification consists of (1) a syntactic component (the type τ)
and (2) a translation α of the type into an MSO formula that has to hold for
all traces generated by the statement. Behavioral specifications can be seen as
representations of a certain class of MSO formulas, which are deemed useful for
verification of distributed systems. For the rest of this section, we assume fixed
parameters Prgm, X, f , m for evaluation.

Definition 10 (Behavioral Program Logic). A behavioral specification T
is a pair (τT, αT), where αT maps elements of τT to MSO formulas.

BPL-formulas ϕ, terms t and updates U are defined by the following gram-
mar, which extends Def. 6. The meta variables range as in Def. 6. Additionally
let s range over statements and (τT, αT) over behavioral specifications.

ϕ ::= . . . | [s
αT

 τT] | {U}ϕ t ::= . . . | {U}t U ::= ε | U ||U | {U}U | v := t

8 Eduard Kamburjan

J{U}tK(σρ),I,β = JtKJUK
(σρ),I,β

,I,β JεK(σρ),I,β (x) = x

(
σ

ρ

)
, I, β |= {U}ϕ⇔ JUK(σρ),I,β , I, β |= ϕ

Jv := tK(σρ),I,β

((
σ′

ρ′

))
=


(
σ′

ρ′′

)
if v = heap, ρ′′ = JtK(σρ),I,β(

σ′′

ρ′

)
otherwise, σ′′ = σ′[v 7→ JtK(σρ),I,β]

q
U ||U ′

y
(σρ),I,β

(x) =
q
U ′

y
(σρ),I,β

(
JUK(σρ),I,β (x)

) q
{U}U ′

y
(σρ),I,β

=
q
U ′

y
JUK

(σρ),I,β
I,β(

σ

ρ

)
, I, β |= [s

αT

 τT]⇔ ∀θ ∈ JsKPrgm

X,f,m,(σρ)
. θ, I, β |= αT(τT)

Fig. 5. Semantics of BPL. The satisfiability relation on the right of the semantics of
behavioral modalities is the one of MSO.

The semantics of a behavioral modality [s
αT τT] is that all traces generated
by s selected within Prgm are models for αT(τT). We use updates [2, 1] to keep
track of state changes, their semantics is a state transition. Update v := t changes
the state by updating v to t. The parallel update U ||U ′ applies U and U ′ in
parallel, with U ′ winning in case of clashes. ε is the empty update and application
{U} evaluates the term (resp. formula) in the state after applying U .

Definition 11 (Semantics of BPL). The semantical extension of FOS to
BPL is given in Fig. 5. The interpretation I has the properties described above.
A formula ϕ is valid if every

(
σ
ρ

)
and every β make it true.

Object, program, method name, resolved future and type of result are im-
plicitly known, but we omit them for readability’s sake. We use a sequent calculus
to reason about BPL (resp. FOS).

Definition 12 (Sequents and Rules). Let ∆,Γ be sets of BPL-formulas. A
sequent Γ ⇒ ∆ has the semantics of

∧
Γ →

∨
∆. Γ is called the antecedent and

∆ the succedent. Let C,Pi be sequents. A rule has the form

P1 . . . Pn
(name) cond

C

Where C is called the conclusion and Pi the premise, while cond is a side-
condition. Side-conditions are always decidable. For readability’s sake, we apply
side conditions containing equalities directly in the premises.

Rules may contain, in addition to expressions, schematic variables. Their han-
dling is standard [1]. We assume the usual FO rules for the FOS part of BPL
handling all FO operators such as quantifiers.

Definition 13 (Soundness). A rule is sound if validity of all premisses implies
validity of the conclusion.

Soundness implicitly refers to a program Prgm, as behavioral modalities are
defined over Prgm-selectable traces. Rewrite rules τ1! τ2 syntactically replace
one type τ1 by another, τ2 (and vice versa) and are sound if α(τ1) ≡ α(τ2).

Behavioral Program Logic 9

Discussion. Before we introduce method types, a particular behavorial specifica-
tion, we illustrate BPL with further examples. To reason about postconditions,
as standard modal logics, we define a behavioral specification that only uses the
last state of a trace (denoted by the function symbol last) for its semantics.

