
Garment Design Workflows
for On-Demand Machine Knitting

by

Alexandre Kaspar

B.Sc., École Polytechnique Fédérale de Lausanne (2011)
M.Sc., École Polytechnique Fédérale de Lausanne (2014)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

September 30, 2021

Certified by. .
Wojciech Matusik

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Garment Design Workflows

for On-Demand Machine Knitting

by

Alexandre Kaspar

Submitted to the Department of Electrical Engineering and Computer Science
on September 30, 2021, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

Modern computerized weft knitting machines enable on-demand production of cus-
tom, whole garments at once. They reduce the need for manual post-processing and
generate minimal waste. Yet, their programming is still hardly accessible and is effec-
tively done manually by few skillful knitting technicians. The programming of knitted
garments typically involves scheduling hundreds of thousands of stitches. While every
individual stitch created on such machines can, in theory, be controlled digitally, the
ability to effectively do so depends heavily on the programming software being suf-
ficiently accessible to the user. Unfortunately, current knitting software is typically
closed and relies mostly on low-level programming. The lack of standardization and
more accessible, higher-level user design tools effectively hinder the possibility of a
digital, on-demand production of garments for all.

In this thesis, I explore the design space that flat-bed, weft knitting machines
span and propose novel design workflows to enable accessible, digital customization
of garments created on these machines. First, I introduce the inverse design problem of
automatic knitting program generation from a single image, together with a machine
learning framework that enables it. Second, I describe a parametric, primitive-based
design tool that merges inspirations from both computer-aided design and pixel-based
image editing. Finally, I propose a novel workflow to translate traditional, sketch-
based garment patterns into knitting programs. The resulting system allows anyone
to harness the plethora of existing garment designs while providing knitting-specific
customization capabilities.

Thesis Supervisor: Wojciech Matusik
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

My journey through graduate school at MIT was initially chaotic as I explored diverse

fields within computer science and digital fabrication. While this chaos may have been

painful in the earlier years, I certainly learned a lot from it and it made the later,

more focused part of my journey – on machine knitting – all the more enjoyable.

I am very thankful to my supervisor – Professor Wojciech Matusik – for the

large academic freedom and support he gave me throughout my time at MIT. I am

also thankful to my thesis committee for their complete availability as well as their

respective research groups and students. Several of the first friends I made at MIT

come from Professor Frédo Durand’s computer graphics group. This includes notably

my officemates in D410 – Lukas Murmann, Tzu-Mao Li and Zoya Bylinskii. Thank

you all for the great company, the many discussions and the fun throughout the years.

I met Professor Stefanie Mueller as she was still a PhD student and interviewing for

her future position at MIT. Her job talk at MIT was an inspiration for me to stay on

the digital fabrication side while I was slowly moving away toward crowdsourcing for

machine learning in computer graphics and vision.

I am very thankful to Professor Neil Gershenfeld from the Center of Bits and

Atoms (CBA) and all the students in his group including especially Jake Read and

Sam Calisch. As I slowly progressed toward figuring out my main focus on machine

knitting, I took two classes of his – “How to Make (almost) Anything”, and its follow-

up “How to Make Something that Makes (almost) Anything”. Both classes solidified

my interest in digital fabrication and tangible, physical artifacts. I then spent time as

a teaching assistant for the first class, which brought me to Alex Zimmer and Carmel

Snow through the textile recitation. Both have taught me a lot about textile and my

own general lack of knowledge therein. Some students of the class – notably Molly

Mason – brought key ideas that enabled the dataset acquisition for the first project

of this thesis. Thank you for the unexpectedness of this part of my journey!

Some of my key collaborators actively worked with me on software development

and taught me a lot through it: Kiril Vidimče for my initial work at MIT – the

5

Foundry project; and Tae-Hyun Oh for a large part of the first learning project of this

thesis. Especially, thank you, Tae-Hyun, for your vision, mathematical background

and help to make it happen when it was unclear whether it was even possible to start

with. Then, I want to thank the other collaborators who made the knitting projects

possible: Liane Makatura for her English prowess and her skillful figures spanning

all my knitting projects; Yiyue “Alyssa” Luo for her help with machine knitting at

critical times during a pandemic; Petr Kellnhofer for his complementary machine

learning expertise and help; and Kui Wu for his textile simulation expertise and

complementary knitting experience. Also, thank you to Mike Foshey for the general

hardware help in the lab, and all my other labmates within the Computational Design

and Fabrication Group at MIT.

I am very thankful to Jim McCann and his textiles lab at CMU. Without their

precursor work on machine knitting, it is unclear where my journey would have ended.

He and his students have all been very open to help and provided us with tools that

made my transition to knitting much simpler.

I am very thankful to the MIT administrators who helped bring some form of

order throughout the years: Bryt Bradley, Kshama Ananthapura, Mieke Moran and

Roger White.

Thank you to my longest MIT roommate, Subra Sundaram, for being there

throughout all the storms and sharing a passion about cats, especially Muschi.

Finally, I am very grateful to all the members of my family – both the Kaspar and

Prior sides – and their unconditional support throughout all these years, especially

the chaotic pandemic end. Thank you to Tom, Coleen, Jillian, Alissa, Jack and Clark.

Thank you to my dad Charles-Henri, my mom Živka and my sister Laure for always

being there, with the mountains, across the ocean, and bringing me calmness, lots of

chocolate and lots of love.

Thank you foremost to my beloved wife Devin Prior and her support, loving

presence through all the joy and storms of this long journey, and for the one that

starts beyond. I would not have enjoyed this journey nearly as much without you.

6

Contents

1 Introduction 33

1.1 Digital Garment Design . 34

1.2 Computerized Machine Knitting . 35

1.3 Thesis Overview . 36

I Background 40

2 Textiles Background 41

2.1 Context and Applications of Textiles 42

2.1.1 Textile, Fabric or Cloth . 42

2.1.2 Historical Context and Importance 42

2.1.3 Applications Areas . 42

2.2 From Fiber to Yarn . 44

2.2.1 Types of Fibers . 44

2.2.2 Fiber Processing . 45

2.3 From Fiber to Textile and Fabric . 46

2.3.1 Weaving . 47

2.3.2 Knitting . 50

2.3.3 Crochet . 55

2.3.4 Braiding . 56

2.3.5 Knotting . 57

2.3.6 Sewing . 59

7

2.3.7 Tufting . 61

2.3.8 Non-Woven . 62

2.3.9 Napped and Pile Fabric . 63

3 Computerized Machine Knitting 67

3.1 Flat Knitting Machinery . 67

3.1.1 Needles and Needle Beds . 68

3.1.2 Carriage . 71

3.1.3 Yarn Carriers . 72

3.1.4 Rollers . 74

3.1.5 Basic Operations . 75

3.1.6 Special Carrier Modes . 77

3.2 Low-Level Machine Knitting Programming 79

3.2.1 Time–Needle Images . 80

3.2.2 Instruction Sequences . 82

3.3 Stitch Representations . 87

3.3.1 Mesh-based Representations 87

3.3.2 Graph-based Representations 88

II Knitted Garment Design and Programming 91

4 Learning-Based Garment Programming 93

4.1 Introduction . 94

4.2 Machine Knitting Instructions . 95

4.2.1 A Domain-Specific Language for Patterns 96

4.2.2 From High- to Low-level Instructions 98

4.3 Dataset for Knitting Patterns . 99

4.3.1 Pattern Instructions . 99

4.3.2 Knitting Many Samples . 100

4.4 Learning Framework . 102

4.4.1 Learning from Different Domains 102

8

4.4.2 Loss Function . 105

4.5 Implementation Details . 105

4.5.1 The Refiner Network . 106

4.5.2 Loss Balancing Parameters . 107

4.5.3 Data Augmentation . 108

4.5.4 Training Procedure . 108

4.5.5 Data Post-Processing . 109

4.6 Evaluation . 109

4.6.1 Comparison to Baselines . 110

4.6.2 Impact of Loss and Data Mixing Ratio 111

4.6.3 Impact of Dataset Size . 113

4.6.4 Larger Models . 113

4.6.5 Knitting the Inferred Programs 114

4.7 Discussions and Related Work . 117

4.7.1 Pattern Scale Identification 117

4.7.2 Learning with Simulated Data 118

4.7.3 Semantic Segmentation . 119

4.7.4 Neural Program Synthesis . 120

5 Primitive-Based Garment Design 121

5.1 Knitting Templates . 121

5.1.1 Limitations of Existing Templates 122

5.1.2 Existing Primitives for Knitting 122

5.1.3 Proposed Workflow . 123

5.2 Parametric Shape Primitives . 128

5.2.1 Sheet / Tube . 128

5.2.2 Joint . 129

5.2.3 Split / Merge . 130

5.2.4 Editing Primitive Parameters 131

5.2.5 Programmatic Shaping . 132

9

5.3 Patterning . 134

5.3.1 Pattern Operations . 134

5.3.2 Patterning DSL . 135

5.3.3 Drawing Layers . 135

5.3.4 Half-Gauge Knitting . 138

5.4 Implementation Overview . 139

5.4.1 Stitch Graph Computation . 140

5.4.2 Patterning . 140

5.4.3 Layout Optimization . 141

5.4.4 Knitting Interpretation . 141

5.4.5 Knitting Simulation . 142

5.4.6 Code Generation . 142

5.5 Results and Discussions . 142

5.5.1 Scope of Shaping Primitives 142

5.5.2 Pattern Layers in Action . 146

5.5.3 Performance . 150

5.5.4 Missing yet Desirable Features 153

5.6 User Experience . 154

5.6.1 Procedure . 154

5.6.2 Feedback and Results . 155

5.6.3 Example of Issues and Iterations to Fix Them 160

6 Sketch-based Garment Workflow 163

6.1 Traditional Garment Workflow . 164

6.1.1 Digital Garment Design . 165

6.2 From Sketches to Knitting Programs 166

6.2.1 Proposed User Workflow . 167

6.3 Computing the Knitting Time Function 170

6.3.1 Discretization . 171

6.3.2 Computing Time and Direction Fields 173

10

6.3.3 Termination . 175

6.3.4 Curvature and Time . 177

6.3.5 Topological Opening . 179

6.4 Region Graph Construction . 180

6.4.1 Tracing Candidate Isolines . 182

6.4.2 Computing Regions from Dependency Paths 183

6.4.3 Building the Bipartite Region Graph 187

6.5 Hierarchical Stitch Sampling . 189

6.5.1 Interface Sampling . 190

6.5.2 Region Sampling . 191

6.5.3 Stitch Connectivity . 193

6.5.4 Short-row Insertion . 195

6.6 Yarn Tracing . 197

6.7 Scheduling Stitches onto Needles . 200

6.7.1 Slicing . 200

6.7.2 Layout Representations . 204

6.7.3 Schedule Optimization . 207

6.8 Code Generation . 213

6.8.1 Code Passes . 213

6.8.2 Half-Gauge vs Full-Gauge . 220

6.8.3 Shaping with Collapse-Shift-Expand 222

6.8.4 Shaping with Rotate-Shift . 223

6.9 Layer-based Customization . 227

6.9.1 User Stitch Programs . 227

6.9.2 Screen-space vs. Stitch-space Layers 231

6.9.3 Layer Interactions . 233

6.9.4 Stitch Pattern Layers . 234

6.9.5 Multi-Yarn Pattern Layers . 235

6.9.6 Intarsia Layers . 242

6.10 Results and Discussions . 247

11

6.10.1 Knitted Garment Samples . 247

6.10.2 Scheduling Algorithms . 252

6.10.3 The Importance of Details . 254

6.10.4 Binding Fabric . 258

6.11 Scalability and Performance . 260

6.11.1 Complexity . 260

6.11.2 Parameters . 260

6.11.3 Interactivity . 262

6.11.4 Convergence of the Optimizations 264

6.11.5 Subdivision Strategies . 265

7 Conclusion 271

7.1 Impact Summary . 272

7.2 Future Work . 272

7.2.1 Learning-based Workflow . 275

7.2.2 Primitives-based Workflow . 276

7.2.3 Sketch-based Workflow . 277

A Proofs and Definitions 279

B Implementation Details 283

B.1 Solving the IQP Problems . 283

B.2 Affordable Geodesic Computations 286

B.3 Stitch Sampling and Alignment . 287

B.3.1 Short-row Density Alignment 287

B.3.2 Stitch Course Alignment . 288

12

List of Figures

1-1 Left : a garment pattern from “The Cutter’s Practical Guide” [175].

Right : illustration of two garments being draped with muslin fabric –

originally figures 94 and 104 from the work of Conover [40]. 34

1-2 The “whole-garment” knitting machine used for the physical fabrica-

tion within this thesis – a 15-gauge model SWG091N02 from Shima

Seiki [150]. 36

1-3 Overview of the space covered by this thesis: we propose three high-

level CAD systems (left) that translate high-level designs into interme-

diate representations for knitting (center) and then generate low-level

assembly code for knitting (right). That code is eventually loaded on

the knitting machine to produce the corresponding physical artifact. . 37

2-1 Example of home interior from Bell et al. [18] including various forms

of textiles: carpet, rug, cloth on sofa and pillows, table cloth, tissue,

window curtains, teddy bear and elephant plush toy. Credits: Dana

Moos, CC-BY-NC 2.0. 43

2-2 Examples of natural fibers, from left to right: sheep wool (animal),

cotton (plant) and absestos with muscovite (mineral). In the public

domain, respectively from: Bernard Spragg, the US Department of

Agriculture, and Aram Dulyan. 44

2-3 Examples of synthetic fibers: nylon (left) and carbon fiber (right).

Credits: Vigorini, CC-BY 4.0 (left); and in the public domain via

cjp24 (right). 45

13

https://www.flickr.com/photos/dana_moos/3684553349/
https://www.flickr.com/photos/dana_moos/3684553349/
https://creativecommons.org/licenses/by-nc/2.0/
https://flickr.com/photos/volvob12b/15338972885/
https://commons.wikimedia.org/wiki/File:Asbestos_with_muscovite.jpg
https://commons.wikimedia.org/wiki/File:Particolare_di_calza_di_nylon.jpg
https://creativecommons.org/licenses/by/4.0/
https://commons.wikimedia.org/wiki/File:Carbon_fiber.jpg

2-4 Left : the two different twisting directions, often called S and Z twists

for the patterns they produces. Right : skeins of yarn and a close-up of

their plies. 45

2-5 Three of the most common textile topologies: woven (left), weft knitted

(center) and warp knitted (right). 46

2-6 Examples of common woven patterns. 47

2-7 Illustration of common loom mechanisms. Originally figure 21, page

78 of the work of Barlow [15]. 48

2-8 Creation of a knit stitch with two knitting needles. When the active

needle retracts – from (d) to (e) –, its endpoint slides closely around

the other needle to pull the new loop through the old one. 50

2-9 Beard needles and their actuation to form new knit stitches 51

2-10 Schematics of the actuation of a flat bed machine with a mechanical

cam. Originally figure 16 from the work of Buck [26]. 52

2-11 The front (left) and back (right) of a basic jersey fabric highlighting the

distinct appearance of both knit stitches and purl stitches respectively. 53

2-12 Example of hobbyist circular knitting machine that is manually actu-

ated by rotating a shaft (left), and a large industrial circular knitting

machine (right). In the public domain thanks to Elkagye. 53

2-13 An example of swaying illustrating the movement of the yarn guides

in a Raschel warp knitting machine: the general movement from the

front of the needles (left), and the movement decomposition from the

side, behind the needles (right). The general lapping movement is

decomposed into swing and shog axes, and its front and back passes

relative to the needles are called overlap and underlap. 54

2-14 The formation of a stitch in crochet: the hook needle is inserted

through a loop to catch the yarn and then pulled back through the

loop to form a new loop. 55

2-15 Illustrations of braids: braided Swiss bread (left) and USB cable (right).

. 56

14

https://commons.wikimedia.org/wiki/File:Circular_knitting_machine.jpg

2-16 Illustration of geometric braids: the two on the left are topologically

equivalent, whereas the third from the left is distinct due to its different

ordering from the leftmost one. The rightmost example showcases a

plain weave as a braid. 57

2-17 Macrame examples: as a flat sheet (left) and a net wrapping around a

plant pot (right). 58

2-18 Mathematical prime knots up to 7 crossings with their Alexander–Briggs

notation, excluding mirrored versions. In the public domain, created

by Jkasd. 58

2-19 A Brother machine for both sewing and embroidery – note the linear

gantry (left) – and a close-up looking at the second bobbin that pro-

vides the thread below the fabric (right). The main thread comes from

above, through the needle. 59

2-20 Different types of seams in the inside of a night robe (left), and border

seams binding two flat pieces of fabric as a table mat (right). 60

2-21 Fine embroidery on a shirt (left and top), and coarse yarn embroidery

on a drawing (right and bottom) with its mirrored back (right inset). 61

2-22 Two different tools for tufting: a hook needle pulls the yarn back

through the material to form a loop (left), whereas a punch needle

pushes the yarn through and retracts while letting the yarn slide and

stay as a loop (right). 62

2-23 Felt examples: raw sheets of felt (top-left), a fox created by needle

felting (bottom-left), and rugs (right). Credits to Sarah Stierch for the

Kyrgyz felt rugs – CC-BY 4.0 – and to Amanda Adebisi for the fox –

CC-BY-ND 2.0. 63

2-24 Different mechanisms to introduce pile in woven fabric. 64

2-25 Towels, blankets and rugs are common examples of pile fabric. The

loops can be kept as-is (top-left) or cut and processed for a softer

finish (right). Furniture also commonly uses napped fabric such as on

this velvety box chest (bottom-left). 65

15

https://commons.wikimedia.org/wiki/User:Jkasd
https://commons.wikimedia.org/wiki/File:Kyrgyz_Republic_Felt_Rugs_-_Stierch.jpg
https://creativecommons.org/licenses/by/4.0/
https://flickr.com/photos/coatiprints/9639251356
https://creativecommons.org/licenses/by-nd/2.0/

2-26 Examples of napped fabric used in garments: as an inner layer of a

knitted sweatshirt (top) and as an outer layer fleece (bottom). 66

3-1 The machine used within this thesis (left) and a close-up from above,

highlighting the yarn setup, with the protective cover opened. 68

3-2 Inside view of the machine with component overlays: (a) needle bed,

(b) carriage, (c) presser plate, (d) vacuum vent, (e) yarn holding hooks,

(f) yarn insertion unit, (g) multiple yarn carriers. 68

3-3 The three most common types of machine knitting needles. 69

3-4 Views of the needle beds: from the left side (left), from above (center)

and from the right side behind the yarn carriers (right). 69

3-5 Schematics from Shima’s manual [150] illustrating the replaceable com-

ponents on the needle bed. 70

3-6 The typical group (top) of components that get replaced, separated

from bottom to top: the slide needle, the needle jack and the slider. 71

3-7 Internal views of the carriage: its front (left) and back (right). 72

3-8 Path of the red yarn from its cone to the yarn carrier and kept locked

in the yarn holding hook. 73

3-9 Common addon devices: digital stitch control system (left) and elastic

system (right). 74

3-10 View of the rollers from below the needle beds. The horizontal slit

at the center is the space between the needle beds. The rollers are

currently open. 74

3-11 The tuck operation that adds a loop to the needle hook. 75

3-12 The knit operation as generated with a slide needle. 75

3-13 The transfer operation from one bed to the other. 76

3-14 Racking example: zero offset and -4 offset of the back bed (in needles). 77

3-15 Examples using special carrier modes: white inlay yarn (left), gray-blue

plated yarn that controls the color side using purls and ribs (right). . 78

16

3-16 Examples of time–needle programs in KnitPaint [150]: the overview of

a glove (left) and a close-up near the merging of the thumb with the

palm (right). Vertical bars on the sides specify machine states for the

corresponding lines. 80

3-17 Example of high-level stitch code program for a raglan shirt from Shima

Seiki (left), and 4 of its 57 accompanying packages (right). 81

3-18 Examples of knitting programs in Knitspeak (top) and Knitout (bottom). 83

3-19 Examples of free packages used for jacquard knitting, with 𝑁 colors

and a specific backing strategy, from top to bottom: 𝑁 = 2 floating,

𝑁 = 2 tubular, 𝑁 = 2 “pique” and 𝑁 = 3 alternating. 84

3-20 Example of jacquard-knit program using free packages: the user input

(top-left), its developed result (top-right) and a close-up highlighting

the local patterns (bottom). 85

3-21 Knitted 3-colors jacquard of cat pattern: its front (top) and its back

(bottom). The smaller slices are close-ups around the eyes of the cat

for both sides. 86

3-22 Illustration of important stitch topologies for machine knitting (left)

and their corresponding stitch graph (right). 89

3-23 Highlight of different parts of the stitch graph 90

4-1 Illustration of our inverse problem and solution. An instruction map

(top-left) is knitted into a physical artifact (top-right). We propose a

machine learning pipeline to solve the inverse problem by leveraging

synthetic renderings of the instruction maps. 94

4-2 Illustration and color coding of our 17 instructions. 96

4-3 The main stitch operations with 8× 8 pattern illustrations, both as a

knitted artifact (top) and a colorless diagram (bottom). 97

4-4 Different parts of our dataset (from left to right): real data images,

machine instructions, and black-box rendering. 100

17

4-5 Our initial capture setup and a sample pattern illustrating the frame

made of intarsia. The pattern tension was controlled with bowel pins

inserted at specific holes that were programmed in the fabric. 101

4-6 Our updated capture setup and a sample of 5×5 knitted patterns with

tension controlled by steel rods. In many cases, corner rods were suffi-

cient, whereas more complicated patterns required additional internal

rods to reduce the local deformations. 101

4-7 Instruction counts in decreasing order, for synthetic and real images.