Example 4. The specification for postconditions is the pair of the set of all FOS
sentences and the function pst, defined below. T is the type of result. The first
case accesses the return value stored in the futEv when result is used.

pst(ϕ) =

{
∃v ∈ T. [last−1]

.
= futEv(, , , v) ∧ [last] ` ϕ[result\v] if ϕ contains result

[last] ` ϕ otherwise

A Hoare triple {ϕ}s{ψ} has the same semantics as the formula ϕ→ [s
pst ψ].
A standard dynamic logic modality [s]ψ has the same semantics as the behavioral
modality [s
pst ψ] 1. Behavioral modalities generalize these systems and can
be used to express any (MSO) trace property, independent of the form of its
verification system. The following defines a points-to analysis for futures [14]
(for the next statement), normally implemented in a data-flow framework.

Example 5 (Points-To). The behavioral specification of a points-to analysis spec-
ifies that the next statement reads a future resolved by a method from set M .

Tp2 = (P(M), p2) with

p2(M) = ∃X ∈ O.∃f ∈ Fut.∃m ∈ M.∃v ∈ Any.∃i ∈ N. [1]
.
= futREv(X, f, m, v, i) ∧

∨
m′∈M

m
.
= m′

The following formula expresses that the get statement reads a positive num-
ber, if the future is resolved by Comp.cmp. This is the case if Comp.cmp always
returns positive values. The identifier connects the two modalities semantically.

ϕp = [r = f.get0

p2

{Comp.cmp}]→ [r = f.get0

pst

 r > 0]

It is not necessary to include postcondition reasoning. Rule (ex1) in Fig. 6
expresses that if the next read from s is from some set E′ and it is required to
show that the next read is from E, it suffices to check whether E is a subset of E′.
Rule (ex-
) connects two analyses and generalizes Ex. 2: one may assume some
formula ψ for a read value, if this synchronization always reads from method
Comp.cmp and that the method body of Comp.cmp establishes ψ.

The above example illustrates the difference between modalites and typing
judgments. Modalites are formulas and can be used for deductive reasoning about
a type judgment (which, in our case, is encoded into
). While a calculus for
pst is easily carried over from other sequent calculi, this is not possible for all
behavioral specifications. The proof can still be closed in two ways.

– There may be some rules, such as (ex1) above, that enable to reason about
the analysis without reducing the statement at all.

1 This justifies our use of the term “modality”. Contrary to standard modalities, be-
havioral modalities are not formulas that express modal statements about formulas,
but formulas that express a modal statement about more general specifications.

10 Eduard Kamburjan

(ex1) E ⊆ E′

Γ, [s
p2

E′]⇒ [s
p2

E],∆

Γ, ψ(v) ⇒ {v := v}[s
pst

 ϕ],∆

⇒ [v = f.get0
p2

{Comp.cmp}] ∧ [sComp.cmp
pst

 ψ]
(ex-
) v fresh

Γ ⇒ [v = f.get0;s
pst

 ϕ],∆

Fig. 6. Two example rules for behavioral specifications. ψ(v) replaces result by v and
we assume that ψ contains no fields.

– If the proof contains only open branches containing behavioral specification,
one may run a static analysis to evaluate them to true or false directly. E.g.,
if for the formula ϕp above the pointer analysis returns that the synchro-
nization point 0 reads from L.log, the first behavioral modality evaluates to
false and the whole formula to true.

Using external analyses increases modularity: (1) the BPL-calculus is simpler
because it does not need to encode the implementation and (2) one may verify
functional correctness of a method up to its context. Open branches are then a
description of the context which the method requires. This may be verified once
more context is known, thus extending proof repositories [6] to external analyses.

4 A Sequent Calculus for BPL: Behavioral Types

In this section we characterize behavioral types as behavioral specifications with
a set of sequent calculus rules and a constraint on the proof obligations of the
methods within a program. Before we formalize this in general, we introduce
method types [23, 24], a behavioral type for Active Objects that suffices to gen-
eralize method contracts and object invariants by integrating the behavioral
specifications for postcondition reasoning and points-to analysis. The method
type of a method describes the local view of a method on a protocol.

Definition 14. The local protocol L and method type L of a method are defined
by the grammar below. The behavioral specification for method types is Tmet =
(L, αmet). Let X0, . . . , Xn be roles, and fX0

, . . . , fXn fields of fitting type. αmet(L)
is defined as ∃X0, . . . , Xn ∈ O.

∧
i≤n Xi

.
= fXi ∧ α′met(L). The first part models the

(generated [24]) assignment of roles (as function symbols) to fields.

L ::=?m(ϕ).L L ::= X!m(ϕ) | ↓(ϕ) | skip | L.L | L∗ | ⊕ {Li}i∈I | &(−→m , ϕ){L, L}

The local protocol of a method contains the receiving action ?m(ϕ), which
models that the parameters satisfy the predicate ϕ. The method body is checked
against the method type – there is no statement corresponding to receiving.
Roles keep track of an object through the protocol. We stress that statements
and method types share syntactic elements – it is possible to pattern match on
statements/expressions on one side and a method type on the other side in rules.

Calls are specified with the call action X!m(ϕ), where X.m is the receiver and
the predicate ϕ has to hold. Here, ϕ does not only specify the sent data but

Behavioral Program Logic 11

also local variables and fields. It can express properties such as “the sent data
is larger then some field”. The termination action ↓ (ϕ) models termination in
a state satisfying ϕ (which again may include result). The empty action skip
models no visible actions and L1.L2 to sequential composition: all interactions
in L1 must happen before L2. Repetition L∗ corresponds to the Kleene star (and
loops) and models zero or more repetitions of the interactions in L.

There are two choice operators: ⊕{Li}i∈I is the active choice, the method
must select one branch Li. It is not necessary to implement all branches, the
method may choose to never select some branches. The index set I must not be
empty. &(−→m , ϕ){L1, L2} is the passive choice: some other method made a choice
and this method has to follow the protocol according to this choice. The choice
is communicated via a future which has to be resolved by one of the methods
in −→m . If the choice condition ϕ, which may only include the program variable
result, is fulfilled by the read data, L1 has to be followed, otherwise L2 has to
be followed. Both branches have to be implemented.

The semantics of the call and termination actions specify a trace with at least
three elements with the correct event on second position and a state fulfilling the
given predicate on the third position. Every other event is noEv. The semantics of
the empty action and active choice are straightforward. Sequential composition
uses relativization: some position i is chosen, such that the left translation holds
before i and the right translation afterwards. Note that i is included in both
relativization, to uphold the invariant that a trace always starts and ends with
a state. The semantics of repetition are the only point where we require second
order quantifiers: set I is a set of indices, such that the first and last position are
included and for every consecutive pair k, l of elements of I, the translation of the
repeated type holds in the relativization between k and l. Passive choice specifies
that the first event is a read on a correct future (i.e., resolved by the correct
method) and the suffix afterwards follows the communicated choice correctly.

Example 6. The following formalizes the behavior described informally in Ex. 2:

?T.test(true).S!Comp.cmp(data
.
= i).&({Comp.cmp}, result < 0)

{
L!Log.log(data

.
= i),

skip

}
. ↓(result ≥ 0)

The result variable in the guard of the passive choice is referring to the result
of the read value, not the specified method.

We define behavioral types from a program logic perspective2 by a type sys-
tem, which is a set of sequent calculus rules that match on behavioral modalities
and a obligation scheme, that maps every method to a proof obligation

Definition 15 (Behavioral Types). A behavioral type T is a behavioral
specification (τT, αT) extended with (γT, ιT).

The obligation scheme ιT maps method names m to proof obligations, se-
quents of the form ϕm ⇒ [sm

αT τm], which have to be proven. sm is the method

2 Behavioral types are sometimes (informally) distinguished from data types by having
a subject reduction theorem where the typing relation is preserved, but not the type
itself [10]. In BPL this would correspond to the property that one of the rules has a
premise where the type in the behavioral modality is different than in the conclusion.

12 Eduard Kamburjan

Fig. 7. Semantics for Tmet. Unbound variables are implicitly existentially quantified.