Note the logarithmic scale of the Y axis. 102

4-8 The illustration of the Refiner network architecture. 106

4-9 The impact of the amount of real training data (from 12.5% to 100%

of the real dataset) over the accuracy. 113

4-10 Comparisons of instructions predicted by different versions of our method.

We present the predicted instructions as well as a corresponding image

from our renderer. 114

4-11 Additional qualitative comparisons of instructions predicted by differ-

ent versions of our method, with their renderings. 115

4-12 Examples of erroneously inferred programs that are still knittable. . 116

4-13 The two main test samples that are definitely not knittable as-is. . . 117

4-14 Scale identification experiment. Top row : cropped input image at

corresponding scales with the correct pixel scale in bold with a light-

gray background. Plot : pseudo-confidence curve showing a peak at the

correct pixel scale (600). 118

5-1 Examples of knitting template dialogs for a sweater in KnitPaint [150]:

the categories of sweaters (left), the sizing information (right). . . . 122

5-2 The time–needle bed depicts the knitting process over time. We provide

a compact version that collapses suspended stitches to allow a local

composition of primitives instead of the traditional composition over

time. Both sides can be inspected separately or together. 123

18

5-3 By zooming on the layout, we can inspect the local patterning opera-

tions and the simulated pattern flow. 124

5-4 Sideways view of a compact glove in our system. 125

5-5 Warnings regarding a long-term dependency that would collapse the

yarn (left). By highlighting the conflict dependencies, the user can

more easily fix the pattern (right). 126

5-6 Force-layout simulation to preview the impact of the yarn stress forces

on the final shape. 127

5-7 Part of the low-level instructions for a simplified version of the glove,

to be processed with KnitPaint [150]. 128

5-8 A tubular sheet, and the table of its properties 129

5-9 Different variations of a tubular sheet’s width function. The yellow

stitch nodes highlight the boundaries between front and back on the

time–needle bed layout. 130

5-10 Joint primitive as the heel of a sock, and the table of its properties . 130

5-11 Split primitive between one sheet branching into two, and the table of

its properties . 131

5-12 Diagram illustrating the difference between folded and non-folded splits

for a tubular base across the two needle beds. The two branches are

highlighted with different colors. 131

5-13 Standard shaper programs: (left) uniform distributes the increases and

decreases uniformly, (right) center accumulates them in the center of

the course. Notice the visible seam in the center. 133

5-14 Illustrations of some of the main pattern queries, each highlighted on

a 30× 30 flat sheet. 136

5-15 A base 3 × 3 pattern and illustrations of the different resampling be-

haviors for each of our layer types. 137

5-16 Illustration of the gauge parameter. The width is modified to keep

the same bed support. The half-gauge variant uses different offsets

between beds to allow reverse stitches. 138

19

5-17 Various garment prototypes on a 12 inch mannequin (left) and a glove

with lace patterns (right). 143

5-18 An infinity scarf with lace patterns (left) and a sock with ribs (right). 144

5-19 The individual garment pieces from the left of Figure 5-17. The scarf

uses a single-sided part that would curl on itself by default. Thus we

used simple 2 by 2 ribs to keep it flat. 145

5-20 Illustration of one strategy to glue sleeves to the main body – here, a

Raglan sleeve. The body and sleeves would both be knitted separately

(i.e., next to each other, one at a time), and then they would be joined

with a sequence of glueing operations joining both sides up to the neck

section. 146

5-21 Visualization of the pattern of our infinity scarf (left) with our mesh

visualization (right) and a close-up (center). 147

5-22 Impact of shape size on a two-layer pattern. The holes are tileable

moves from Figure 4-3. The foreground cat is scalable and stretches

with the shape. 148

5-23 A four-layer pattern combining a tileable lace, a programmatic margin,

and two scalable foregrounds for different shades of a Corgi. 149

5-24 Patterning the glove of Figure 5-17 from left to right: base shape, cuff

in half gauge, half-gauge cuff with a rib pattern, and final glove with

transferred hole pattern on main palm, as well as an additional pattern

for the 4-fingers palm. 149

5-25 Plot of the update times for the models in this chapter, as given in the

summary of Table 5.3. Shape update includes the time to rendering,

minus the pattern development. Pattern update includes the time

from pattern development to rendering. Both stitch and time axes

have logarithmic scales. 152

5-26 Lace patterns generated during our non-expert user sessions. The left-

most pattern was an expert reference that we provided for inspiration;

the center and rightmost designs were novice user results. 155

20

5-27 The third patterning task required users to transfer an existing pattern

onto a provided wristband template. The patterns were either designed

by users in a previous step, or selected from our repository of pre-tested

designs. The top row shows an expert reference; the middle and bottom

rows are from our users. 156

5-28 A reference beanie on the left and two customized beanies on its right.

The rightmost one required a few passes to adjust the lace pattern and

its tension. 157

5-29 Beanie closeup showing the main section’s lace and the curled brim

with a knit/purl zigzag. 158

5-30 Three glove variants. The green one took multiple attempts because of

the complicated tension requirements associated with continuous cross

patterns. 159

5-31 The evolution of the green glove from right to left. 161

6-1 The segmentation of a sewing pattern for a pair of trousers with inseam

pockets. Solid lines are linked by numbers, whereas dashed lines are

not linked (i.e., they form open boundaries of the garment). 164

6-2 Illustration of the domains tackled by current workflows: from sketches

to 3D meshes and back (digital garments), and from 3D meshes to

machine knitting (concurrent workflows). Our workflow bypasses the

3D representation completely. 167

6-3 Summary of our workflow: (a) the user sketches a garment, links its

boundaries and specifies time constraints; (b) the corresponding time

function is computed, and its regions segmented; (c) given user sam-

pling preferences (size and course/wale ratios), a stitch graph is sam-

pled; (d) the user can provide additional seam annotations to influence

the wale distribution until satisfied; (e) given knitting preferences, a

schedule is generated and the physical artifact can then be knitted. . 168

21

6-4 Color visualization of the time function over the back of a sweater,

together with the underlying mesh illustrating the mixed quad-triangle

neighborhoods. 171

6-5 Illustration of the alternating iterations between solving for the direc-

tion field and the time field in a coarse-to-fine manner. Each mesh

level and field (𝜑 then 𝑡) is solved until convergence before moving to

the next field and mesh level. 173

6-6 Notion of time stretch and its correspondence with the local curvature

in a case where it is needed for proper time convergence. 178

6-7 Illustration of the topological opening at the closed top of the beanie

for two different time extrema: edgewise and pointwise. 180

6-8 Illustration of the steps of our region computation: (a) we start from

the time function defined on the garment atlas, (b) we trace a set

of isolines that is sufficient to segment the sketch domain into simple

regions to knit, each isoline being further decomposed into different

oriented segments, (c) we create regions on each side of the isoline

segments and merge them by following dependency paths along the

sketch manifold, and (d) we create the corresponding bipartite graph

with 2-coloring separating nodes into regions and isoline interfaces. . 181

6-9 Illustration of isoline tracing: starting from a location (here a vertex),

we alternate between the adjacent edges that contain the given isoline

time, and their adjacent faces, until we’ve traced the whole isoline

domain. 183

6-10 Examples of separating vertices (�) at the boundaries of the garment

manifold. The central isoline is split into two segments separated by

vertices that form transitions between being inside the shape (above

each ear flap), and at its boundary (between both ear flaps). The

top isoline surrounds a pointwise sink of the time function, which was

topologically opened. 184

22

6-11 When a dependency path (blue line) reaches a candidate isoline at a

separating vertex (�), we must take extra steps to determine which

of the incident isoline segments (𝜎up
1 , 𝜎up

2 , or 𝜎up
3) bound the region

in question (blue). We decide this by traversing the triangle fan that

surrounds the vertex, until reaching (or crossing) the nearest candidate

isoline segment in each direction (𝜎up
1 and 𝜎up

2). 185

6-12 Illustration of the adjacent region merging at a separating vertex. . . 186

6-13 (Left) the original graph of the sweater example when the sources and

sinks are not sufficiently constrained – e.g., no hard time isoline con-

straints are set on the sketch boundaries –, (right) its reduced graph

that looks identical to the ideal one. 188

6-14 Illustration of the steps of our sampling algorithm: (a) optimizing

stitch numbers at region interfaces, (b) optimizing course number,

short-row densities and stitch numbers in each region, (c) creating

stitch courses, (d) pairing stitches between adjacent courses across in-

terfaces and within regions, and (e) generating short-rows. 189

6-15 Short-row formation by splitting wales: (a) setup with initial wales and

short-row densities, (b) uniform distribution of stitches over wales, (c)

short-row stitch grid given user alignment (bottom), and (d) the final

short-row connectivity. 196

6-16 Different vertical alignments: from left to right, bottom, middle (biased

towards bottom) and top. 197

6-17 Tracing example of a tubular structure: three full courses and two

short-row stitches between the last two courses. 199

6-18 Slicing steps for the example traced in Figure 6-17. 202

6-19 Slicing steps for the an example variation that includes shaping (in-

crease at bottom and decrease between the two last full courses). . . 203

6-20 All possible circular layouts shapes for 𝑁 = 5 and 𝑁 = 6 without

considering the roll parameter (kept constant as roll = 0). 205

23

6-21 The regular (no-nibble) layout for 𝑁 = 6 and all its roll variants.

Starting at the bottom-left, going counter-clockwise, the roll goes

from 0 to 𝑁 − 1 = 5. 205

6-22 Examples of flat layouts for 𝑁 = 8 stitches: single-fold with 𝑟 = 2

(left), and c-shaped with 𝑠 = 𝐹 , 𝑙 = 1, 𝑟 = 2 and 𝑚 = 5 (right). . . . 206

6-23 Example of bridges at a 3-1 interface. The merged cycle has 4 bridges:

two for each tubular adjacency of the branches (left). The B branch

has 2 bridges so that it must end up between both A and C. This

results in only the A-B-C and C-B-A layouts being possible (right). . 209

6-24 Illustration of the directionality of the greedy algorithm for each region

node given the central interface having been fixed. The region nodes

are only constrained from that interface and thus start their greedy

layout propagation from it. 210

6-25 Example of simplified schedule for a yoked sweater: the full schedule

(left), and closeups of each node (right). Node 0 generates a sequence

of suspended block to the left of node 1. Node 1 generates yet another

sequence of suspended blocks. Nodes 0, 1 and 2 merge into node 3

which takes over all suspended stitches and finishes the knitting pro-

gram. 212

6-26 Time–needle bed layout at the introduction of a node (top), including

a yarn insertion pass, a cast-on and then multiple action sequences

(without visible shaping or alignments because those are empty here). 214

6-27 Sections of knitting code corresponding to the introductory passes. . 215

6-28 Time–needle bed layout for two consecutive purl courses. Note that

the layout is slightly rotated so each slice gets split into three: one for

the small back bed on the right (two stitches), one for the full front

bed, and one for the remaining back bed. The post-transfer and pre-

transfer steps across beds automatically get consolidated into a single

pass. 217

6-29 Time–needle bed layout for one 1× 1 rib course. 217

24

6-30 Sections of knitting code corresponding to the purl and rib sections. 218

6-31 The layout decrease with implicit shaping (top), the corresponding

transfer passes with the Collapse-Shift-Expand algorithm (middle) and

with the Rotate-Shift algorithm (bottom). 218

6-32 An alignment pass shifting a suspended block by two needles to its left

so as to make space for future actions of the active block on the right. 219

6-33 Sections of knitting code corresponding to the default castoff pass (left)

and with pick-up stitch (right). 220

6-34 Two yarn ending procedures including the castoff pass and the yarn

removal with added tail for easy manual closing. The left variant is

the simplest bind-off procedure whereas the right one adds additional

pick-up stitches to loosen the ending edge of yarn. 221

6-35 Example of cycle transformation with the Collapse-Shift-Expand proce-

dure. B / BS / FS / F refer to the needle bed types: back, back-sliders,

front-sliders, front. 223

6-36 Example of cycle transformation with the Rotate-Shift procedure. The

Rotate step uses Shift to prepare the bed, before apply a Collapse

operation. The last Shift step deals with increase/decrease shaping. In

this example, the cycle rotates once and then applies a stitch decrease.

Both shifts are shown as group moves (top section) and as developed

two-step transfers (bottom section). 224

6-37 Example of simple lateral shift similar to the first one in Figure 6-36

where the four front stitches are moved the right by one needle. The

difference is that the main stitch to which the yarn is attached is inside

the cycle. 225

6-38 Example color-coding of programs including those from Listings 6.1 to

6.3 as applied on the front of a sweater sketch. The left highlight shows

the radial ribs from the neck. The right highlight shows the fair-isle

colorwork. 231

25

6-39 The stitch covering of a 20 × 20 anchored grid in stitch space (left)

and a rectangular sketch grid (right). The upper section shows a high-

curvature region and its impact in terms of stitch coverage and regu-

larity. The lower section shows a low-curvature region in which both

options are quite similar, notwithstanding some recurring alignment

issues with the boundaries of the sketch-space rectangle. 232

6-40 Example of lace pattern in the editor (left), its corresponding color-

coded program visualization as the hem of a tubular sketch (top-right),

and the corresponding knitted artifact (bottom-right). 234

6-41 Example of simple float pattern that does not require any tuck pattern

because the tiled checkerboard pattern ensures that floats are tightly

connected to the main fabric. The close-ups from top to bottom: pro-

gram, knitted sample, and inside-out version. The anchored grid is

aligned to the bottom center and its primary axis is a wale, with 100%

course width. The primary wale does not cross any short-row so that

these end up excluded from the pattern. 237

6-42 Local float patterns typically need accompanying tuck patterns to en-

sure floats are properly connected to the fabric at regular intervals.

. 238

6-43 A failure example whose main float pattern ends up with too wide

floats that lead to failure at their boundaries. 239

6-44 Jacquard patterns with 2 colors: their fronts and their backs. In clock-

wise order, from the top-right: floating, horizontal, tubular, pique,

vertical. Note that the sample with horizontal backing (bottom-right)

looks taller. There are as many front stitch as for the other, but the

backing generates twice the density, which stretches the fabric verti-

cally and introduces some bending. 240

6-45 The front of the CSAIL logo with a tubular backing (top) and the front

and back of a 3-colors cat with an alternate backing (bottom). . . . 241

26

6-46 Tracing example of a tubular structure with a block of intarsia (square

nodes with distinct yarn mask). The step (d) happens because the first

yarn does not match the mask of the intarsia block. Step (l) is the last

within the intarsia block. Step (m) switches to the pending first yarn. 243

6-47 Slices of the trace shown in Figure 6-46. The active yarn is indicated

with (Y𝑖) in the caption of each sub-figure. 245

6-48 A small intarsia sample illustrating a single intarsia layer that carves

a section with a distinct yarn. 246

6-49 An intarsia sample that uses an additional float pattern over the intar-

sia layer. The pattern consists in a sample ring. The remaining yarn

is chosen so that its color is the same as the main sweater yarn. The

inside-out picture (right) shows that, as a result, the float is only local. 247

6-50 Our larger examples on a 4-foot boy mannequin, together with top-

down views of the individual garment pieces and a zoom on one of

the inseam pockets of the trousers which are knit as inside-out tubular

structures merging with the body. 248

6-51 Examples of dresses on 16-inch mannequins 250

6-52 Top-down views of upper garments (left) and their corresponding sketch

atlas (right): the cardigan (top), the hoodie (middle) and the jacket

(bottom). 251

6-53 Continuation of Figure 6-52: the princess dress (middle) and the turtle-

neck dress (bottom). 252

6-54 Two-parts version of the princess dress, with manual binding done with

box pleats. 253

6-55 Example of knitting failures due to failing needle transfers: the left

example failed at large decreases above the crotch due to non-ideal

schedule alignments; the right example had catastrophic failures due

to overlapping loop transfers during shaping transfers. 254

6-56 Illustration of the impact of seam annotations with the corresponding

irregular stitch placement. 255

27

6-57 The addition of color work and stitch patterns can highly improve the

final appearance, which calls for dedicated means to specify those. . 256

6-58 Two slight scale variations of a same shirt input showing the importance

of proper sizing. 257

6-59 Local appearance of different stitch increase procedures: kickback,

split, reverse-split inward, reverse-split outward. 258

6-60 Pleat binding: blue regions are links between the two panels (in gray),

red regions are the intermediate regions to fold / bind off. 259

6-61 Example of graph subdivision: coarse graph (left), division by 2 (cen-

ter) and division by 4 (right). 266

6-62 Subdivision of an intrinsic quad. 267

6-63 Subdivision of an intrinsic triangle. 267

6-64 Example of subdivision on a sweater. For all subdivision examples, the

short-rows are diffused. The cases with 𝐾subdiv = 4 show artifacts in

regions of large curvature where the irregular structure (i.e., intrinsic

triangles). The seam version showcases our ability to control seam

placement within the subdivided irregular structures. 270

7-1 Important domains and concepts related to this thesis. 273

28

List of Tables

4.1 Performance comparison to baseline methods on our real image test

dataset. 111

4.2 Performance of Refined+Img2prog++ measured per instruction over

the test set. 112

4.3 Performance comparison with the larger scene parsing network from Zhou

et al. [193]. 114

5.1 Our categories of pattern queries with their main methods and usage

explanation . 134

5.2 Runtime performances of our system for the shapes within this chapter.

All times are in milliseconds. The shape creation contains a schedule

step but we ignore it as its runtime is negligible (i.e., ≤ 1). For the

same reason, we ignore the optimize step of the layout computations. 150

5.3 Summary of runtime performances of our system for the shapes within

this chapter. All times are in milliseconds. Code is the additional step

that happens when the user request the knitting program. 151

6.1 The potential states for each yarn and the corresponding interpretation 235

6.2 Statistics about the result samples shown in this chapter. The number

of stitches corresponds to the number of traced stitches which are used

to generate the schedule. Given that the yarn is traced twice over, this

is twice the amount of stitches in the stitch graph. 260

6.3 The list of parameters used for the result samples shown in this chapter. 261

29

6.4 Runtimes using a single computation thread. Sections that are not in-

cluded (e.g., global sampling, short-row insertion, offset optimization)

are too fast to be relevant (typically less than 100 milliseconds is spent). 262

6.5 Evolution of the computation timings with the sketch complexity and

subdivision levels. The number of stitches and instructions are pro-

vided to highlight that the subdivision does not change the final topol-

ogy much for a given scale. All time measurements are in seconds.