α′met(X!m(ϕ)) = ∀i ∈ I. isEvent(i) ∧ [i] 6 .= noEv→ [i]
.
= invEv(x, X, f, m,−→e) ∧ [i− 1] ` ϕ(−→e)

∧ ∃i ∈ I. [i] 6 .= noEv ∧ isEvent(i)

α′met(↓(ϕ)) = ∀i ∈ I. isEvent(i) ∧ [i] 6 .= noEv→ [i]
.
= futEv(x, f,m, e) ∧ [i− 1] ` ϕ[result \ e]

∧ ∃i ∈ I. [i] 6 .= noEv ∧ isEvent(i)

where ϕ(−→e) replaces its free variables by −→e . ϕ[result \ e] replaces result by e.

α′met(skip) = ∀l ∈ I. [l]
.
= noEv ∨ [l] ` true α′met(⊕{Li}i∈I) =

∨
i∈I α

′
met(Li)

α′met(L1.L2) = ∃i ∈ I. α′met(L1)[n ∈ I \ n ≤ i] ∧ α′met(L2)[n ∈ I \ n ≥ i]
α′met(L

∗) = ∃I ⊆ I. ∃a, b ∈ I. a < b∧
∀k ∈ I. ((k < a ∧ isEvent(i)→ [i] 6 .= noEv) ∨ (a ≤ k ∧ k ≤ b))∧
∀i1, i2 ∈ I.

(
(∀l ∈ I. l ≤ i1 ∧ i2 ≤ l)→ α′met(L)[n ∈ I \ i1 ≤ n ∧ n ≤ i2)]

)
α′met(&({ml}l∈I , ϕ){L1, L2}) = ∃i, j, k ∈ I. i < j ∧ j < k∧

(∀l ∈ I. l
.
= j ∨ l ≥ k ∨ (l ≤ i ∧ ([l]

.
= noEv ∨ [l] ` true)) ∧ [j]

.
= futREv(x,m, f, e, n)∧∨

l∈I m
.
= ml ∧ ([k] ` ϕ→ α′met(L1)[n ∈ I \ n ≥ k]) ∧ ([k] 6` ϕ→ α′met(L2)[n ∈ I \ n ≥ k])

body of m. The type system γT is a set of rewrite rules for τT and sequent calculus
rules with conclusions matching the sequent Γ ⇒ {U}[s
αT τT], ∆.

We demand that obligation schemes are consistent, i.e., proof obligations do
not contradict each other. This would be the case if, for example a method is
called and its precondition ϕ is checked caller-side, then ϕ must truly be used
as a precondition by the proof obligation for the called method.

Definition 16. Let Lm =?m(ϕm).Lm be the local protocols in Prgm. We require
that all Lm are consistent: If m is called in the method type of any other method
m′, then the call condition implies ϕm. Furthermore, ϕX.run = true.

The extension of the behavioral specification Tmet of method types to a behav-
ioral type is given by the calculus in Fig. 8 and ιmet(m) = ϕm ∧Φ⇒ [sm

αmet Lm].
Formula Φ =

∧
X X

.
= select(heap, fX) encodes the assignment of roles to fields.

The call condition may contain fields of the other objects, but this is not
an issue when checking consistency, as the precondition only contains fields of
the own object and the fields are simply uninterpreted function symbols. The
method in Fig. 2 can be typed with the type in Ex. 6.

Rule (met–V) translates a variable-assignment into an update and (met–F) is
analogous for fields. Rule (met–get) has three premises: one premise checks via
Tp2 that the correct methods are synchronized with. The two others use a fresh
constant v for the read value and assign it to the target variable. The two
premises differ in the branch that is checked afterwards, depending on whether
or not the choice condition holds. Rule (met–while) is a standard loop invariant
rule. An invariant I holds before the first iteration and is preserved by the loop
to remove all other information afterwards. The loop body is checked against
the repeated type and the continuation against the continuation of the type.
Method types have no special action for the end of a statement, so Tpst is used

Behavioral Program Logic 13

Γ ⇒ {U}{v := e}[s
αmet

 L],∆
(met-V)

Γ ⇒ {U}[v = e; s
αmet

 L],∆

Γ ⇒ {U}{heap := store(heap, f, e)}[s
αmet

 L],∆
(met-F)

Γ ⇒ {U}[this.f = e; s
αmet

 L],∆

Γ ⇒ {U}{v := v}(ϕ(v)→ [s
αmet

 L1]),∆

Γ ⇒ {U}{v := v}(¬ϕ(v)→ [s
αmet

 L2]),∆ ⇒ [v = e.geti;s
p2

{−→m }]
(met-get) v fresh

Γ ⇒ {U}[v = e.geti;s
αmet

 &(−→m , ϕ){L1, L2}],∆

Γ ⇒ {U}I,∆ I, e⇒ [s
pst

 I] I, e⇒ [s
αmet

 L] I,¬e⇒ [s’
αmet

 L′],∆
(met-while)

Γ ⇒ {U}[while e do s od s’
αmet

 L∗.L′],∆

Γ ⇒ {U}(e→ [s;s’’
αmet

 ⊕{Li}i∈I1]),∆

Γ ⇒ {U}(¬e→ [s’;s’’
αmet

 ⊕{Li}i∈I2]),∆
(met-if) I1 ∪ I2 ⊆ I

Γ ⇒ {U}[if e then s else s’ fi s’’
αmet

 ⊕{Li}i∈I],∆

Γ ⇒ {U} (ϕ(e) ∧ select(heap, f)
.
= X) ,∆ Γ ⇒ {U}{v := f}[s

αmet

 L],∆
(met-call) f fresh

Γ ⇒ {U}[v = f!m(e); s
αmet

 X!m(ϕ).L],∆

Γ ⇒ {U}{result := e}ϕ,∆
(met-return)

Γ ⇒ {U}[return e
αmet

 ↓(ϕ)],∆

(met-skip)

Γ ⇒ {U}[skip
αmet

 skip],∆

L! ⊕
{
L
}

skip.L! L L.skip! L

Fig. 8. Rules for Tmet. We remind that the sets I1, I2 are defined as non-empty. For
simplicity, we assume that every branch and every loop body implicitly ends in skip.

for checking that the loop preserves its invariant. Rule (met–if) splits the set of
possible choices into two and checks each branch against one of these sets. These
sets may overlap and do not need to cover all original choices, but may not be
empty. Rule (met–call) checks the annotated condition of the called method and
the correct target explicitly and that the correct method is called by matching
call type and call statement. We remind that references are not reassigned, so
call targets can be verified locally. The other rules are straightforward.

Contracts and Invariants. Method types generalize method contracts and ob-
ject invariants as follows. An object invariant is encoded by adding it to the
formula in the receiving and terminating actions of all method in an object –
except the constructor run, where it is only added to the terminating action.
A method contract (consisting of a precondition on the parameters and a post-
condition) is encoded analogously by adding the precondition to the receiving
and the postcondition to the terminating actions. However, one additional step
is required: Method types are generated by projection of global types [23], so to
use them for object invariants or method contracts requires to infer a method
type first. This is done by mapping every call to a call action, every branching

14 Eduard Kamburjan

1 class T(Comp S, Log L){

2 Int nr = 0;

3 Int test(Int i){

4 Fut<Int> f = S!cmp(i);

5 this.nr = this.nr + 1;

6 Int r = f.get0;
7 if(r < 0 && i > 0){

8 r = -r; f = L!log(i);

9 }

10 return r;

11 }

12 }

Precondition: i ≥ 0
Postcondition: result ≥ 0

Invariant: this.nr ≥ 0

L1 = ?T.test(i ≥ 0 ∧ this.nr ≥ 0).S!Comp.cmp(ϕcmp)

. &(M, true)

⊕
{
L!Log.log(ϕlog),

skip

}
,

skip


. ↓(result ≥ 0 ∧ this.nr ≥ 0)

L2 = ?T.test(i ≥ 0 ∧ this.nr ≥ 0).S!Comp.cmp(data
.
= i ∧ ϕcmp)

. &({Comp.cmp}, result < 0)

{
L!Log.log(data

.
= i ∧ ϕlog),

skip

}
. ↓(result ≥ 0) ∧ this.nr ≥ 0

Fig. 9. An example method and two method types for method contracts and invariants.

to an active choice, every loop to a repetition, termination to a terminating ac-
tion and using true at every position where a formula is required, before adding
precondition, postcondition or object invariant. The most complex construct is
synchronization. Each such read is mapped to a passive choice with all methods
as the method set and true as the choice condition. The following code is added
in the first branch. The second branch is skip. Invariants require fields in the
precondition and a fitting notion of consistency, which was developed in [23].