. 268

30

Listings

5.1 Uniform shaper program . 133

5.2 Center shaper program . 133

6.1 Section of user program defining user actions 228

6.2 Section of user program that associates pattern actions to stitches. . . 229

6.3 Section of user program that associates colorwork actions to stitches. 230

31

32

Chapter 1

Introduction

Garments are so present in our daily lives that we often do not realize their underlying

complexity and the labor necessary for their production. Garment manufacturing has

gone through tremendous changes during the industrial revolution, and it has entered

a new stage started with the digital revolution. The digitalization of manufacturing

is leading a general shift from mass production models to on-demand production

ones, with both aims of supporting personal customization and reducing waste. A

notable example is the manufacturing revolution from 3D printing [134]. On-demand

production of parts is now as easy as pressing on a button from our computer, and

having them delivered to one’s home within a few days [160].

Interestingly, industrial machines for additive manufacturing of whole garments

already exist [150, 159], but they have yet to become more accessible for any similar

revolution to happen (e.g., for local, customizable, on-demand garment production).

While existing hardware [150, 159] theoretically enables such revolution already, cur-

rent Computer-Aided Design (CAD) software and its corresponding Computer-Aided

Manufacturing (CAM) counterparts are still underdeveloped and rely on primitive

low-level representations that prevent fast iteration cycles between design, prototype

and final product.

33

Figure 1-1: Left : a garment pattern from “The Cutter’s Practical Guide” [175]. Right :
illustration of two garments being draped with muslin fabric – originally figures 94
and 104 from the work of Conover [40].

1.1 Digital Garment Design

How we design something is essentially bound to how we make it. In the case of

garment making, the traditional design workflow has long been tuned for woven gar-

ment production with the two major techniques being pattern drafting [67] and drap-

ing [99]. Pattern drafting refers to the art and technique that composes garment

building blocks on paper to then transfer them to fabric panels that are cut and

bound together (e.g., with sewing) to create the garment. Draping consists in the

manipulation and adjustment of fabric pieces onto a 3D body shape such as a man-

nequin, folding and connecting pieces together with pins or other temporary binding

tools. Both strategies – illustrated in Figure 1-1 – complement each other as mod-

ifications in one can be transferred to the other and vice versa. In practice, both

manual and large-scale garment production similarly use garment blueprints to cut

fabric panels and then bind them with sewing machines – the so-called cut & sew

process. In terms of garment customization, while garment tailoring is still primarily

relying on custom-made manual production, pattern grading [119, 148] is typically

used to produce different sizes and fit variations to mass-manufactured garments.

34

The digital revolution has brought the advents of digital draping [147, 169, 176].

Digital garment authoring tools are now common to simplify garment design [25, 39,

113] and allow for a seamless transition between the digital space (digital customiza-

tion, virtual showrooms and try-ons) and a standardized production.

Unfortunately, cut & sew production is hard to fully automate, because of the

sewing component. Sewing machines already provide a layer of automation over man-

ual sewing, but they still involve skilled workers. As a consequence, the production

of garment has stayed geared towards mass-production to achieve lower production

cost. This results in large waste and has led the textile industry to become the sec-

ond largest polluting industry [9, 21, 145]. While the manufacturing of garments has

become more eco-aware and large improvements have already happened over the past

decades, the mass-production model is at the root of the problem and it is still the

main active business model for garment production [125].

1.2 Computerized Machine Knitting

The focus of this thesis on machine knitting is motivated by the digital manufacturing

capabilities of computerized weft knitting machines. In contrast to cut & sew that

relies on human sewing panels of textiles together to produce garments, weft knitting

machines (see Figure 1-2) can produce whole garments mostly automatically [150,

159]. Business opportunities have started to show up and companies [117] are trying to

leverage computerized knitting for customization given new production models [129].

In parallel, lower-cost machines have been developed [142] and commercialized [146],

opening the path to more accessibility.

Yet, while the hardware potential is there, knitted garment production is still es-

sentially done through mass production. CAD and CAM for weft knitting has stayed

focused on low-level, primitive design that results in slow iteration cycles between

design and production, and proper digital customization is not quite possible yet. We

argue that one of the missing pieces to harness weft knitting machines as tools for

on-demand, additive manufacturing of textile is the existence of higher-level repre-

35

Figure 1-2: The “whole-garment” knitting machine used for the physical fabrication
within this thesis – a 15-gauge model SWG091N02 from Shima Seiki [150].

sentations that enable faster design cycles and fully digital, accessible customization.

The two main challenges that lay ahead are about finding the proper design rep-

resentation (CAD) and its corresponding translation mechanism to low-level ma-

chine code (CAM). Thus, this thesis attempts to answer the two following ques-

tions:

1. What should the high-level design representation for weft knitting be?

2. How do we translate the designs into knitting machine instructions?

1.3 Thesis Overview

This thesis tries to answer both questions by considering different design directions

that encapsulate important, desirable capabilities of digital CAD software, while

demonstrating each within a system that implements the translation from high-level

design to low-level machine code (CAM), as summarized in Figure 1-3.

The first part of this thesis provides an overview of general textiles (Chapter 2),

and then focuses on weft knitting machines (Chapter 3), their low-level programming

and the common computer representations of knitted topology.

36

K-Code

Vector Sketches

Primitive Graph

Raster Image

Stitch
Graph

DSL

Stitch
Graph

Garment

High-Level
Design

Intermediate
Representation

Low-Level
Programming

Physical
Fabrication

Load code into machine

Figure 1-3: Overview of the space covered by this thesis: we propose three high-level
CAD systems (left) that translate high-level designs into intermediate representations
for knitting (center) and then generate low-level assembly code for knitting (right).
That code is eventually loaded on the knitting machine to produce the corresponding
physical artifact. The solid, black arrows are parts of the CAM components. The
solid, blue arrows denote that a representation can be used by other intermediate
representations. The dotted line is the transfer of low-level code to the machine.

The second part proceeds with the description of three complementary systems

and their corresponding design spaces, illustrated in Figure 1-3. Chapter 4 start by

introducing the inverse design problem with the intent of uncovering regularities in

the knitting program space. Since the general inverse problem is beyond the scope

of this work, we instead focus on the sub-problem of stitch pattern recovery given a

single image as input. A novel learning framework to harness mixed-data is mathe-

matically formulated together with the necessary data to instantiate it successfully.

Chapter 5 considers the forward design problem in a bottom-up approach. We de-

scribe a set of simple parametric shaping primitives and the space of garments that

they span through composition. We further introduce a layer mechanism to use the

knitting patterns generated from the previous chapter and evaluate the customization

capabilities with non-expert users. In Chapter 6, we propose a means to translate

37

the traditional cut & sew workflow for weft knitting machine programming. We in-

troduce new knitting-specific annotations and optimize for the stitch topology while

considering the inherent tradeoff between accuracy and simplicity. We conclude in

Chapter 7 by summarizing the main insights from the development and usage of each

of those systems, and highlight the remaining areas where user customization is still

critically needed for accessible, on-demand production to flourish.

Thesis Contributions

The general contributions of this thesis are:

• High-level design concepts that enable simpler and faster design,

• Customization through parametric design,

• A simplified, initial work for knit technicians, and

• Enabling designers to be a more integral part of the full knit design process.

This thesis makes the following contributions, by system:

• Learning-based design (Chapter 4):

– A set of unambiguous, high-level knitting pattern instructions for machine

learning, together with an efficient data acquisition strategy.

– A learning framework for harnessing both real and simulated data.

– A system implementation that showcases successful knitting pattern pro-

gram recovery from single images.

• Primitive-based design (Chapter 5):

– A set of parametric knitting primitives for customizable composition of

knitted garments.

– A layer-based mechanism for stitch pattern customization.

38

– A system implementation with a non-expert user demonstration of its cus-

tomization capabilities.

• Sketch-based design (Chapter 6):

– An optimization to interactively specify the knitting time process on an

implicit garment manifold.

– An algorithm for decomposing such time function into simple regions for

knitting.

– A hierarchical optimization that samples the stitch topology while consid-

ering the tradeoff between accuracy and simplicity.

– A set of layer mechanisms for customizing garment patterns.

– A subdivision mechanism to speed up computations based on stitch graphs.

39

Part I

Background:

From Fiber to Weft Knitting

40

Chapter 2

Textiles Background

In this chapter, we give an overview of textiles in general. While the rest of the thesis

focuses specifically on weft machine knitting for the production of garments, being

aware of the broader world of textiles is important. As we will see, a subset of textiles

has received a lot more attention from the manufacturing revolution, mainly because

it could afford automation more easily. Yet, the remaining more general forms of

textiles have led to the development of specific branches of mathematics that are

broadly useful, including for the automation and verification of textile production.

This overview starts by introducing the world of textiles, its complex historical

context and highlighting the breadth of its applications (Section 2.1). We then con-

sider the journey from fiber (Section 2.2) to textile and fabric (Section 2.3).

The structure and ideas presented in this chapter were initially developed as a

recitation about textiles for the “How to Make (almost) Anything” class at the Center

for Bits and Atoms at MIT1. The recitation was created together with two colleagues:

Alex Zimmer and Carmel Snow.

1https://cba.mit.edu/

41

https://cba.mit.edu/

2.1 Context and Applications of Textiles

2.1.1 Textile, Fabric or Cloth

The word textile typically refers to a form of material that is created by interlacing

yarn, thread or fiber. Yarn is a long intertwining of fibers, whereas thread is a type of

yarn typically used for sewing. Fiber is a natural or man-made material that is longer

than it is wide, giving it advantageous mechanical properties in a specific direction.

In practice, the word “textile” is often used interchangeably with “fabric” or “cloth”,

although they tend to be used in slightly different contexts. Notably, fabric is usually

not used as-is, but serves as a constituent of a larger piece – e.g., a garment –, whereas

textile can be used as-is such as carpets and rugs.

The etymology of the words brings a more intuitive take on their differences:

“textile” is borrowed from latin textilis (“woven”), derived from texere (“to weave”) [16],

whereas “fabric” is borrowed from French fabrique or latin fabrica (“the framework or

basic structure of anything”) [5].

2.1.2 Historical Context and Importance

Textile has a long history, believed to have started more than 30000 years BCE [38,

96]. It is highly tangled with the socio-economical context of the region where it is

developed as it involves many layers of the society for its production, its trade and

processing [131, 182]. As one of the main economic driving forces during the industrial

revolution, textile production further plays an important role in the integration of

women as part of the modern workforce [50, 76].

2.1.3 Applications Areas

Textiles are everywhere in our lives. It is the main form of material used for all of our

garments. It also covers many of our home floors, furniture, beds and even the interior

surface of our cars (see Figure 2-1). As a simple thought experiment, we consider the

Materials in Context Database [18]. Out of their 23 material categories, two are

42

Figure 2-1: Example of home interior from Bell et al. [18] including various forms of
textiles: carpet, rug, cloth on sofa and pillows, table cloth, tissue, window curtains,
teddy bear and elephant plush toy. Credits: Dana Moos, CC-BY-NC 2.0.

clearly related to textile: fabric and carpet. Their cumulative coverage in terms of

patches accounts for more than 16% of the 2,996,674 material patches they compiled

out of 436,749 images. Fabric itself gathers the third most prominent number of

patches (≈ 12%) behind wood (≈ 19%) and painted material (≈ 16%).

Beyond garments, fashion, interior design or automobile, textile also intervenes

in often unexpected ways. In aeronautics, textile is responsible for the sails and

spinnakers of boats [29], the envelope of hot air balloons, the wings of paragliders

and deltas, as well as parachutes. In architecture, textile can be used as a scaffold for

casting complex 3D shapes with concrete [173].

A growing part of textile is dedicated to smart textiles [171] that can enhance hu-

man performance or safety during critical operations, including fire safety [93], health

monitoring [183], medical tissue engineering [184] or even spacesuit applications [126].

Finally, smart textiles have also started tackling simpler user applications and

tangible interfaces by integrating function in the fabric [132] or within the fiber it-

self [61, 88, 109, 110, 136, 163].

43

https://www.flickr.com/photos/dana_moos/3684553349/
https://creativecommons.org/licenses/by-nc/2.0/

Figure 2-2: Examples of natural fibers, from left to right: sheep wool (animal), cotton
(plant) and absestos with muscovite (mineral). In the public domain, respectively
from: Bernard Spragg, the US Department of Agriculture, and Aram Dulyan.

2.2 From Fiber to Yarn

Fiber is the base unit of all textiles, and notably the yarn typically used for producing

fabric and garments. However, not all fibers are necessarily used for textile. A notable

example is paper that is typically made by processing fiber in water, draining the water

and then pressing and drying the resulting material [75]. In this section, we briefly

cover the types of fibers and their differences. For a more extensive look at the broad

world of fibers, see the work of Kadolph [85].

2.2.1 Types of Fibers

Fiber can be natural or man-made. Most natural fibers come from animals or plants,

although some forms are created from geological processes, each of which is illustrated

in Figure 2-2. Common examples include wool, silk, cotton or flax. On the other side,

man-made fibers are fibers that undergo a significant modification during production.

They are typically subdivided into semi-synthetic – when starting from a fiber-like

raw material that is only partially modified –, and synthetic – when starting from

synthetic material. The majority of semi-synthetic fibers are based on cellulose [180],

which includes those used for paper making. Common examples of synthetic fibers in-

clude nylon, acrylic and elastane. Notable examples include carbon fiber [37], optical

fiber [36], fiberglass [177], as well as metallic fibers typically used in electric cables.

Figure 2-3 shows examples of both nylon and carbon fiber.

44

https://flickr.com/photos/volvob12b/15338972885/
https://commons.wikimedia.org/wiki/File:Asbestos_with_muscovite.jpg

Figure 2-3: Examples of synthetic fibers: nylon (left) and carbon fiber (right). Cred-
its: Vigorini, CC-BY 4.0 (left); and in the public domain via cjp24 (right).

Figure 2-4: Left : the two different twisting directions, often called S and Z twists for
the patterns they produces. Right : skeins of yarn and a close-up of their plies.

2.2.2 Fiber Processing

The transformation from fiber to yarn can involve many different steps. As a com-

mon example, cotton processing includes a large sequence of operations [59]. Raw

cotton balls undergo several pre-processing steps including the extraction of its fiber

components (ginning), and their cleaning, disentanglement and intermixing (card-

ing). Then, the fiber bundles undergo spinning during which the strands of fibers

are twisted and eventually wound onto a bobbin to form the yarn. Strands of yarn

are typically called plies and they are often combined by twisting them together.

This twisting is typically done in the opposite orientation from that of the fiber in

the individual plies so as to create a balanced yarn that does not twist upon itself.

Figure 2-4 illustrates the twisting of yarn plies.

45

https://commons.wikimedia.org/wiki/File:Particolare_di_calza_di_nylon.jpg
https://creativecommons.org/licenses/by/4.0/
https://commons.wikimedia.org/wiki/File:Carbon_fiber.jpg

Figure 2-5: Three of the most common textile topologies: woven (left), weft knitted
(center) and warp knitted (right).

At the other end of the spectrum, a group of synthetic fibers that is gaining interest

in smart textiles are monofilament fibers [65]. Two fabrication methods include ex-

trusion of melted material (e.g., nylon, PLA [31] and recycled PET [12]), and pulling

on a material preform that is slowly melted (e.g. optical fiber). More recently, those

fibers are starting to integrate additional components inside of the filament structure

including electrodes [64], diodes [136] and even full micro-controllers [107].

2.3 From Fiber to Textile and Fabric

The two most common forms of fabric in garment-making are woven (Section 2.3.1)

and knitted (Section 2.3.2), illustrated in Figure 2-5. Their prevalence is in part

due to their regular structures that afford large-scale automation. Correspondingly,

they form the majority of mass-manufactured textiles for garment production. More

general textile categories tend to have larger degrees of freedom that make them

less amenable for automation, notably: crochet (Section 2.3.3) that uses similar con-

structions as knitting, yet with very different mechanical properties; braiding (Sec-

tion 2.3.4) that encompasses woven structures; and knotting (Section 2.3.5) that en-

compasses both crochet and knitting. Fabric binding with sewing (Section 2.3.6) is

then discussed given its importance to garment production, followed by tufting (Sec-

tion 2.3.7) that works with a similar, yet simpler thread insertion principle. We briefly

mention so-called non-woven textiles (Section 2.3.8) and conclude with the notions

of nap and pile fabric (Section 2.3.9).

46

(a) Plain weave (b) Twill weave

(c) Satin weave (d) Basketweave

(e) Leno weave

Figure 2-6: Examples of common woven patterns.

2.3.1 Weaving

Woven fabric is composed of two sets of orthogonal yarns – the weft and warp yarns

– that interlace to form a sheet of fabric [3, 15], as illustrated in Figures 2-5 and

2-6. Although weft and warp yarns look similar locally, they play distinct roles. The

warp yarns form parallel, independent tracks that typically do not directly interact,

whereas the weft yarn goes back and forth, orthogonal to the warp yarns.

Different types of woven patterns – also known as weaves – have received specific

names over time. The most common weaves are illustrated in Figure 2-6: the plain

weave that alternates under-over as a checkerboard; the twill weave that forms a

diagonal pattern and is used for denim fabric typical of jeans; and the satin weave

whose warp threads float over four or more passes of weft thread, producing a glossy

and smooth material. The basketweave is a common variation of the plain weave

that creates a criss-cross pattern by using larger checkerboard tiles. An important

47

Figure 2-7: Illustration of common loom mechanisms. Originally figure 21, page 78
of the work of Barlow [15].

specialized weave is the Leno weave – also known as cross weave – that intertwines

pairs of adjacent warp threads around the weft yarn to produce a strong yet airy

fabric [57]. It is often used for creating sturdy bags, nets and medical gauze.

Looms are devices used to create woven textile, whose general mechanisms are

illustrated in Figures 2-7. They keep the warp thread under tension and often allow

some form of control over the warp yarn selection to simplify the path of the weft

yarn. Important mechanisms in looms include: (1) the shedding that raises a selection

of warp yarns, forming a shed that allows the passage of the weft yarn; (2) the weft

insertion that takes care of transferring the weft yarn across the width of the fabric,

historically done with a shuttle that carries it both ways; and (3) the beating-up that

compacts the weft yarn after each of its passes.

One of the critical components of looms for automation is the mechanism behind

the selection of the warp yarns, which may allow the user to program different woven

patterns. The common mechanism for shedding in Figure 2-7 relies on heddles – small

eyelets that let the warp yarn through, and can be raised or lowered mechanically,

48

or made to twist around each other (e.g., for Leno fabric). How the machine se-

lects the heddles to be raised defines the pattern programming capabilities. In 1804,

Joseph Marie Jacquard integrated ideas from Basile Bouchon, Jean-Baptiste Falcon

and Jacques de Vaucanson into a loom attachment that allows programmatic selec-

tion of heddle groups with punch cards [15]. As a chain of punch cards advances with

the weaving process, only the heddle groups for which holes exist in the current punch

card get selected (or not). Programming the weaving pattern became thus as simple

as creating portable punch cards. Beyond looms, this automation work notably led

to the Analytical Engine of Charles Babbage, and with it, the rest of the modern

computers [51].

The first powered looms used a shuttle that carries the weft yarn spool across

the fabric’s width in a continuous back-and-forth manner. Modern looms use various

mechanisms that can achieve much higher throughput – i.e., a larger number of picks

per minute of the weft yarn across the fabric’s width. This includes notably: airjet

and waterjet looms that propel the weft through with compressed air (or water)

bursts, rapier looms that mechanically grasp and carry the weft yarn across the shed

before retracting without it, and projectile looms that propel an object bound to the

weft, then separated and carried back mechanically. All these mechanisms have in

common that the weft thread is discontinuous, and typically cut to be slightly longer

than the fabric width. One modern exception consists of so-called narrow fabric looms

such as needle looms used for making ribbons, belts and various types of tapes [164].

An important part of the woven fabric is the selvage that corresponds to the most

lateral edge of the fabric which prevents the fabric from fraying. In shuttle weaving,

the selvage can be as simple as the ends of the weft thread past the most lateral warps

– i.e., by alternating the selection of the end warps so they are caught by the weft yarn

as it goes back and forth. In modern shuttleless weaving, dedicated mechanisms are

employed such as fused selvage that uses temperature to bind the fabric (notably with

termoplastic fibers), leno selvage that binds the weft with additional small threads

and twisting, or tucked-in selvage that tucks the extremities of the discontinuous weft

edges back into the fabric (producing a double weft density near the edge).

49

(a) Initial state (b) Active needle insertion (c) Formation of new loop

(d) Active needle retraction (e) Extraction of new loop (f) Dropping of old loop

Figure 2-8: Creation of a knit stitch with two knitting needles. When the active
needle retracts – from (d) to (e) –, its endpoint slides closely around the other needle
to pull the new loop through the old one.

2.3.2 Knitting

Knit fabric is formed by pulling loops of yarns through previous existing loops, even-

tually forming rows and columns of stitches that are interconnected with each others.

Figure 2-5 illustrates two forms of regular knitted topologies: weft knitted fabric forms

rows of loops with a single yarn thread, whereas warp knitted fabric forms columns

of loops with parallel yarn threads. The terms weft and warp naturally match the

thread directions of weaving. For a complete review of knitting technologies, see the

work of Spencer [158].

Hand Knitting

Knitting by hand is typically done with two ore more needles that stack sequences

of stitches – i.e., the individual loop units in knitting. Two needles interact to create

a new loop that is pulled through a pre-existing loop that drops from the holding

needle while keeping the new one on the active needle, as illustrated in Figure 2-8. A

variety of cast-on techniques exist for creating stitches that do not depend on previous

50

(a) Initial state (b) The yarn is drawn (c) The yarn slides

(d) The hook catches the
yarn as the needle retracts

(e) The hook is closed to
knock the old loop over

(f) The new loop is pulled
through the old one

Figure 2-9: Beard needles and their actuation to form new knit stitches

stitches and are necessary to start the knitting process. Similarly, techniques exist to

close the knitted structure – i.e., known as bind-off or cast-off procedures. By using

either circular needles with double ends, or relying on more than two double-ended

needles, then one can knit in the round – i.e., knit tubular structures. The individual

rows are then replaced by a spiral-like structure.

Flat Weft Knitting

One of the first step to the textile industrialization was the invention of the Stocking

Frame – the first form of knitting machine – by William Lee in 1589. It used a flat

bed containing a parallel set of beard needles laid out to hold stitches. The basic weft

knitting process goes as follows: (1) a yarn is carried over the bed and gets caught

in the hooks as the needles get actuated; (2) the old stitch loops get knocked over

their needle hooks as these are closed during the needle retraction; (3) this forms new

stitches by pulling the new loops through the old ones as they drop from the needles.

By repeating the process, large sheets of weft knitted fabric can be created quickly.

This stitch creation process is illustrated in Figure 2-9.

51

Figure 2-10: Schematics of the actuation of a flat bed machine with a mechanical
cam. Originally figure 16 from the work of Buck [26].

Mechanically, beard needles have a hook that can partially flex and close under

mechanical pressure. Other more recent needles mainly change the actuation of the

needle and its hook closing mechanism. Notable ones include the latch needle that

closes the hook with a mechanical latch, the compound needle and the slide needle

that both use an additional linear sliding component that acts as a hook closure.

Domestic flat bed machines typically have a manual carriage that actuates the

needles through a set of mechanical cams as illustrated in Figure 2-10. The carriage

may be programmed to choose a sequence of needles to select or their respective

actions. More complex flat bed machines may include additional beds. A secondary

bed allows for complex stitch patterns including purl stitches – i.e., the back of a knit

stitch, which looks very different, as illustrated in Figure 2-11. Industrial flat bed

machines typically have at least two beds facing each others and can knit tubular

structures by forming cycles that cover both beds.

Circular Knitting

Circular knitting machines have a fixed circumference that is packed with needles.

Specific needles can be selected and actuated back and forth to produce notably the

heel of a sock. Such machines typically target socks, although sleeves can also be

made. While flat bed machines with two beds can also knit tubular structures, they

tend to be slow. The speed limitation is due to their acceleration profile: since the

52

(a) Front of jersey fabric (b) Back of jersey fabric

Figure 2-11: The front (left) and back (right) of a basic jersey fabric highlighting the
distinct appearance of both knit stitches and purl stitches respectively.

Figure 2-12: Example of hobbyist circular knitting machine that is manually actuated
by rotating a shaft (left), and a large industrial circular knitting machine (right). In
the public domain thanks to Elkagye.

carriage alternates between going left and right, it keeps accelerating and decelerating.

In contrast, circular knitting machines do not have to decelerate and can knit at a

constant rate when their yarn continuously rotates in the same direction. This makes

them the machine of choice for high-throughput knitted fabric production as they

achieve the highest throughput. They typically produce the knitted fabric used for

making t-shirts and other knitted garments. Figure 2-12 illustrates both an older

design for sock knitting, and an industrial high-throughput circular machine.

53

https://commons.wikimedia.org/wiki/File:Circular_knitting_machine.jpg

underlap
overlap

swing
shog

Figure 2-13: An example of swaying illustrating the movement of the yarn guides in
a Raschel warp knitting machine: the general movement from the front of the needles
(left), and the movement decomposition from the side, behind the needles (right).
The general lapping movement is decomposed into swing and shog axes, and its front
and back passes relative to the needles are called overlap and underlap.

Warp Knitting

The last category of knitting machines are warp knitting machines that work with

many warp threads in parallel. Mechanical guides bring the yarn into the needles by

swaying laterally in a lapping movement that can be decomposed into both a lateral

motion parallel to the needle bed – known as shogging or shog – and a back and forth

motion between the front and back of the needles – the swing. As the needles retract,

their hooks are closed to lets the old stitches get knocked over, before extending the

needles and opening them again, to repeat the process. Note that the shogging of the

guides must allow for warp threads to reach more than a single needle, otherwise we

would end up with individual, separate stitch columns. This is visible in Figure 2-

5 where pairs of adjacent wales are connected and Figure 2-13 that illustrates the

swaying of the yarn guides in a Raschel warp knitting machine. The swaying itself is

programmable over time and allows for the creation of various knitting patterns.

Typical warp-knitted fabrics include lace, tricot as well as stretchy fabric used in

athletic wear. An important functional difference with weft-knitted fabric is that yarn

damage in a warp-knitted fabric does not trigger large-scale unravelling. In terms of

manufacturing, all the needles work in parallel which allows for very fast production.

The supply of yarn is very similar to that of warp threads in a weaving loom.

54

(a) Initial loops (b) Catching (c) Pulling (d) New loop

Figure 2-14: The formation of a stitch in crochet: the hook needle is inserted through
a loop to catch the yarn and then pulled back through the loop to form a new loop.

2.3.3 Crochet

Crochet is a form of loop building that works with a hooked needle [28], one stitch

at a time, without having to keep previous stitches on another needle. Compared to

knitting, the yarn can be pulled through any previous stitch easily, which enables less

structured forms of knitted fabric, and is potentially more accessible. Correspond-

ingly, stitch loops are typically not kept open for long, but instead closed directly.

From a mechanical perspective, crocheted fabric tends to stretch less than knitted

fabric, and it does not necessarily unravel widely upon local yarn damage. As a less

structured fabrication process, it affords less automation and is still mainly manual.

On the other side, the wide degrees of freedom allow for the creation of very complex

3D shapes such as with hyperbolic crochet [69].

The simplest stitch of crochet is the chain stitch that catches yarn through one

loop to create a new loop, as illustrated in Figure 2-14. The action of catching the

yarn by moving it over the hook is called a yarn over and is a component of more

complex stitches together with the action of drawing the loop by pulling it through

another loop.

Tunisian Crochet

A special form of needles used in Tunisian crochet – also known as Afghan crochet

– works by stacking loops on the hook needle. The corresponding hook needle is

typically longer and has an end that prevents stitches from going through.

55

Figure 2-15: Illustrations of braids: braided Swiss bread (left) and USB cable (right).

2.3.4 Braiding

A braid is the interlacing of two ore more strands of flexible materials. Common

examples include: hair braids, ropes that braid multiple yarns together to prevent

twisting under load, and various types of bread such as the Zopf (known as “Tresse”

in French, which means braid) or the Jewish challah bread – as shown in Figure 2-15.

In the industrial setting, various forms of metallic braiding are often placed around

electronic cables to shield them from electromagnetic interference. Material compos-

ites use braiding to increase mechanical properties and sometimes form the composite

itself [13], whereas braiding serves for the formation of complex freeform materials in

architecture [174]. Braiding machines typically use cyclic motions of bobbins to in-

tertwine yarn or other composite materials together. A notable example of industrial

braiding is with carbon fiber and other composites in the aerospace industry.

Braid Theory

In mathematics, braids play an important role in group theory [34, 120] with the

Artin braid groups. An important underlying problem is whether two braids of 𝑁

strings are topologically equivalent – i.e., if they represent the same interweaving,

modulo some free movement of the 𝑁 threads while keeping their ends fixed. The

theory behind Artin braid groups has recently been used by Li and McCann [100] to

verify the tangling properties of knitted transfer operations on weft knitting machines.

They provide a means to verify the validity of a transfer sequence given the source

56

(a) 5-braid (b) Equivalent (c) Distinct (d) Plain weave

Figure 2-16: Illustration of geometric braids: the two on the left are topologically
equivalent, whereas the third from the left is distinct due to its different ordering
from the leftmost one. The rightmost example showcases a plain weave as a braid.

and target stitch locations on the needle bed. Finally, from the geometric perspective,

traditional weaving can be considered as a specific case of braiding with one braid

acting as the weft thread2, as illustrated in Figure 2-16.

2.3.5 Knotting

Knots are loop structures that exhibit a form of tangling that cannot be undone

without passing one or both ends of the material backward through its loops – i.e.,

effectively undoing the knot. From a structural perspective, knots stabilize yarns or

strings and are typically used for binding things together such as with cordage on

sailboats. Knotted fabric is created by forming webs of knots, such as in net making.

A common form of knotted textile is macramé, in which multiple parallel yarns

are braided and knots are formed locally to rigidify the structure. Macramé textile is

self-supporting when put under tension so that it can hold objects tightly (e.g., the

plant pot in Figure 2-17). The main knots of macramé are square knots (also known

as reef knots) and various forms of hitch knots that connect different yarns locally.

Knot Theory

The mathematical study of knots deals with their topological aspects [2] and is closely

related to braid theory. While a mathematical knot represent a closed curve, links

2This assumes a continuous weft thread, which is not common in modern weaving looms.

57

Figure 2-17: Macrame examples: as a flat sheet (left) and a net wrapping around a
plant pot (right).

Figure 2-18: Mathematical prime knots up to 7 crossings with their Alexander–Briggs
notation, excluding mirrored versions. In the public domain, created by Jkasd.

represent collections of knots that may be tangled together, and braids can be trans-

formed into links by binding their ends. Some mathematical operations are used simi-

larly on knots, links or braids such as Reidemeister moves [165] that transform a knot

58

https://commons.wikimedia.org/wiki/User:Jkasd

Figure 2-19: A Brother machine for both sewing and embroidery – note the linear
gantry (left) – and a close-up looking at the second bobbin that provides the thread
below the fabric (right). The main thread comes from above, through the needle.

(or braid) into another, topologically equivalent form of it. Figure 2-18 visualizes some

prime knots (i.e., that cannot be decomposed under the knot sum operation [114]).

In contrast to practical knots, mathematical knots are closed. By cutting them

topologically, one can represent knotted textiles. Knitting can be represented as the

composition of an interlocking series of slip knots [112].

2.3.6 Sewing

Sewing is mainly used to bind objects together using stitches made with a sewing nee-

dle and thread. While it is extensively use for binding fabric in garment production,

it can be used to bind other materials such as leather, or even books.

Sewing machines speed up the binding process by taking care of the stitch creation

process automatically, leaving to the user the work of guiding the machine path and

fabric tension [6]. Modern machines can often use a collection of different stitch

types that depends on the number of threads and needles used by the machine.

Common hobbyist sewing machines typically use two threads: one passing through

the needle, and one stored in the bobbin case below the feed dogs (shown on the right

of Figure 2-19). Common stitches include the lockstitch, zigzag stitch (for preventing

fabric unraveling) and the overlock or serger stitch (for bindings at the edge of the

59

Figure 2-20: Different types of seams in the inside of a night robe (left), and border
seams binding two flat pieces of fabric as a table mat (right).

fabric [81]). Figure 2-20 illustrates different types of seams.

Embroidery

Beside binding objects and fabric together, sewing can be used for embroidery, i.e.

using the sewn thread as an embellishment, or means to change the fabric appearance

and draw motifs as shown in Figure 2-21. Advanced modern sewing machines can

be extended with a gantry for automatic embroidery given an input image to the

machine [24] as illustrated in Figure 2-19. Visible mending makes use of embroidery

to transform garment defects into decorative patterns.

Quilting

Quilting is a form of sewing that integrates several layers of fabrics. Similarly to

embroidery, it is typically used as an embellishing of the fabric, and often mixes

different types of fabrics or colors.

60

Figure 2-21: Fine embroidery on a shirt (left and top), and coarse yarn embroidery
on a drawing (right and bottom) with its mirrored back (right inset).

2.3.7 Tufting

Tufting is primarily used to create rugs and carpets, and consists in inserting yarn

loops through an existing structure (e.g., another textile, typically woven) with some

form of needle. Compared to sewing, it only requires a single thread and does not

need to completely cross the base material [106] – although the most common forms

typically go through. It has notable uses in composite reinforcement [30, 68, 106].

Manual tufting can be done with a hook needle by pulling loops of yarn through

the base material, or with a punch needle by simply going through the material and

retracting to leave a loop on the other side. Both are illustrated in Figure 2-22.

For larger-scale projects, tufting guns provide a semi-automated variant of the punch

needle that typically includes an automatic loop cutting mechanism to allow for a

felted finish. Industrial tufting machines for carpets and rugs basically proceed in the

same way with many needles actuated in parallel.

61

(a) Hook needle (b) Punch needle

Figure 2-22: Two different tools for tufting: a hook needle pulls the yarn back through
the material to form a loop (left), whereas a punch needle pushes the yarn through
and retracts while letting the yarn slide and stay as a loop (right).

2.3.8 Non-Woven

Non-woven textiles bundle fiber together with a limited structure and typically shorter

macroscopic continuity of the fibers. They notably do not require the fiber to be

transformed into yarn for production. They span various application domains from

garments to the health industry and other technical textiles [8].

Felting

Felt is made by explicitly tangling fibers together locally. It seems to have appeared

in human history much before knitting and weaving [95]. The resulting fabric has

interesting physical properties including water absorption, permeability, fire resistance

and insulation capabilities [52].

Manual felt making is done either wet, by entangling fiber in hot water with

friction, or dry by using barbed needles to poke the fiber and increase its internal

entanglement. Hobbyist felting machines look similar to sewing machines, although

they typically do not introduce any yarn. The fiber is locally added manually, and

punched successively until it binds to the existing felt fabric. Figure 2-23 shows

62

Figure 2-23: Felt examples: raw sheets of felt (top-left), a fox created by needle felting
(bottom-left), and rugs (right). Credits to Sarah Stierch for the Kyrgyz felt rugs –
CC-BY 4.0 – and to Amanda Adebisi for the fox – CC-BY-ND 2.0.

different examples. Recently, low-cost 3D printing systems were used to create 3D

felted fabrics using yarn [74], or by binding layers of felted fabric [127, 128].

The main industrial production of felt is based on the dry mechanism: fiber is

distributed and pressed between two panels, before being repeatedly poked through

to entangle the fiber structure with many needles in parallel.

2.3.9 Napped and Pile Fabric

In general, the nap refers to the fuzzy surface of fabrics such as felt. The nap originally

referred to the rough surface of woolen fabric before it was sheared to improve its

smoothness – effectively removing the nap. It then later referred to raised fibers

introduced explicitly as part of the fabric – also known as pile. In both cases, the

fabric is said to be napped if it was processed to get a smooth finish – typically by

raising the nap, and then trimming it.