Example 7. Consider the code in Fig. 9, a variation of our running example. It
tracks the number of calls to T.test and inverts the result if the input is positive.
It adheres to the contract with precondition i ≥ 0 and postcondition result ≥ 0
and the invariant this.nr ≥ 0. The algorithm above derives the following type:

?T.test(true) . S!Comp.cmp(true) . &(M, true)

⊕
{
L!Log.log(true),
skip

}
,

skip

 . ↓(true)

Let ϕcmp and ϕlog be the preconditions of the called methods. The final spec-
ification, after adding the contract and the invariant, is shown on the right in
Fig. 9 as L1. The inferred type is not the one we gave in Ex. 6: For one, it differs
in its shape (two choice operators). For another, it neither keeps track of the
passed data, nor specifies the relation between the return value of Comp.cmp and
the taken branch. These properties are typical for protocol specifications and
require a global view, contrary to the local view of method contracts and object
invariants. However, one can add the pre- and postcondition and the object in-
variant also to the type given in Ex. 6 and combine local and global specification.
The result is shown as L2 in in Fig. 9. L2 expresses that the method follows the
protocol and adheres to contract and object invariant.

Theorem 1. Tmet is sound for every program.

The proof is standard [22]. Consistency of the obligation scheme is required
to establish that all selected traces are models for the type of their method. The
first two elements are not described by the method type and, thus, removed.

Behavioral Program Logic 15

Corollary 1. If (1) for every method m with type ?m(ϕ).Lm the formula ιmet(m)
is valid and (2) the obligation scheme is consistent, then for every selected trace
θ of any method m, the trace after the invocation reaction event follows its type:

θ[2..|θ|], I, ∅ |= αmet(Lm)

5 Conclusion and Related Work

This work presents BPL, a program logic for object-oriented distributed pro-
grams that enables deductive reasoning about the results of static analyses and
integrates concepts from behavioral types by pattern-matching statement and
specification. The method type behavioral type generalizes method contracts,
session types and object invariants. In the following, we discuss related work.

Dynamic Logics. Beckert and Bruns [3] use LTL formulas in dynamic logic
modalities in their Dynamic Trace Logic (DTL) for Java. Given an LTL formula
ϕ, the DTL-formula [s]ϕ expresses that ϕ describes all traces of s. DTL uses a
restricted form of pattern matching: its three loop invariant rules depend on the
outermost operator of ϕ and other rules may consume a “next” operator. DTL
does not use events and specifies patterns of state changes, not of interactions.

The Abstract Behavior Specification Dynamic Logic (ABSDL) of Din and
Owe [12] is for the ABS language [21]. In ABSDL, a formula [s]ϕ, where ϕ is
a first-order formula over the program state, has the standard meaning that ϕ
holds after s is executed. ABSDL uses a special program variable to keep track of
the visible events. Its rules are tightly coupled with object-invariant reasoning.
This makes it impossible to specify the state at arbitrary interactions.

Bubel et al. [7] define dynamic logic with coinductive traces (DLCT). In
DLCT, a formula [s]ϕ, where ϕ is a trace modality formula, containing symbolic
trace formulas, has the meaning that every trace of s is a model for ϕ. Contrary
to ABSDL, DLCT keeps track of the whole trace, not just the events. DLCT
is not able to specify the property that between two states, some form of event
does not occur, as symbolic trace formulas are not closed under negation.

Behavioral Types. A number of behavioral types deals with assertions [4, 5] or
Actors [16, 18, 26]. Stateful Behavioral Types for Active Objects (STAO) [23]
uses both and defines the judgment ϕ, s′ ` s : τ , that expresses that all traces of
s are models for the translation of τ . ϕ and s′ keep track of the chosen path so
far. STAO is not able to reason about multiple judgments, but relies on external
analyses for precision. Reasoning about these results happens on a meta-level.