63

https://commons.wikimedia.org/wiki/File:Kyrgyz_Republic_Felt_Rugs_-_Stierch.jpg
https://creativecommons.org/licenses/by/4.0/
https://flickr.com/photos/coatiprints/9639251356
https://creativecommons.org/licenses/by-nd/2.0/

(a) Knotted pile (b) Rod on hand loom

(c) Face-to-face weaving

Figure 2-24: Different mechanisms to introduce pile in woven fabric.

Tufting directly creates pile by inserting loops through a primary material. Knit-

ting can introduce pile either through dedicated mechanisms (e.g., in warp knitting),

or by using specific knitting structures such as floating yarn or spacer fabric. Weaving

relies on specialized machines or mechanisms.

Woven Pile Fabric

Some of the oldest woven pile formations are based on manually inserting knots in

the woven structure – the knotted pile. Other traditional methods form either weft

pile or warp pile by manipulating the corresponding yarns (weft or warps) so as to

create local loops. Figure 2-24 illustrates some of them.

One manual method used on hand looms consists in inserting rods and twisting

the weft (or a dedicated pile yarn) around these rods so that their later removal forms

pile loops. Power looms use various specialized mechanisms or weave structures that

make use of floats which are eventually raised, either during the weaving process,

64

Figure 2-25: Towels, blankets and rugs are common examples of pile fabric. The loops
can be kept as-is (top-left) or cut and processed for a softer finish (right). Furniture
also commonly uses napped fabric such as on this velvety box chest (bottom-left).

or a posteriori. One specialized mechanism is face-to-face weaving that creates two

distinct woven fabrics which are bound together with the pile yarn – typically along

the warp direction. The pile yarns are then eventually cut to separate the two fabrics,

resulting in a cut pile. More complex mechanisms such as those in Axminster looms

use dedicated pile warps that can be programmatically inserted in the main fabric.

Common Pile Fabrics

One of the most notable pile fabrics is velvet – a cut-pile fabric with even, short pile

heights. It has a distinctive soft feeling and a strong sheen [10, 124]. While velvet

is typically a warp-pile fabric, velveteen is a weft-pile fabric that looks very similar.

Another common pile fabric is plush that differs from velvet by its longer cut pile and

a typically lower density. One of its main uses is for the fabrication of stuffed toys

such as teddy bears, typically called plushies. Velour is a type of plush fabric that is

often used in clothing. Terrycloth is a loop-pile fabric – i.e., the loops are kept uncut –

commonly used for towels and bath robes given its high absorption capabilities [130].

Some of those fabrics are illustrated in Figures 2-25 and 2-26.

65

Figure 2-26: Examples of napped fabric used in garments: as an inner layer of a
knitted sweatshirt (top) and as an outer layer fleece (bottom).

66

Chapter 3

Computerized Machine Knitting

In this chapter, we first describe the machinery involved in flat knitting machines

(Section 3.1). We then consider different low-level programming options for those

machines (Section 3.2). Finally, we describe some of the common topology represen-

tations that are behind recent, higher-level design tools (Section 3.3).

3.1 Flat Knitting Machinery

The machine used in this thesis is a “whole-garment” knitting machine from Shima

Seiki [150] (model SWG091N2, needle gauge 15), illustrated in Figures 3-1 and 3-2.

While we try to mention other types of mechanisms and components to provide a

more general overview, the focus is explicitly on the aforementioned machine model.

See the brief review of Choi and Powell [35] for a description of other existing flat bed

machines, or the book of Spencer [158] for a complete review of knitting machines.

Computerized flat knitting machines all typically possess a few fundamental me-

chanical components: one or more needle beds that hold the needles being actuated,

one or more carriages containing electronically-programmable cam systems that in-

teract with the needles of the machine, one or more yarn carriers that bring the yarn

to a level where it can be caught properly by the needles, and multiple rollers that

can catch the fabric as it is knitted to condition the yarn tension, direct the fabric

out and prevent stitches from piling up.

67

Figure 3-1: The machine used within this thesis (left) and a close-up from above,
highlighting the yarn setup, with the protective cover opened.

(a)

(b)

(c)

(d) (e)

(�) (g)

Figure 3-2: Inside view of the machine with component overlays: (a) needle bed, (b)
carriage, (c) presser plate, (d) vacuum vent, (e) yarn holding hooks, (f) yarn insertion
unit, (g) multiple yarn carriers.

3.1.1 Needles and Needle Beds

The needles hold the loops of yarn and are thus one of the key components of the

knitting machine. The two most common, modern knitting needle types are the latch

needle and the compound (or slide) needle, illustrated in Figure 3-3.

Latch needles rely on a latch at the base of the needle hook that can rotate to

close/open it. The opening and closing of the latch happens naturally with the stitch

loop motion as needles go through their up-and-down actuation, whereas brushes are

typically used for opening it in other scenarios.

68

(a) Bearded needle (b) Latch needle (c) Slide needle

Figure 3-3: The three most common types of machine knitting needles.

Compound / slide needles combine an open hook needle together with a slider

that “slides” on top of the needle component, effectively allowing the closing/opening

of the hook section via a simple linear action (i.e., translating the slider component).

This thesis uses a machine with slide needles.

Needle Beds

A needle bed is a panel that contains needles laid out parallel at a regular interval.

The linear density of needles is called the gauge and is measured in needles per inch.

The two most common types of beds are called V-bed and X-bed. The former consists

of two beds positioned in an inverted V form, whereas the latter uses four beds in an

X configuration. This work uses a 15-gauge V-bed machine shown in Figure 3-4.

A single bed can produce flat sheets of fabric. Two beds allow for tubular struc-

tures and combinations of those with flat sheets of fabric. The purpose of having four

Figure 3-4: Views of the needle beds: from the left side (left), from above (center)
and from the right side behind the yarn carriers (right).

69

Figure 3-5: Schematics from Shima’s manual [150] illustrating the replaceable com-
ponents on the needle bed: the needle plate for containment (1), the sinker (2) and
its spring (3), the sinker jack that engages the sinker through the cam (4), the yarn
guide (5), different wires for fixing elements in place (6-11), the slide needle (12), the
slider (13), the jack that engages the needle through the cam (14), the select jack that
selects which mode of the cam to go through (15-16), different versions of selectors
that get triggered by solenoids (17-24), the select spacer (25).

beds – in the X-bed setting – is not to increase the span of complex surfaces that can

be created. Instead, it is so that stitches on a lower bed can be hold temporarily

on the corresponding upper bed. This temporary displacement frees the lower needle

and allows stitches from the other lower bed side to knit on their opposite lower bed

– the one we moved our stitches to the upper bed from –, before moving stitches

back to their corresponding original beds. This is notably useful for creating complex

stitch patterns when knitting tubular structures.

Needle, Jacks, Selectors and Sinkers

Figure 3-5 illustrates the different replaceable components that are involved with each

of the individual compound needles, whereas Figure 3-6 shows the combination of the

slide needle, slider and needle jack.

70

Figure 3-6: The typical group (top) of components that get replaced, separated from
bottom to top: the slide needle, the needle jack and the slider.

Jack components have a pin sticking out that gets engaged through the cam de-

pending on the pin location. Simpler needle designs have a pin integrated as part of

the needle itself. The reason for wanting a separation is due to both the needle hook

and the pins being typical sources of breakage: replacing only one allows for some

cost reduction, to the detriment of a more complex design.

Select components are related to the different ways that jacks can go trough the

cam. By default they do not engage. Their designs are typically differing slightly

across neighboring needle lanes to allow for high-speed solenoid selection without

conflicts. Figure 3-5 shows many variants (pieces 17 to 24).

Sinkers primarily serve to hold down old stitch loops as the needles are actuated

to form newer stitch loops. In some knitting machines, they also help with the loop

formation process.

3.1.2 Carriage

The carriage is the component that moves back and forth on the needle bed to actuate

the needles locally. Figure 3-7 illustrates the internal of one side of such carriage – the

other bed side having a similar system. Some of the important components include:

• cam systems [56, 139] that engage the needle components through their associ-

ated jack pins – typically, one for the needle and one for the sinker,

71

Figure 3-7: Internal views of the carriage: its front (left) and back (right).

• different sets of solenoids (e.g., for selecting the needles and the presser plates),

• a presser plate that effectively presses on the yarn to prevent its rebound when

knitting complex short-rows locally,

• a vent connected to a vacuum for clearing fibers and cut yarn pieces.

By selecting needles with solenoids and electronically controlling the cam path, the

machine can specify the actions of each individual needle in the path of the carriage.

3.1.3 Yarn Carriers

Yarn carriers are responsible for bringing the yarn locally near the location where

needles are being actuated. Since the needles are actuated by the carriage’s cam,

the yarn carriers tend to follow it. Our machine allows for two types of yarn carrier

movements: synchronous in which case the carrier is moved together with the carriage

(this is typically done on other machines by selecting the carrier with a solenoid), or

asynchronous in which case the yarn carrier moves separately from the carriage. The

latter is possible thanks to the yarn carriers being driven independently by stepper

motors (one for each carrier).

Manual Tensioning Mechanisms

On our machine, the yarn typically (1) starts at a cone, (2) gets caught by a magnetic

bottleneck with tunable friction, (3) goes through small eyelets to detect accidental

72

(1)

(2)

(3)

(4)

(5)

(5)

(6)
(7)

Figure 3-8: Path of the red yarn from its cone to the yarn carrier and kept locked in
the yarn holding hook.

knots of tunable width, (4) is put under tension by a tunable springy arm, (5) is

routed to the top of a specific yarn carrier, (6) exits the base of the carrier to be

caught somewhere, (7) specifically in the yarn holding hook when not used. These

steps, illustrated in Figure 3-8, serve as a way to condition the tension of the yarn

so that sensors can detect when things go wrong, and the yarn ends up getting

pulled automatically when the yarn carriers move (so that it is always under proper

tension). Note that the tunable controls are all mechanic and thus their tuning is

done by manually adjusting knobs.

Typically the yarn can be caught (i.e., fixed in a stable manner) at a few locations:

(i) by a needle hook, (ii) by the yarn holding hook that holds the yarn when not used,

(iii) by the yarn insertion unit that grabs the yarn and inserts it to start knitting.

Finally, a small blade / scissor complements the insertion unit to ensure that the

automatic insertion has calibrated length of dangling yarn (at start). The yarn that

is cut gets vacuumed through a vent on the carriage.

Digital Stitch Control System

A different way to condition the yarn is through a system that controls the yarn

tension with an electronic feedback loop, shown on the left of Figure 3-9. The base

73

Figure 3-9: Common addon devices: digital stitch control system (left) and elastic
system (right).

has a motor that catches the yarn against a rotating cylinder to control the length of

yarn already engaged. The arm is connected to a servo that assumes a specific force

feedback to be calibrated. Its purpose is to get information about the tension of the

yarn and allow the system to react to any changes. In practice, it tries to stay at a

horizontal angle.

The calibration is done in two steps: (1) the length of the yarn from the catching

base to a specific needle on the needle bed is measured, (2) specific weights are hanged

onto the servo arm instead of the yarn to get force measurements.

3.1.4 Rollers

Rollers – shown in Figure 3-10 – are used to catch the yarn and put it under tension

(due to pulling) as it exits the machine. Having the yarn under tension can become

important when knitting complex 3D shapes with large local curvature (e.g., short-

Figure 3-10: View of the rollers from below the needle beds. The horizontal slit at
the center is the space between the needle beds. The rollers are currently open.

74

Figure 3-11: The tuck operation that adds a loop to the needle hook.

Figure 3-12: The knit operation as generated with a slide needle.

rows) as the yarn tends to bounce back up otherwise. In such scenarios, waste yarn

is first knitted so that the initial knit structure gets caught by the roller before

proceeding with the real knit portion. For all the designs in this thesis, the action of

the sinkers and presser plates were sufficient to prevent stitch piling – i.e., we kept

the rollers open.

3.1.5 Basic Operations

While the presented machinery can appear very complex, the number of distinct base

operations the machine can produce is quite limited. We describe each of those here

and refer the reader to the mathematical definitions available in the work of McCann

et al. [116] and the original visualizations from Narayanan et al. [122].

Tuck

The tuck operation consists in having the needle hook catch a loop of yarn, while

keeping the preexisting loops as-is. See Figure 3-11.

Knit

The knit operation consists in catching a loop of yarn while the previous loops are

kept outside of the hook. The hook is then closed and the needle is retracted. This

75

Figure 3-13: The transfer operation from one bed to the other.

knocks the old loops over and lets the new loop in the hook pull through them –

effectively forming a knit stitch. See Figure 3-12.

Note that a knit operation without previous loops has topologically the same

result as a tuck, although the motions of the needle components are different.

Miss

The miss operation consists of a no-operation in terms of needle operation. However,

semantically it means that the carriage and yarn carriers went to the corresponding

needle, and can thus be different from no operation from a program perspective.

Transfer

The transfer operation effectively transfers any loops from a needle to the needle

facing it on the opposite bed. See Figure 3-13.

Sliders can be used as location for storing yarn loops temporarily during transfers.

They cannot be used for any other needle operation than transfers, and the machine

expects that the sliders are empty when starting any other operation.

Split

The split operation is a compound form of knit and transfer in which the previous

loops are transferred to the other bed side instead of being dropped after pulling

through the new stitch loop.

The transfer operation can be viewed as a split with no yarn as this does not

create a new stitch but still transfers the previous loops to the other bed side.

76

Figure 3-14: Racking example: zero offset and -4 offset of the back bed (in needles).

Racking

Racking is a bed-wise operation that offsets (by some limited number of needles) the

two bed sides, as illustrated in Figure 3-14. In conjunction with transfers, this allows

the displacement of stitches along each needle bed by (1) transferring to the other

side, (2) racking, and (3) transferring back.

Through sequences of transfer and racking operations, a stitch can be moved

mostly anywhere in the needle and bed space, notwithstanding constraints due to the

existing other stitches and the yarn tension.

Amiss

The amiss operation is a special form of carriage movement that pulls down the yarn

brought by the yarn carrier(s). This matters in some scenarios when we want to float

one yarn and have it caught by stitches that transfer across beds, mainly because the

yarn carrier exits are typically some distance above the location at which the stitch

do their transfers. By using an amiss, we can take the yarn lower without having to

catch it in a needle (and then drop it).

3.1.6 Special Carrier Modes

Flat bed machines can have various types of yarn carriers and modes for their ac-

tuation on the bed. For our machine, the yarn carriers stay the same, but their

programming modes include three important variations: inlay carrier, plating carrier

and elastic yarn carrier. Samples using the first two are shown in Figure 3-15.

77

Figure 3-15: Examples using special carrier modes: white inlay yarn (left), gray-blue
plated yarn that controls the color side using purls and ribs (right).

Inlay

Inlay is a yarn that is typically not knitted, but is hold in the knitted structure via

different means. There are two main forms of programmatic inlay: automatic inlay

that relies on an dedicated carrier synchronously moving slightly ahead of the base

yarn carrier, and manual inlay that explicitly draws the inlay yarn separately from

the base yarn and relies on transfers of the base yarn to “catch” the inlay yarn in the

base structure. This second form of inlay is a case where the amiss operation becomes

important. The first form typically has no issue with catching the yarn because the

offset of the inlay carrier is tuned so that the inlay ends up at a low enough height

to be caught properly by the main yarn as it alternates between bed sides.

An important mechanical difference of inlay compared to knit fabric is that it

does not stretch in its drawn direction – unless elastic. This produces a mechanical

blocking mechanism over the base structure that typically stretches in both directions.

Inlay can also be used for cable actuation and other functional purposes [7, 109, 110].

Plating

Plating consists in using multiple yarn carriers that knit together, but with a slight

offset of the yarn carriers that drives the ordering of the loop stack. It is typically

used for colorwork with two different yarn colors.

78

Elastic

Elastic yarn (e.g., elastane) can be drawn specifically as inlay that is pre-stretched.

As a consequence, the knitted artifact ends up shrinking due to the elastic inlay, but

can typically stretch back to the original structure due to the elasticity of the yarn.

This is often used for socks or as part of the cuff of gloves. From a programming

perspective, elastic yarn provides an additional control which is the frequency at

which to release the yarn. By default, the system keeps the elastic yarn from drawing

so that it gets pre-stretched. By choosing how often it gets released, we can control

the amount of pre-stretching that gets introduced.

3.2 Low-Level Machine Knitting Programming

At the lowest level, programming a knitting machine consists in scheduling the mo-

tion of its carriage, yarn carriers and the actuations within the carriage to select

needle operations during its motion. This complex scheduling is typically not done

by the user. Instead, the user controls are reduced to mainly the sequence of needle

operations, together with machine and yarn carrier states. This effectively focuses

the attention on the topology of the knit construction, while providing control over

important states that can ease or simplify the manufacturing. Those states may typ-

ically include: which yarn carriers are active and their locations, in which direction

the carriage is moving and at what speed, the speed and functions of other knitting

devices (e.g., rollers, presser plate, yarn insertion unit, yarn holding hooks, etc.). The

resulting description is then translated into carriage and yarn carrier motions, as well

as low-level device actuations that can be dependent on those motions.

We first describe the common representation for most proprietary software based

on time-needle images, and then mention the other sequential forms that have been

developed in hand knitting and more recently in computational knitting research.

79

Figure 3-16: Examples of time–needle programs in KnitPaint [150]: the overview of
a glove (left) and a close-up near the merging of the thumb with the palm (right).
Vertical bars on the sides specify machine states for the corresponding lines.

3.2.1 Time–Needle Images

The most common low-level programming representation consists of time–needle im-

ages such as the ones shown in Figure 3-16. Typically, the x-axis represents the needle

space and the y-axis represents time. Each pixel – which we’ll refer to as stitch code –

encodes a needle operation, a machine state, or a combination thereof. The different

machine states are encoded either explicitly in sections of the time–needle program

dedicated to machine states (e.g., on the left and right of the needle program), or

implicitly with the needle operations in the stitch codes.

In the case of Shima [150], their stitch code library does a mix of both: some states

are explicitly controlled in locations on the left and right of the program, and some

are part of the needle operations. Furthermore, they also introduce context sensitive

states that depend on the local needle operations. As such, a given stitch code may

carry information that is dependent on the stitch codes below it in the time–needle

program. The work of Underwood [170] provides a good overview of this design

space, and it notably introduces higher-level constructions encoded in user-defined

stitch codes.

80

Figure 3-17: Example of high-level stitch code program for a raglan shirt from Shima
Seiki (left), and 4 of its 57 accompanying packages (right).

Package Development

One way to modularize time–needle programs consists in developing libraries of

higher-level stitch codes. Shima [150] implements this with packages that rely on

pattern matching: the user associates a high-level stitch code configuration (e.g.,

which stitch codes are next to which other stitch codes) and the corresponding stitch

codes that effectively implement the corresponding lower-level program (using low-

level stitch codes, or potentially other high-level stitch codes). The user can then write

a knitting program using the corresponding higher-level stitch codes and use a specific

set of packages to transform the program into a lower-level one that can be compiled

for the machine. This is essentially a form of string rewriting system [23, 135, 141].

An example of complex pattern development is illustrated in Figure 3-17.

One specificity of package development is that high-level stitch codes are not con-

sidered valid forms of low-level programs to be compiled for the machine. In practice,

this requires the user to describe any meaningful context that can be matched. If an

unmatched context is present, then the package development fails as some high-level

stitch codes cannot be developed into some low-level versions. From the package

development perspective, this is desirable as no rule was provided to deal with the

unexpected solution. From a user perspective, this can be a bottleneck. Further-

81

more, the limitations on how the higher-level stitch code context is described directly

impact the expressiveness of the higher-level stitch programs.

Free Packages form a type of packages that uses simpler rules for pattern matching.

It is targeted at local forms of patterns such as with jacquard knitting that emulates

jacquard patterns from weaving with yarn loops. Figures 3-19 and 3-20 respectively

illustrate different packages for jacquard knitting, and corresponding examples of

pattern developments.

3.2.2 Instruction Sequences

Another strategy to writing knitting programs consists in explicitly writing the in-

struction as a list of instructions similar to a traditional computer program written

with lines of code in C/C++ [161] or Javascript [43].

An example is KnitSpeak [133] that was developed by hand-knitters to describe

their patterns. For machine knitting, McCann et al. [116] developed the knitting

assembly language known as Knitout [115]. Its base instructions extract a minimal

set of operations that allows the specification of knitting programs for Shima, yet with

a much more concise set of operations. Those operations are tightly bound to the

needle operations in Section 3.1.5. Examples of both are illustrated in Figure 3-18.

82

Figure 3-18: Examples of knitting programs in Knitspeak (top) and Knitout (bottom).

83

Figure 3-19: Examples of free packages used for jacquard knitting, with 𝑁 colors and
a specific backing strategy, from top to bottom: 𝑁 = 2 floating, 𝑁 = 2 tubular,
𝑁 = 2 “pique” and 𝑁 = 3 alternating.

84

Figure 3-20: Example of jacquard-knit program using free packages: the user in-
put (top-left), its developed result (top-right) and a close-up highlighting the local
patterns (bottom).

85

Figure 3-21: Knitted 3-colors jacquard of cat pattern: its front (top) and its back
(bottom). The smaller slices are close-ups around the eyes of the cat for both sides.

86

3.3 Stitch Representations

Beyond working directly with the action and state spaces of the knitting machine,

higher-level programming requires some form of representation of the garment to be

knit. The choice of representation is critical as it constrains the design space. We

present here some of the most common representations.

3.3.1 Mesh-based Representations

One of the initial representations for high-level knit programming comes from the

simulation work of Yuksel et al. [190] who associated different types of stitches with

faces of a 3D mesh – the stitch mesh. They further label the edges of each face as

either course or wale edges, providing information about the underlying knit topology.

The initial work [190] considered invalid knitted tubular topologies (loops instead of

helixes) as it was focused on fast, plausible rendering. It was extended with an

automated algorithm to convert a 3D mesh into a stitch mesh [186], and then made

hand-knittable by introducing shift paths and enforcing direction constraints [187].

Narayanan et al. [123] built a design tool to create machine-knittable stitch meshes

while storing stitch instructions in the code associated with each face type. Guo et al.

[63] proposed to use stitch meshes for representing crochet topologies. Finally, Wu

et al. [188] looked at the decomposition of 3D structures into flat panels, together

with algorithms to schedule those on the knitting bed.

While stitch meshes work especially well for simulating complex 3D geometry, this

thesis explicitly avoids using such representation.

Creating a 3D Mesh is a complex and tedious process. Although there are many

dedicated tools, they mainly focus on virtual purposes such as character animation,

photorealistic renderings and simulation. The perspective of this thesis is geared

toward accessibility, and thus we decided to avoid relying on a representation that

requires complex engineering before being able to start with the design process itself.

87

Modeling Tools for Engineering and Fabrication are all essentially para-

metric, which 3D meshes are not. Instead, meshes in engineering applications are

ephemeral outputs that are generated when the user requires integration with tools

designed for simulation or photorealistic rendering. Most modern Computer-Aided

Design (CAD) tools rely on boundary representations [11, 108] that combine para-

metric 2D sketches with geometric operations such as boolean operations and face

extrusions. A key advantage is that the user description of the shape is simpler

(much fewer degrees of freedoms). Furthermore, by using a parametric representa-

tion, one can reason not only about the desired physical artifact, but also the space

of its parametric variations, thus enabling design exploration which is critical in early

iterative design cycles for digital fabrication.

3.3.2 Graph-based Representations

Narayanan et al. [122] introduce the Knit Graph as a high-level representation of

the stitch topology targeted at machine knitting. It corresponds to the dual of the

original stitch mesh representation [190] with tubular courses being represented as

cycles, and as such, requires an additional tracing step to transform the graph into a

structure that can be knitted with real yarn. Their strategy relies on double tracing

– i.e., each node of the Knit Graph is to be knitted twice –, which affords a simple

rule-based algorithm, and requires a minimal amount of yarn cuts, to the detriment

of a loss in spatial resolution over the wale direction.

This thesis uses similar graph-based representations for the underlying stitch struc-

ture. Chapter 5 relies on a graph topology that does not require tracing, while storing

the same circular course information for regular pattern application. The graph is

referred to as stitch graph and illustrated in Figure 3-22. Chapter 6 relies on a graph

similar to that of Narayanan et al. [122] – although we follow our initial naming

of stitch graph –, and we propose modifications of the tracing algorithm to support

intarsia.

More recently, Nader et al. [121] introduced a higher-level graph that uses a par-

tition of course-connected stitches as nodes and their wale-connectivity as edges –

88

Course direction Stitch graph

W
al

e
di

re
ct

io
n

Figure 3-22: Illustration of important stitch topologies for machine knitting (left)
and their corresponding stitch graph (right). Important concepts include: courses
and wales as rows and columns of the knit structure; irregular shaping structures
with stitch increase and decrease, and short-rows.

the KnitNet graph. They form an Action graph representing the action scheduling

context given the previous graph and recursively rewrite it into a canonical form that

can then be translated into machine instruction using a larger-scale form of context.

Both Chapters 5 and 6 also rely on some form of higher-level representation based on

courses and wale connectivity, but our scheduling is simpler as the focus of this thesis

was on the user representation.

Terminology

Figure 3-22 visually highlights some of the important machine-knitting constructions

and terms that this thesis extensively makes use of. The nodes of the stitch graph

represent stitches, and the edges correspond to the stitch connectivity. Courses and

wales respectively form rows and columns of the knit structure. Irregular structures

for shaping include the stitch increase with two next wales, the stitch decrease with

89

Courses Wales Short-rows
Figure 3-23: Highlight of different parts of the stitch graph: the courses that form
rows of the knit structure, the wales as columns that split with stitch increase and
merge with stitch decrease, and the bending effect due to short-rows.

two previous wales, and short-rows that only cover a portion of the base course. Each

stitch node has one or two adjacent course neighbors on the same row. The wale

neighbors can be separated into two groups – next wale neighbors and previous wale

neighbors – and each stitch can have zero to two neighbors for each group. Stitches are

considered as regular, if they have exactly one next and one previous wale neighbor,

each corresponding to a (1-1) wale linking, while increase and decrease are (1-2) and

(2-1) linkings, respectively. Figure 3-23 highlights the structure of courses and wales,

as well as the bending impact of short-rows.

Short-rows can bend the course orientation to change the angle of knitting either

in the same plane – when appearing at the side of a flat structure –, or out of the

plane such as for tubular short-rows that are notably used in the heel of a sock.

90

Part II

Knitted Garment

Design and Programming

91

92

Chapter 4

Learning-Based Garment

Programming

While programming weft knitting machines requires expertise, knitted garments

are ubiquitous around us. As a result, one may wonder whether it is possible to

directly reuse those readily accessible designs – e.g., by scanning them, similarly to

how one can scan text documents. More specifically, we ask the following question:

“ Can we automatically infer the knitting program corresponding to

a piece of knitted fabric given a single image of it? ”The initial motivation that hints to a positive answer comes from low-level pro-

prietary programming environments for weft knitting machines. The time–needle

representation they use is very similar to pixel grids in image editing software [4, 98].

In fact, even the name of their software (KnitPaint for Shima [150]) is directly rem-

iniscent of image editing software [44]. Meanwhile, the advances of machine learn-

ing have made possible many complex transformation between very different image

spaces, notably with works on Conditional Generative Adversarial Networks [78].

Contents of this chapter are adapted with permission from - A. Kaspar, T. Oh, L. Makatura,
P. Kellnhofer, W. Matusik, “Neural Inverse Knitting: From Images to Manufacturing Instructions”,
ICML 2019. http://proceedings.mlr.press/v97/kaspar19a.html. [Copyright by the authors].

93

http://proceedings.mlr.press/v97/kaspar19a.html

Img2Prog

Re�ner

Automatic
Program Synthesis

RegularizedReal

Synthetic

Program

Machine Knitting

Figure 4-1: Illustration of our inverse problem and solution. An instruction map
(top-left) is knitted into a physical artifact (top-right). We propose a machine learn-
ing pipeline to solve the inverse problem by leveraging synthetic renderings of the
instruction maps.

4.1 Introduction

The workflow we envision starts with a user taking a picture of some knitted garment

(or other knitted textile). We then reverse-engineer it to synthesize the corresponding

knitting instructions. Given the instructions (or some higher-level description of the

knitted artifact), the user can then either reproduce the original sample, or adapt

it for a novel design. However, reverse-engineering a knitted design can be very

challenging: knitted garments are typically not completely visible in a single image,

they may include 3D effects due to shaping, they may include multiple kinds of yarns

interacting in complicated manners, etc.

To simplify the problem, we consider the subspace of knitting programs that tackle

simpler 2D knitting patterns, and we restrict ourselves to the use of a single type of

94

yarn in each pattern. The importance of 2D patterns in knitted textile is evident in

pattern books [49, 154], that contain instructions for hundreds of decorative designs

that have been manually crafted and tested over time. Unfortunately, these pattern

libraries are geared towards hand-knitting and they are often incompatible with the

operations of industrial knitting machines. Even in cases when a direct translation is

possible, the patterns are only specified in stitch-level operation sequences that still

need to be manually specified and tested for each machine type, similarly to low-level

assembly programming.

Our main idea is to leverage the advances of recent works in machine learning that

enable image translation across different domains [70, 78, 155, 194]. In Section 4.2, we

describe our modeling of knitted patterns such that they become directly compatible

with image translation mechanisms. Section 4.3 goes through our dataset acquisition

process, highlighting one of our key challenges: getting enough supervision data.

Sections 4.4 and 4.5 present our learning approach to combining different types of

supervised data (real and synthetic) and the details of its implementation, illustrated

in Figure 4-1. We evaluate our method in Section 4.6, and further discuss results and

potential improvements in Section 4.7.

4.2 Machine Knitting Instructions

As described in Section 3.2, current knitting machine programming is done using

low-level stitch codes that mix information about knitting operations (e.g., knit, tuck,

transfer, etc.) and machine states (e.g., bed racking, speed, stitch tension). Inci-

dentally, the design of these stitch codes appears to have been intentionally geared

toward simplifying user patterning and often allows for a very regular descriptions

of knitting patterns as 2D grids of stitch codes. Thus, we decided to create our own

variation of those, targeted exclusively at stitch patterns, with the added intention of

being machine-learnable.

95

Move Instructions

Cross InstructionsBasic Instructions

Stack
Order

Figure 4-2: Images : abstract illustration and color coding of our 17 instructions. Text :
instruction codes, which can be interpreted using the initial character of the following
names: Knit and Purl (front and back knit stitches), Tuck, Miss, Front, Back, Right,
Left, Stack. Finally, X stands for Cross where + and − are the ordering (upper and
lower). Move instructions are composed of their initial knitting side (Front or Back),
the move direction (Left or Right) and the offset (1 or 2).

4.2.1 A Domain-Specific Language for Patterns

In order to make our inverse design process tractable and efficient, we devised a set

of 17 pattern instructions (derived from a subset of the hundreds of instructions from

Shima Seiki [150]). These instructions include all basic knitting pattern operations

and they are specified on a regular 2D grid that can be parsed and executed line-by-

line. We first detail our pattern instruction set, visualized in Figure 4-2, and then we

explain how they are sequentially processed by the machine.

Basic Instructions. These include the three base needle operations Knit, Tuck

and Miss. Then, patterning books [49, 154] all suggest an additional Purl operation

that combines the basic Knit with a sequence of transfers making it happen on the

opposite needle bed. While the needle operation is the same as Knit, the fact that it

happens on the opposite bed has a big impact on the resulting stitch appearance, as

shown in Figure 4-3.

96

(a) Knit (b) Purl (c) Tuck

(d) Miss (e) Move (f) Cross

Figure 4-3: The main stitch operations with 8 × 8 pattern illustrations, both as a
knitted artifact (top) and a colorless diagram (bottom).

Move and Cross. The combination of transfers with racking allows the movement

of loops within a same bed and is extensively used in lace patterns that create local

holes and changes of wale flow. We separate such higher-level operations into two

97

groups: Move instructions only consider combinations that do not cross other such

instructions so that their relative scheduling does not matter, and Cross instructions

are done in pairs so that both sides are swapped, producing what is known as cable

patterns. The scheduling of Cross instructions is naturally defined by the instructions

themselves. These combined operations do not create any new loop by themselves,

and thus we assume they all apply a Knit operation before executing the associated

needle moves, so as to maintain spatial regularity, similarly to Shima [150].

Stacking Order. Finally, transfers also allow different stacking orders when mul-

tiple loops are joined together. We model this with our final Stack instruction, and

similarly to Move and Cross, it also additionally creates a new Knit stitch for spatial

regularity. The corresponding symbols and color coding of the instructions are shown

in Figure 4-2, whereas Figure 4-3 illustrates each of the pattern instruction types.

4.2.2 From High- to Low-level Instructions

Given a line of instructions, the sequence of operations is done over a full line using

the following steps:

1. The current stitches are transferred to the new instruction side without racking;

2. The base needle operation (Knit, Tuck or Miss) is executed;

3. The needles of all transfer-related instructions are transferred to the opposite

bed without racking;

4. Instructions that involve moving within a bed proceed to transfer back to the

initial side using the appropriate racking and order;

5. Stack instructions transfer back to the initial side without racking.

Instruction Side

The only instructions requiring an associated bed side are those performing a Knit

operation. We thus encode the bed side in the instructions (Knit, Purl, Moves),

98

except for those where the side can be inferred from the local context. This inference

applies to Cross which use the same side as past instructions (for aesthetic reasons),

and Stack which uses the side of its associated Move instruction. Although this is

a simplification of the design space, we did not have any pattern with a different

behavior.

Differences from Shima

While our instruction set is greatly inspired by the patterning codes available from

Shima, there are two main differences: (1) it is restricted to pattern-related operations

and (2) it does not introduce ambiguities. Shima’s instructions include many shaping

operations as well as complex context-sensitive variations of stitch codes (e.g. their

link processing concept). Furthermore, their cable instructions are ambiguous: they

form explicit pairs that are distinguished by requiring separate pairing codes for

adjacent cables, whereas we rely exclusively on the direction as a pairing mechanism.

4.3 Dataset for Knitting Patterns

While machine knitting can produce a large amount of pattern data reasonably

quickly, we still need to specify these patterns (i.e., generate reasonable pattern in-

structions), and acquire calibrated images for supervised learning. The latter acqui-

sition ends up being the main bottleneck towards obtaining enough supervision data

if we restrict ourselves to real images of knitted patterns. Thus, we augment the real

data with synthetic data that can be acquired more efficiently.

4.3.1 Pattern Instructions

We extracted pattern instructions from the proprietary software KnitPaint [150].

These patterns have various sizes and span a large variety of designs from cable

patterns to pointelle stitches, lace, and regular reverse stitches.

Given this set of initial patterns (around a thousand), we normalized the patterns

by computing crops of 20 × 20 instructions with 50% overlap, while using default

99

Knitting Rendering

Figure 4-4: Different parts of our dataset (from left to right): real data images,
machine instructions, and black-box rendering.

front stitches for the background of smaller patterns. This provided us with 12,392

individual 20×20 patterns (after pruning invalid patterns since random cropping can

destroy the structure).

We then generated the corresponding images in two different ways: (1) by knitting

a subset of 1,044 patches, i.e., real data, and (2) by rendering all of them using the

basic pattern preview from KnitPaint, i.e., synthetic, simulated data. Figure 4-4

illustrates an example of supervised data triplet.

4.3.2 Knitting Many Samples

An important consideration for capturing knitted patterns is that their tension should

be as regular as possible so that knitting units would align with corresponding pattern

instructions. We initially proceeded with knitting and capturing patterns individually

but this proved to not be scalable. Over an initial 1-month period, we produced and

captured 372 patterns (front and back of 186 knitted samples) with a pattern-by-

pattern capture setup shown in Figure 4-5. The individual patterns were framed with

2-colors intarsia to make the course/wale mapping easier (or potentially automate it

completely). While knitting was fast, the capture bottleneck ended up being image

acquisition, which required a careful sample-by-sample installation and tensioning

with bowel pins.

We then chose to knit sets of 25 patterns over a 5 × 5 tile grid, each of which

would be separated by both horizontal and vertical tubular knit structures. The

tubular structures are designed to allow sliding 1/8 inch steel rods which we use

100

Figure 4-5: Our initial capture setup and a sample pattern illustrating the frame
made of intarsia. The pattern tension was controlled with bowel pins inserted at
specific holes that were programmed in the fabric.

Figure 4-6: Our updated capture setup and a sample of 5× 5 knitted patterns with
tension controlled by steel rods. In many cases, corner rods were sufficient, whereas
more complicated patterns required additional internal rods to reduce the local de-
formations.

to normalize the tension, as shown in Figure 4-6. Over a week, we produced and

captured an additional 1716 valid patterns (front and back of 858 knitted samples).

We had to discard some of the patterns in a few sheets as they were too distorted

or had local yarn failure. The image registration took an additional week to finally

result in our complete 2,088 real samples (including the initial 372 patterns). The

frequency of different instruction types is shown in Figure 4-7.

101

106

105

104

103

100

10

1

Figure 4-7: Instruction counts in decreasing order, for synthetic and real images.
Note the logarithmic scale of the Y axis.

4.4 Learning Framework

In this section, we present our deep neural network model that infers a 2D knitting

instruction map from an image of a knitted pattern. We first provide the theoretical

motivation of our framework, and then we describe the loss functions we used.

4.4.1 Learning from Different Domains

When we have a limited number of real data, it is appealing to leverage simulated data

because high quality annotations are automatically available. However, learning from

synthetic data is problematic due to apparent domain gaps between synthetic and real

data. We study how we can further leverage simulated data. We are motivated by

the recent work, Simulated+Unsupervised (S+U) learning [155], but in contrast to

them, we develop our framework from the generalization error perspective.