Finally, Propositions-as-Types theorems (PaT) have been established [8, 27]
between session types for the π-calculus and intuitionistic linear logic. They are
specific to this setting and do not characterize general behavioral types. To our
best knowledge, Def. 15 is the first formal characterization of behavioral types.

Future Work. An implementation of BPL for full ABS is ongoing and as future
work, we plan to investigate further types and concurrency models, in particular
systems with shared memory and effect type systems.

16 Eduard Kamburjan

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P. H., and
Ulbrich, M., Eds. Deductive Software Verification - The KeY Book - From Theory
to Practice, vol. 10001 of Lecture Notes in Computer Science. Springer, 2016.

2. Beckert, B. A dynamic logic for the formal verification ofjava card programs.
In Java on Smart Cards:Programming and Security (Berlin, Heidelberg, 2001),
I. Attali and T. Jensen, Eds., Springer Berlin Heidelberg, pp. 6–24.

3. Beckert, B., and Bruns, D. Dynamic logic with trace semantics. In Automated
Deduction - CADE 2013. Proceedings (2013), M. P. Bonacina, Ed., vol. 7898 of
Lecture Notes in Computer Science, Springer, pp. 315–329.

4. Berger, M., Honda, K., and Yoshida, N. Completeness and logical full ab-
straction in modal logics for typed mobile processes. In Automata, Languages and
Programming, 35th International Colloquium, ICALP 2008, Proceedings, Part II
(2008), L. Aceto, I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir,
and I. Walukiewicz, Eds., vol. 5126 of Lecture Notes in Computer Science, Springer,
pp. 99–111.

5. Bocchi, L., Lange, J., and Tuosto, E. Three algorithms and a methodology
for amending contracts for choreographies. Sci. Ann. Comp. Sci. 22, 1 (2012),
61–104.

6. Bubel, R., Damiani, F., Hähnle, R., Johnsen, E. B., Owe, O., Schaefer,
I., and Yu, I. C. Proof repositories for compositional verification of evolving
software systems - managing change when proving software correct. Trans. Found.
Mastering Chang. 1 (2016), 130–156.

7. Bubel, R., Din, C. C., Hähnle, R., and Nakata, K. A dynamic logic with
traces and coinduction. In Automated Reasoning with Analytic Tableaux and Re-
lated Methods TABLEAUX 2015. Proceedings (2015), H. de Nivelle, Ed., vol. 9323
of Lecture Notes in Computer Science, Springer, pp. 307–322.

8. Caires, L., and Pfenning, F. Session types as intuitionistic linear proposi-
tions. In Concurrency Theory, CONCUR 2010. Proceedings (2010), P. Gastin and
F. Laroussinie, Eds., vol. 6269 of Lecture Notes in Computer Science, Springer,
pp. 222–236.

9. de Boer, F. S., Serbanescu, V., Hähnle, R., Henrio, L., Rochas, J., Din,
C. C., Johnsen, E. B., Sirjani, M., Khamespanah, E., Fernandez-Reyes,
K., and Yang, A. M. A survey of active object languages. ACM Comput. Surv.
50, 5 (2017), 76:1–76:39.

10. Dezani-Ciancaglini, M. personal communication, 19.10.2018.
11. Din, C. C., Hähnle, R., Johnsen, E. B., Pun, K. I., and Tapia Tarifa,

S. L. Locally abstract, globally concrete semantics of concurrent programming
languages. In Automated Reasoning with Analytic Tableaux and Related Meth-
ods - 26th International Conference, TABLEAUX 2017, Proceedings (2017), R. A.
Schmidt and C. Nalon, Eds., vol. 10501 of Lecture Notes in Computer Science,
Springer, pp. 22–43.

12. Din, C. C., and Owe, O. A sound and complete reasoning system for asyn-
chronous communication with shared futures. J. Log. Algebr. Meth. Program. 83,
5-6 (2014), 360–383.

13. Din, C. C., Tapia Tarifa, S. L., Hähnle, R., and Johnsen, E. B. History-
based specification and verification of scalable concurrent and distributed systems.
In International Conference on Formal Engineering Methods, ICFEM 2015. Pro-
ceedings (2015), M. J. Butler, S. Conchon, and F. Zäıdi, Eds., vol. 9407 of Lecture
Notes in Computer Science, Springer, pp. 217–233.