Let 𝒳 be input space (image), and 𝒴 output space (instruction label), and 𝒟 a

data distribution on 𝒳 paired with a true labeling function 𝑦𝒟:𝒳→𝒴 . As a typical

learning problem, we seek a hypothesis classifier ℎ:𝒳→𝒴 that best fits the target

function 𝑦 in terms of an expected loss: ℒ𝒟(ℎ, ℎ′)=E𝑥∼𝒟[𝑙 (ℎ(𝑥), ℎ′(𝑥))] for classifiers

ℎ, ℎ′, where 𝑙:𝒴×𝒴→R+ denotes a loss function. We denote its empirical loss as

ℒ̂𝒟̂(ℎ, ℎ′) = 1

|𝒟̂|

∑︀|𝒟̂|
𝑖=1 𝑙(ℎ(𝑥𝑖), ℎ

′(𝑥𝑖)), where 𝒟̂={𝑥} is the sampled dataset.

In our problem, since we have two types of data available, a source domain 𝒟𝑆 and

102

a target domain 𝒟𝑇 (which is real or simulated as specified later), our goal is to find ℎ

by minimizing the combination of empirical source and target losses as 𝛼-mixed loss,

ℒ̂𝛼(ℎ, 𝑦) = 𝛼ℒ̂𝑆(ℎ, 𝑦) + (1−𝛼)ℒ̂𝑇 (ℎ, 𝑦), where 0≤𝛼≤1, and for simplicity we shorten

ℒ𝒟{𝑆,𝑇}=ℒ{𝑆,𝑇} and we use the parallel notation ℒ{𝑆,𝑇} and ℒ̂{𝑆,𝑇}. Our underlying

goal is to achieve a minimal generalized target loss ℒ𝑇 . To develop a generalizable

framework, we present a bound over the target loss in terms of its empirical 𝛼-mixed

loss, which is a slight modification of Theorem 3 of Ben-David et al. [19].

Theorem 1. Let ℋ be a hypothesis class, and 𝒮 be a labeled sample of size 𝑚 gen-

erated by drawing 𝛽𝑚 samples from 𝒟𝑆 and (1− 𝛽)𝑚 samples from 𝒟𝑇 and labeling

them according to the true label 𝑦. Suppose ℒ is symmetric and obeys the triangle

inequality. Let ℎ̂ ∈ ℋ be the empirical minimizer of ℎ̂ = arg minℎ ℒ̂𝛼(ℎ, 𝑦) on 𝒮 for

a fixed 𝛼 ∈ [0, 1], and ℎ*
𝑇 = arg minℎ ℒ𝑇 (ℎ, 𝑦) the target error minimizer. Then, for

any 𝛿 ∈ (0, 1), with probability at least 1− 𝛿 (over the choice of the samples), we have

1
2
|ℒ𝑇 (ℎ̂, 𝑦)− ℒ𝑇 (ℎ*

𝑇 , 𝑦)| ≤ 𝛼 (discℋ(𝒟𝑆,𝒟𝑇) + 𝜆) + 𝜖, (4.1)

where 𝜖(𝑚,𝛼, 𝛽, 𝛿) =

√︂
1
2𝑚

(︁
𝛼2

𝛽
+ (1−𝛼)2

1−𝛽

)︁
log(2

𝛿
), and 𝜆= minℎ∈ℋ ℒ𝑆(ℎ, 𝑦)+ℒ𝑇 (ℎ, 𝑦).

Compared to Ben-David et al. [19], Theorem 1 is purposely extended to use a

more general definition of discrepancy discℋ(·, ·) [111] that measures the discrepancy

of two distributions and to be agnostic to the model type (simplification), so that

we can clearly present our motivation of our model design. The proof of Theorem 1

together with the discrepancy definition can be found in Appendix A.

Theorem 1 shows that mixing two sources of data is possible to achieve a better

generalization in the target domain. The bound is always at least as tight as either

of 𝛼 = 0 or 𝛼 = 1 (The case that uses either source or target dataset alone). Also,

as the total number of the combined data sample 𝑚 is larger, a tighter bound can be

obtained. We consider 0-1 loss for 𝑙 in this section for simplicity, but not limited to.

A factor that the generalization gap (the right hand side in Equation 4.1) strongly

depends on is the discrepancy discℋ(𝒟𝑆,𝒟𝑇). This suggests that we can achieve a

tighter bound if we can reduce discℋ(𝒟𝑆,𝒟𝑇). We re-parameterize the target distri-

103

bution 𝒟𝑇 as 𝒟𝑅 so that 𝒟𝑇=𝑔 ∘ 𝒟𝑅, where 𝑔 is a distribution mapping function.

Then, we find the mapping 𝑔* that leads to the minimal discrepancy for the empirical

distribution 𝒟̂𝑅 as:

𝑔* = arg min𝑔 discℋ(𝒟̂𝑆, 𝑔 ∘ 𝒟̂𝑅)

= arg min𝑔 max
ℎ,ℎ′∈ℋ

|ℒ𝒟̂𝑆
(ℎ, ℎ′)− ℒ𝑔∘𝒟̂𝑅

(ℎ, ℎ′)|, (4.2)

which is a min-max problem. Even though the problem is defined for an empiri-

cal distribution, it is intractable to search the entire solution space; thus, motivated

by Ganin et al. [54], we approximately minimize the discrepancy by Generative Ad-

versarial Networks (GAN) [58]. Therefore, deriving from Theorem 1, our empirical

minimization is formulated by minimizing the convex combination of source and tar-

get domain losses as well as the discrepancy as:

ℎ̂, 𝑔 = arg min
ℎ∈ℋ,𝑔∈𝒢

ℒ̂𝛼(ℎ, 𝑦) + 𝜏 · discℋ(𝒟̂𝑆, 𝑔∘𝒟̂𝑅). (4.3)

Along with leveraging GAN, our key idea for reducing the discrepancy between

two data distributions, i.e., domain gap, is to transfer the real knitting images (target

domain, 𝒟̂𝑅) to synthetic looking data (source domain, 𝒟̂𝑆) rather than the other way

around, i.e., making 𝒟̂𝑆 ≈ 𝑔∘𝒟̂𝑅. The previous methods have investigated generating

realistic looking images to adapt the domain gap. However, we observe that, when

simulated data is mapped to real data, the mapping is a one-to-many mapping due

to real-world effects, such as lighting variation, geometric deformation, background

clutter, noise, etc. This introduces an unnecessary challenge to learn 𝑔(·); thus, we

instead learn to neutralize the real-world perturbation by mapping from real data

to synthetic looking data. Beyond simplifying the learning of 𝑔(·), it also allows the

mapping to be utilized at test time for processing of real-world images.

We implement ℎ and 𝑔 using convolutional neural networks (CNN), and formulate

the problem as a local instruction classification1 and represent the output as a 2D

1While our program synthesis deals with multiple instruction classes, for simplicity, we consider
the binary classification here, and this can be extended to multiple classes [151].

104

array of classification vectors s⃗(𝑖,𝑗) ∈ [0; 1]𝐾 (i.e., softmax values over 𝑘 ∈ 𝐾) for our

𝐾 = 17 instructions at each spatial location (𝑖, 𝑗). In the following, we describe the

loss we use to train our model ℎ ∘ 𝑔 and then we detail the training procedure.

4.4.2 Loss Function

We use the cross entropy for the loss ℒ. We supervise the inferred instruction

to match the ground-truth instruction using the standard multi-class cross-entropy

CE(s⃗, y⃗) = −
∑︀

𝑘 𝑦𝑘 log (𝑠𝑘) where 𝑠𝑘 is the predicted likelihood (softmax value) for

instruction 𝑘, which we compute at each spatial location (𝑖, 𝑗).

For synthetic data, we have precise localization of the predicted instructions. In

the case of the real knitted data, human annotations are imperfect and this can cause

a minor spatial misalignment of the image with respect to the original instructions.

For this reason, we allow the predicted instruction map to be globally shifted by up to

one instruction. In practice, motivated by multiple instance learning [48], we consider

the minimum of the per-image cross-entropy over all possibles one-pixel shifts (as well

as the default no-shift variant), i.e., our complete cross entropy loss is

ℒCE =
1

𝑍𝐶𝐸

min
𝑑

∑︁
𝑖,𝑗∈𝒩𝑠

CE(s⃗(𝑖,𝑗)+𝑑, y⃗(𝑖,𝑗)), (4.4)

where 𝑑 ∈ {(𝑑𝑥, 𝑑𝑦) | 𝑑𝑥, 𝑑𝑦 ∈ {−1, 0,+1}} is the pattern displacement for the real

data and 𝑑 ∈ {(0, 0)} for the synthetic data. The loss is accumulated over the spatial

domain 𝒩𝑠 = {2, . . . , 𝑤−1}×{2, . . . , ℎ−1} for the instruction map size 𝑤×ℎ reduced

by boundary pixels. 𝑍𝐶𝐸 = |𝒩𝑠| is a normalization factor.

4.5 Implementation Details

The base architecture is illustrated in Figure 4-1. We implemented it using Tensor-

Flow [1]. The prediction network Img2prog takes 160×160 grayscale images as input

and generates 20×20 instruction maps. The structure consists of an initial set of 3

convolution layers with stride 2 that downsample the image to 20×20 spatial resolu-

105

IN
P

U
T

C
O

N
V

 S
2

, I
N

_R
e

LU

R
ES

B
LK

…

R
ES

B
LK

6x

U
P

SA
M

P
LE

C
O

N
V

 S
1

 F
1

C
O

N
C

A
T

U
P

SA
M

P
LE

C
O

N
V

 S
1

, R
e

LU

C
O

N
V

 S
1

, R
e

LU

C
O

N
V

 S
2

, I
N

_R
e

LU

Figure 4-8: The illustration of the Refiner network architecture, where S#𝑁 denotes
the stride size of #𝑁 , IN_ReLU indicates the Instance normalization followed by ReLU,
Resblk is the residual block that consists of ConvS1-ReLU-ConvS1 with shortcut
connection [66], Upsample is the nearest neighbor upsampling with the factor 2×, 𝐹
is the output channel dimension. If not mentioned, the default parameters for all the
convolutions are the stride size of 2, 𝐹 = 64, and the 3× 3 kernel size.

tion, a feature transformation part made of 6 residual blocks [66, 194], and two final

convolutions producing the instructions. The kernel size of all convolution layers is

3×3, except for the last layer which is 1×1. We use instance normalization [168] for

each of the initial down-convolutions, and ReLU everywhere.

We solve the minimax problem of the discrepancy disc(·, ·) w.r.t. 𝑔 using the least-

square Patch-GAN [194]. Additionally, we add the perceptual loss and style loss [82]

between input real images and its generated images and between simulated images

and generated images, respectively, to regularize the GAN training, which stably

speeds up the training of 𝑔.

4.5.1 The Refiner Network

Our refinement network translates real images into regular images that look similar to

synthetic images. Its implementation is similar to Img2prog, except that it outputs

the same resolution image as input. The layer configuration is shown in Figure 4-8.

106

4.5.2 Loss Balancing Parameters

When learning our full architecture with both Refiner and Img2prog, we have three

different losses: the cross-entropy loss ℒ𝐶𝐸, the perceptual loss ℒPerc, and the Patch-

GAN loss.

Our combined loss is the weighted sum

ℒ = 𝜆CEℒCE + 𝜆PercℒPerc + 𝜆GANℒGAN (4.5)

where we used the weights: 𝜆CE = 3, 𝜆Perc = 0.02/(128)2 and 𝜆GAN = 0.2. The

losses ℒPerc and 𝜆GAN are measured on the output of Refiner, while the loss 𝜆CE is

measured on Img2prog.

The perceptual loss [82] consists of the feature matching loss and style loss (using

the gram matrix). If not mentioned here, we follow the implementation details of

[82], where VGG-16 [156] is used for feature extraction, after replacing max-pooling

operations with average-pooling. The feature matching part is done using the pool3

layer, comparing the input real image and the output of Refiner so as to preserve

the content of the input data. For the style matching part, we use the gram matrices

of the {conv1_2, conv2_2, conv3_3} layers with the respective relative weights {0.3,

0.5, 1.0}. The measured style loss is between the synthetic input image and the

synthetic-like output of the Refiner network.

For ℒGAN and the loss for the discriminator, the least-square Patch-GAN loss [194]

is used. We used {−1, 1} for the regression labels for respective fake and real samples

insted of the label {0, 1} used in [194].

For training, we normalize the loss 𝜆CE to be balanced according to the data

ratio of a batch. Specifically, for example, suppose a batch consisting of 2 real and

4 synthetic samples, respectively. Then, we inversely weighted the respective cross

entropy losses for real and synthetic data by the weights of 4
6

and 2
6
, so that the effects

from the losses are balanced. This encourages the best performance to be expected

at near 𝛼 = 0.5 within a batch.

107

4.5.3 Data Augmentation

We use multiple types of data augmentation to notably increase the diversity of yarn

colors, lighting conditions, yarn tension, and scale:

• Global Crop Perturbation: we add random noise to the location of the crop

borders for the real data images, and crop on-the-fly during training; the noise

intensity is chosen such that each border can shift at most by half of one stitch;

• Local Warping: we randomly warp the input images locally using non-linear

warping with linear RBF kernels on a sparse grid. We use one kernel per

instruction and the shift noise is a 0-centered gaussian with 𝜎 being 1/5 of the

default instruction extent in image space (i.e. 𝜎 = 8/5);

• Intensity augmentation: we randomly pick a single color channel and use

it as a mono-channel input, so that it provides diverse spectral characteristics.

Also note that, in order to enhance the intensity scale invariance, we apply

instance normalization [168] for the upfront convolution layers of our encoder

network.

4.5.4 Training Procedure

We train our network with a combination of the real knitted patterns and the ren-

dered images. We oversample the real data to achieve 1:1 mix ratio with the previously

mentioned data augmentation strategies. We train with 80% of the real data, with-

holding 5% for validation and 15% for testing, whereas we use all the synthetic data

for training.

According to the typical training method for GAN [58], we alternate the training

between discriminator and the other networks, ℎ and 𝑔, but we update the discrimi-

nator only every other iteration, and the iteration is counted according to the number

of updates for ℎ and 𝑔.

We trained our model for 150𝑘 iterations with batch size 2 for each domain data

using ADAM optimizer with initial learning rate 0.0005, exponential decay rate 0.3

108

every 50, 000 iterations. The training took from 3 to 4 hours (depending on the

model) on a Titan XP GPU.

4.5.5 Data Post-Processing

The presented framework does not enforce hard constraint on the output semantics.

This implies that some outputs may not be machine-knittable as-is.

More precisely, the output of our network may contain invalid instructions pairs

or a lack thereof. We remedy to these conflicts by relaxing the conflicting instruction,

which happens in only two cases:

1. Unpaired Cross instructions – we reduce such instructions into their corre-

sponding Move variants (since Cross are Moves with relative scheduling),

and

2. Cross pairs with conflicting schedules (e.g., both pair sides have same priority,

or instructions within a pair’s side having different priorities) – in this case, we

randomly pick a valid schedule (note that its impact is only local).

This is sufficient to allow knitting on the machine. Note that Stack are seman-

tically supposed to appear with a Move, but they don’t prevent knitting since their

operations lead to the same as Knit when unpaired, and thus do not require any

specific post-processing.

4.6 Evaluation

We first evaluate baseline models for our new task, along with an ablation study

looking at the impact of our loss and the trade-off between real and synthetic data

mixing. Finally, we look at the impact of the size of our dataset..

Accuracy Metric For the same reason our loss in Eq. (4.4) takes into consideration

a 1-pixel ambiguity along the spatial domain, we use a similarly defined accuracy. It is

measured by the average of max𝑑
1

𝑁inst

∑︀
𝑖,𝑗 I[𝑦GT(𝑖,𝑗) = arg max𝑘 𝑠

𝑘
(𝑖,𝑗)+𝑑] over the whole

109

dataset, where 𝑁inst = 𝑍CE is the same normalization constant as in Eq. (4.4), 𝑦GT

the ground-truth label, I[·] is the indicator function that returns 1 if the statement

is true, 0 otherwise. We report two variants: FULL averages over all the instructions,

whereas FG considers all instructions but the background – i.e., we discard the most

predominant instruction in the pattern.

Perceptual Metrics For the baselines and the ablation experiments, we addition-

ally provide perceptual metrics that measure how similar the knitted pattern would

look. An indirect method for evaluation is to apply a pre-trained neural network

to generated images and calculate statistics of its output, e.g., Inception Score [144].

Inspired by this, we learn a separate network to render simulated images of the gener-

ated instructions and compare it to the rendering of the ground truth using standard

PSNR and SSIM metrics. Similarly to the accuracy, we allow for one instruction shift,

which translates to full 8 pixels shifts in the image domain.

4.6.1 Comparison to Baselines

Table 4.1 compares the measured accuracy of predicted instructions on our real image

test set. We also provide qualitative results in Figure 4-10 and 4-11.

The first 5 rows of Table 4.1-(a1-5) present results of previous works to provide

snippets of other domain methods. For CycleGAN, no direct supervision is provided

and the domains are mapped in a fully unsupervised manner. Together with Pix2pix,

the two first methods do not use cross-entropy but L1 losses with GAN. Although

they can provide interesting image translations, they are not specialized for multi-

class classification problems, and thus cannot compete. All baselines are trained from

scratch. Furthermore, since their architectures use the same spatial resolution for both

input and output, we up-sampled instruction maps to the same image dimensions

using nearest neighbor interpolation.

S+U Learning [155] used a refinement network to generate a training dataset that

makes existing synthetic data look realistic. In this case, our implementation uses

our base network Img2prog and approximates real domain transfer by using style

110

Table 4.1: Performance comparison to baseline methods on our real image
test dataset. The table shows translation invariant accuracy of the predicted
instructions with and without the background and PSNR and SSIM metrics for the
image reconstruction where available. More is better for all metrics used.

Method Accuracy (%) Perceptual

Full FG SSIM PSNR

(a1)CycleGAN [194] 57.27 24.10 0.670 15.87 dB
(a2)Pix2Pix [78] 56.20 47.98 0.660 15.95 dB
(a3)UNet [138] 89.65 63.99 0.847 21.21 dB
(a4)Scene Parsing [193] 91.58 73.95 0.876 22.64 dB
(a5) S+U [155] 91.32 71.00 0.864 21.42 dB

(b1)Img2prog (real only) with CE 91.57 71.37 0.866 21.62 dB
(b2)Img2prog (real only) with MILCE 91.74 72.30 0.871 21.58 dB

(c1) Refiner + Img2prog (𝛼 = 0.9) 93.48 78.53 0.894 23.28 dB
(c2) Refiner + Img2prog (𝛼 = 2/3) 93.58 78.57 0.892 23.27 dB
(c3) Refiner + Img2prog (𝛼 = 0.5) 93.57 78.30 0.895 23.24 dB
(c4) Refiner + Img2prog (𝛼 = 1/3) 93.19 77.80 0.888 22.72 dB
(c5) Refiner + Img2prog (𝛼 = 0.1) 92.42 74.15 0.881 22.27 dB

(d1)Refiner + Img2prog++ (𝛼 = 0.5) 94.01 80.30 0.899 23.56 dB

transfer. We tried two variants: using the original Neural Style Transfer [55] and

CycleGAN [194]. Both input data types lead to very similar accuracy (negligible

difference) when added as a source of real data. We thus only report the numbers

from the first one [55].