Behavioral Program Logic 17

14. Flores-Montoya, A. E., Albert, E., and Genaim, S. May-happen-in-parallel
based deadlock analysis for concurrent objects. In Formal Techniques for Dis-
tributed Systems (Berlin, Heidelberg, 2013), D. Beyer and M. Boreale, Eds.,
Springer Berlin Heidelberg, pp. 273–288.

15. Garćıa-Matos, M., and Väänänen, J. Abstract model theory as a frame-
work for universal logic. In Logica Universalis (Basel, 2005), J.-Y. Beziau, Ed.,
Birkhäuser Basel, pp. 19–33.

16. Giachino, E., Johnsen, E. B., Laneve, C., and Pun, K. I. Time complexity of
concurrent programs - - A technique based on behavioural types -. In Formal As-
pects of Component Software - 12th International Conference, FACS 2015, Revised
Selected Papers (2015), C. Braga and P. C. Ölveczky, Eds., vol. 9539 of Lecture
Notes in Computer Science, Springer, pp. 199–216.

17. Henkin, L. Relativization with respect to formulas and its use in proofs of inde-
pendence. Compositio Mathematica 20 (1968), 88–106.

18. Henrio, L., Laneve, C., and Mastandrea, V. Analysis of synchronisations in
stateful active objects. In Integrated Formal Methods - 13th International Con-
ference, iFM 2017. Proceedings (2017), N. Polikarpova and S. Schneider, Eds.,
vol. 10510 of Lecture Notes in Computer Science, Springer, pp. 195–210.

19. Honda, K., Yoshida, N., and Carbone, M. Multiparty asynchronous session
types. vol. 63, pp. 9:1–9:67.

20. Hüttel, H., Lanese, I., Vasconcelos, V. T., Caires, L., Carbone, M.,
Deniélou, P.-M., Mostrous, D., Padovani, L., Ravara, A., Tuosto, E.,
Vieira, H. T., and Zavattaro, G. Foundations of session types and behavioural
contracts. ACM Comput. Surv. 49, 1 (Apr. 2016), 3:1–3:36.

21. Johnsen, E. B., Hähnle, R., Schäfer, J., Schlatte, R., and Steffen, M.
ABS: A core language for abstract behavioral specification. In Formal Methods for
Components and Objects - 9th International Symposium, FMCO 2010. Revised Pa-
pers (2010), B. K. Aichernig, F. S. de Boer, and M. M. Bonsangue, Eds., vol. 6957
of Lecture Notes in Computer Science, Springer, pp. 142–164.

22. Kamburjan, E. Behavioral program logic and LAGC semantics without contin-
uations (technical report). CoRR abs/1904.13338 (2019).

23. Kamburjan, E., and Chen, T. Stateful behavioral types for active objects. In
Integrated Formal Methods - 14th International Conference, iFM 2018. Proceedings
(2018), C. A. Furia and K. Winter, Eds., vol. 11023 of Lecture Notes in Computer
Science, Springer, pp. 214–235.

24. Kamburjan, E., Din, C. C., and Chen, T. Session-based compositional analysis
for actor-based languages using futures. In Formal Methods and Software Engi-
neering - 18th International Conference on Formal Engineering Methods, ICFEM
2016. Proceedings (2016), K. Ogata, M. Lawford, and S. Liu, Eds., vol. 10009 of
Lecture Notes in Computer Science, pp. 296–312.

25. Kamburjan, E., and Hähnle, R. Deductive verification of railway operations.
In Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Veri-
fication, and Certification - Second International Conference, RSSRail 2017. Pro-
ceedings (2017), A. Fantechi, T. Lecomte, and A. B. Romanovsky, Eds., vol. 10598
of Lecture Notes in Computer Science, Springer, pp. 131–147.

26. Neykova, R., and Yoshida, N. Multiparty session actors. Logical Methods in
Computer Science 13, 1 (2017).

27. Wadler, P. Propositions as types. Commun. ACM 58, 12 (2015), 75–84.