4.6.2 Impact of Loss and Data Mixing Ratio

The second group in Table 4.1-(b1-2) considers our base network ℎ (Img2prog) with-

out the refinement network 𝑔 (Refiner) that translates real images onto the synthetic

domain. In this case, Img2prog maps real images directly onto the instruction do-

main. The results generated by all direct image translation networks trained with

cross-entropy (a3-5) compare similarly with our base Img2prog on both accuracy and

perceptual metrics. This shows our base network allows a fair comparison with the

competing methods, and as will be shown, our final performance (c1-5, d1) is not

gained from the design of Img2prog but Refiner.

111

Table 4.2: Performance of Refined+Img2prog++ measured per instruction
over the test set. This shows that even though our instruction distribution has
very large variations, our network is still capable of learning some representation for
the least frequent instructions (3 orders of magnitude difference for FR2, FL2, BR2,
BL2 compared to K and P).

Instruction K P T M FR1 FR2 FL1 FL2

Accuracy [%] 96.52 96.64 74.63 66.65 77.16 100.0 74.20 83.33
Frequency [%] 44.39 47.72 0.41 1.49 1.16 0.01 1.23 0.01

Instruction BR1 BR2 BL1 BL2 XR+ XR- XL+ XL- S

Accuracy [%] 68.73 27.27 69.94 22.73 60.15 62.33 60.81 62.11 25.85
Frequency [%] 1.22 0.02 1.40 0.02 0.22 0.18 0.19 0.22 0.12

The third group in Table 4.1-(c1-5) looks at the impact of the mixing ratio 𝛼

when using our full architecture. In this case, the refinement network 𝑔 translates

our real image into a synthetic looking one, which is then translated by Img2prog

into instructions. This combination favorably improves both the accuracy and per-

ceptual quality of the results with the best mixing ratio of 𝛼=2/3 as well as a stable

performance regime of 𝛼 ∈ [0.5, 0.9], which favors more the supervision from diverse

simulated data. While 𝜖 in Theorem 1 has a minimum at 𝛼=𝛽, we have a biased 𝛼

due to other effects, disc(·) and 𝜆.

We tried learning the opposite mapping 𝑔 (from synthetic image to realistic look-

ing), while directly feeding real data to ℎ. This leads to detrimental results with

mode collapsing. The learned 𝑔 maps to a trivial pattern and texture that injects the

pattern information in invisible noise – i.e., adversarial perturbation – to enforce that

ℎ maintains a plausible inference. We postulate this might be due to the non-trivial

one-to-many mapping relationship from simulated data to real data, and overburden

for ℎ to learn to compensate real perturbations by itself.

In the last row of Table 4.1-(d1), we present the result obtained with a vari-

ant network, Img2prog++ which additionally uses skip connections from each down-

convolution of Img2prog to increase its representation power. This is our best model

in the qualitative comparisons of Figure 4-10.

112

86.36 88.02 90.01 91.57

49.72
56.31

65.91 71.37

0

25

50

75

100

200 samples (12.5%) 400 samples (25%) 800 samples (50%) All samples (100%)

Full Accuracy (%) Foreground Accuracy (%)

Figure 4-9: The impact of the amount of real training data (from 12.5% to 100% of
the real dataset) over the accuracy.

Finally, we check the per-instruction behavior of our best model, shown through

the per-instruction accuracy in Table 4.2. Although there is a large difference in

instruction frequency, our method still manages to learn some useful representation

for rare instructions but the variability is high. This suggests the need for a systematic

way of tackling the class imbalance [72, 104].

4.6.3 Impact of Dataset Size

In Figure 4-9, we show the impact of the real data amount on accuracy. As expected,

increasing the amount of training data helps (and we have yet to reach saturation).

With low amounts of data (here 400 samples or less), the training is not always stable

– some data splits lead to overfitting.

4.6.4 Larger Models

In our baseline, we compared with a sample architecture from [193], which we made

small enough to compare with our baseline Img2prog implementation. Furthermore,

our baseline implementations were all trained from scratch and did not make use of

pre-training on any other dataset.

Here, we provide results for a much larger variant of that network, which we

name Large Scene Parsing, and makes use of pre-training on ImageNet [143]. The

quantitative comparison is provided in Table 4.3, which shows that we can achieve

113

Table 4.3: Performance comparison with the larger scene parsing network
from Zhou et al. [193] . (d2) uses pre-training on ImageNet [143] and a much
larger number of parameters (51.4M vs. 1.4M – with M for Millions).

Method Accuracy (%) Perceptual Params
Full FG SSIM PSNR

(d1)Refiner + img2prog++
(𝛼 = 1/2)

94.01 80.30 0.899 23.56 dB 1.4 M

(d2)Large Scene Parsing
with pre-training [193]

94.95 83.46 0.908 24.58 dB 51.4 M

Figure 4-10: Comparisons of instructions predicted by different versions of our
method. We present the predicted instructions as well as a corresponding image
from our renderer.

even better accuracy than our best current results using our Refiner+Img2prog++

combination. However, note that this comes with a much larger model size: ours has

1.4M parameters, whereas Large Scene Parsing has 51.4M. Furthermore, this requires

pre-training on ImageNet with millions of images (compared to our model working

with a few thousands only).

4.6.5 Knitting the Inferred Programs

While the accuracy and perceptual metrics provide some important quantitative in-

formation, they are incomplete in describing the extents of what can be done with

114

Figure 4-11: Additional qualitative comparisons of instructions predicted by different
versions of our method, with their renderings.

the current system. Thus, we explicitly knitted a few samples from the inferred pro-

grams from the test set. The test results can be grouped into four categories: perfect

results, minor errors that do not induce large deformations, larger errors that change

the topology but are fine to knit, and catastrophic errors that are dangerous to knit.

Most of the test results have minor or major errors – they create slight variations

in the pattern but are mostly knittable. Figure 4-12 illustrates a few larger infer-

ence errors and the result after knitting them. Interestingly, although the programs

are visibly different, the knitted results appear a lot similar to the original samples.

Figure 4-13 shows the only two test samples we consider as catastrophic examples.

115

Initial program Initial sample Inferred program Final sample

Figure 4-12: Examples of erroneously inferred programs that are still knittable.

Knitting them would fail and may likely break needles. The first one illustrates a

limitation of one of our assumptions, namely that the reverse pattern taken from

the back image of a stitch pattern may not necessarily “classify” as a proper knitting

pattern from the aesthetic perspective. The second one showcases complicated long-

distance interactions and a failure to recover them – notably move instructions used

for lace and holes. Knitting any of those two would likely lead to failures and more

complicated yarn pile-up, with broken needles.

116

Initial sampleInitial program Inferred program
Figure 4-13: The two main test samples that are definitely not knittable as-is.

4.7 Discussions and Related Work

4.7.1 Pattern Scale Identification

Our base system assumes that the input image is taken at a specific zoom level

designed for our dataset. This is not true for a random image. We currently assume

this to be solved by the user given proper visual feedback (i.e., the user would see the

pattern in real-time as they scan their pattern of interest with a mobile phone).

We investigated the potential of automatically discovering the scale of the pattern.

Our base idea is to evaluate the confidence of the output instruction map for different

candidate scales and to choose the one with highest confidence. Although the softmax

output cannot directly be considered as a valid probability distribution, it can serve

as an approximation, which can be calibrated for [62]. As a proof of concept, we take

a full 5 × 5 pattern image from our dataset and crop its center at different scales

117

160 200 320 400 500 600 700 800 900 1000 1500 2000

62.5
63 63.7 65.3

75.6

85.3 85

72.9
69.5

65.7
62.1 61

Scale [pixels]

Sc
al

e
Ps

eu
do

-C
on

fid
en

ce
 [%

]

50

60

70

80

90

100

500 1000 1500

Figure 4-14: Scale identification experiment. Top row : cropped input image at cor-
responding scales with the correct pixel scale in bold with a light-gray background.
Plot : pseudo-confidence curve showing a peak at the correct pixel scale (600).

from 160 pixels to 2000 pixels of width. We then measure the output of the network

and compute a scale pseudo-confidence as the average over pixels of the maximum

softmax component.

In Figure 4-14, we show a sample image with crops at various scales, together with

the corresponding uncalibrated pseudo-confidence measure, which peaks at around

600 pixels scale. Coincidentally, this corresponds to the scale of our ground truth

crops for that image.

This suggests two potential scenarios: (1) the user takes a much larger image and

then that pattern image gets analysed offline to figure out the correct scale to work at

using a similar procedure, and then generates a full output by using a tiling of crops

at the detected scale, or (2) an interactive system could provide scale information

and suggest the user to get closer to (or farther from) the target depending on the

confidence gradient.

4.7.2 Learning with Simulated Data

The presented learning framework demonstrates a way to effectively leverage both

simulated and real knitting data. There have been a recent surge of adversarial learn-

118

ing based domain adaptation methods [70, 155, 167] in the simulation-based learning

paradigm. They deploy GANs and refiners to refine the synthetic or simulated data

to look real. We instead take the opposite direction to exploit the simple and regular

domain properties of synthetic data. Also, while they require multi-step training,

our networks are end-to-end trained from scratch and only need a one-sided mapping

rather than a two-sided cyclic mapping [70].

4.7.3 Semantic Segmentation

Our problem is to transform photographs of knit structures into their corresponding

instruction maps. This resembles semantic segmentation which is a per-pixel multi-

class classification problem except that the spatial extent of individual instruction

interactions is much larger when looked at from the original image domain. From

a program synthesis perspective, we have access to a set of constraints on valid in-

struction interactions (e.g. Stack is always paired with a Move instruction reaching

it). This conditional dependency is referred to as context in semantic segmentation,

and there have been many efforts to explicitly tackle this by Conditional Random

Field (CRF) [33, 140, 192]. They clean up spurious predictions of a weak classifier

by favoring same-label assignments to neighboring pixels, e.g., Potts model. For our

problem, we tried a first-order syntax compatibility loss, but there was no noticeable

improvement. However we note that Yu and Koltun [189] observed that a CNN with

a large receptive field but without CRF can outperform or compare similarly to its

counterpart with CRF for subsequent structured guidance [33, 192]. While we did

not consider any CRF post processing in this work, sophisticated modeling of the

knittability would be worth exploring as a future direction.

Another apparent difference between knitting and semantic segmentation is that

semantic segmentation is an easy – although tedious – task for humans, whereas

parsing knitting instructions requires vast expertise or reverse engineering.

Finally, we tried to use a state-of-the-art scene parsing network with very large

capacity and pretraining [193] which led to similar results to our best performing

setup, but with a significantly more complicated model and training time.

119

4.7.4 Neural Program Synthesis

In terms of returning explicit interpretable programs, our work is closely related to

program synthesis, which is a challenging, ongoing problem.2 The recent advance

of deep learning has made notable progress in this domain, e.g., Devlin et al. [47],

Johnson et al. [83]. Our task would have potentials to extend the research boundary

of this field, since it differs from any other prior task on program synthesis in that:

1) while program synthesis solutions adopt a sequence generation paradigm [89], our

type of input-output pairs are 2D program maps, and 2) the domain specific language

is newly developed and applicable to practical knitting.

2A similar concept is program induction, in which the model learns to mimic the program rather
than explicitly return it. From our perspective, semantic segmentation is closer to program induction,
while our task is program synthesis.

120

Chapter 5

Primitive-Based Garment Design

A common strategy for designing complex artifacts consists in composing simpler

building blocks. This is the case of most CAD software for engineering [11, 94, 108,

137]. One typical property of such workflows is that the corresponding designs can

be customized by modifying user-defined parameters that correspond to important

semantic features. In this chapter, we ask the following question:

“ What are necessary and/or sufficient building blocks for creating

knitting designs that can be customized? ”
5.1 Knitting Templates

Existing commercial software [150, 159] provide garment templates with a set of

customizable properties (sizing, shaping types, etc.) such as in Figure 5-1. Templates

are an effective starting point for creating a design as they wrap expert knowledge

and allow for simple parameter-based customization.

Contents of this chapter are adapted with permission from - A. Kaspar, L. Makatura, W.
Matusik, “Knitting Skeletons: Computer-Aided Design Tool for Shaping and Patterning of Knitted
Garments”, UIST 2019. https://doi.org/10.1145/3332165.3347879. [Copyright by the authors].

121

https://doi.org/10.1145/3332165.3347879

Figure 5-1: Examples of knitting template dialogs for a sweater in KnitPaint [150]:
the categories of sweaters (left), the sizing information (right).

5.1.1 Limitations of Existing Templates

Unfortunately, the set of templates is obviously limited and template parameters

only modify the garment geometry (known as shaping). The surface texture and

appearance (including patterning and colorwork) must be specified through separate

tools, or by manipulating the local instructions generated from the templates.

The two main limitations we wish to alleviate are: (1) existing templates cannot

be composed, which limits potential to a fixed set of predefined shapes, and (2) these

templates lack a bidirectional decoupling between shaping and patterning, such that

any alteration of shape parameters requires recreating the associated patterns.

5.1.2 Existing Primitives for Knitting

McCann et al. [116] propose a tool to compose knitting primitives on the time–needle

bed and introduce a binding strategy based on a novel algorithm for automating the

scheduling of loop transfers.

Our work differs by (1) relying on a split/merge primitive to form branching

structures instead of relying on manual binding, (2) not requiring the user to specify

the needle bed layout, but instead inferring it automatically given fully parametric

primitives, and (3) supporting stitch patterns on top of the shaping primitives.

122

(a) Full time-needle bed layout (b) Compacted layout for local editing

Figure 5-2: The time–needle bed depicts the knitting process over time. We provide
a compact version that collapses suspended stitches to allow a local composition
of primitives instead of the traditional composition over time. Both sides can be
inspected separately or together.

5.1.3 Proposed Workflow

We present here a typical workflow session, and then elaborate on several individual

components and features of our system. The following sections detail the shaping

primitives (Section 5.2), patterning DSL (Section 5.3) and system implementation

(Section 5.4), before discussing our results (Section 5.5) and the feedback from non-

expert user experience (Section 5.6).

Typical Workflow

Our user starts from a base shape primitive (flat or tubular sheet) and modifies its

shape parameters (e.g. size, layout, seams) by interactively manipulating them on

the time-needle bed (Figures 5-2 and 5-3, detailed below). These interactions include

dragging primitive boundaries for sizing, as well as dragging layout elements to change

their location.

The user can also use a contextual menu to directly edit all exposed properties.

In the global context (no shape selected), users can create new shapes and define

user parameters (such as a glove’s base finger length) that can refer to each other to

create parametric design dependencies for templates. While hovering over a shape

123

Figure 5-3: By zooming on the layout, we can inspect the local patterning operations
and the simulated pattern flow.

primitive, users can rename it, delete it, or edit any of its properties. By clicking

on a shape boundary (called an interface), the user can “extend” the given shape by

connecting it to an available interface with valid matching parameters, or by creating

a new primitive (which will automatically connect to the selected interface, and select

matching parameters).

After creating the desired shape, the user switches to the pattern editing mode,

where the toolbar actions affect individual stitches. In this mode, the user can either

(1) draw the desired pattern directly onto a shape primitive, similarly to a pixel

editing program, or (2) write pattern programs using our DSL within an editor that

interactively previews the patterns on the time–needle bed. As the user zooms in/out,

we display varying levels of information, including the type of pattern operation, and

the local yarn topology (course and wale connections).

124

Index �nger

Middle �nger

Ring �nger

Pinky

4-�ngers palm

Thumb

Palm Cu�

Figure 5-4: Sideways view of a compact glove in our system. The underlying skeleton
graph is highlighted on top, with tubular sheet nodes in blue and split nodes in fuchsia.

Finally, the user can visualize the yarn structure with a force layout tool, save the

resulting skeleton, load a new one, or inspect and export the necessary machine code.

Shape Skeleton

The recent work of Narayanan et al. [122] showed that any shape whose skeleton

can be drawn on a plane without self-intersection can be knitted with a V-bed weft

knitting machine. This motivates our underlying shape representation, which is a

skeleton graph whose nodes are shape primitives, and edges are connections between

node interfaces, as illustrated in Figure 5-4. The garment shape is defined by the node

types, connections and parameters. The final surface pattern is defined by pattern

layers associated with each node, and applied on the stitches locally. Together, these

produce the final knitted structure.

By construction, our shape primitives allow for a continuous yarn path within each

node and across interfaces, thus ensuring knittable skeletons. However, issues can still

arise since (1) shape parameters across interfaces may be in conflict (e.g. different

widths), and (2) user patterns may produce unsound structures or put excessive stress

on the yarn. We identify such problems, but we do not fix them, because there is

typically no “correct” solution without knowing the user’s intention. Instead, we issue

warnings (detailed later), and let the resolution to the user.

125

Figure 5-5: Warnings regarding a long-term dependency that would collapse the yarn
(left). By highlighting the conflict dependencies, the user can more easily fix the
pattern (right).

Time–Needle Bed

The main visualization onto which the shape skeleton is composed is the time–needle

bed. It is a common representation for machine knitting [116, 150], illustrated in

Figure 5-2. The actual bed layout is automatically computed as the user extends

or modifies the underlying skeleton. This representation has two advantages: (1) it

directly shows the time process followed by the knitting machine, which allows us

to produce interpretable warnings if the user creates undesirable knitting structures

(see Figure 5-5), and (2) it introduces a grid regularity, which allows the user to draw

complex patterns in a manner similar to layered image editing.

Yarn Interpretation and Simulation

Our system interprets the yarn path through time to provide warnings and errors to

the user as they create their shape and combine patterns, as shown in Figure 5-5. The

main issues we catch are (1) unsafe yarn tension prone to yarn breakage, (2) too many

yarn loops on a needle, risking pile-up or failed operation, and (3) reverse stitches

126

Figure 5-6: Force-layout simulation to preview the impact of the yarn stress forces
on the final shape.

when the opposite bed is occupied (e.g. in full-gauge tubular knitting). We provide

feedback both textually with the types of issue and potential fixes, and visually by

highlighting the problematic stitches together with their conflict dependencies.

We also provide a force-layout graph simulation [172] as an approximate preview

of the yarn deformation after knitting, as illustrated for a glove in Figure 5-6.

Low-Level Machine Code

Finally, we provide a view to inspect the low-level code that is generated for the

current layout, as illustrated in Figure 5-7. This allows experienced designers and

machine operators to inspect the actual program used by the machine.

127

Figure 5-7: Part of the low-level instructions for a simplified version of the glove, to
be processed with KnitPaint [150].

5.2 Parametric Shape Primitives

Each of our three knitting primitives (Sheet, Joint, and Split) play a specific role in

the garment’s final shape. We detail each primitive and its properties, then provide

more details on our skeleton editing paradigm.

As skeleton nodes, all primitives have a name (for visualization and pattern refer-

ences), a pattern, and a gauge, which we detail in the next section. All nodes also

define a set of interfaces which can be connected to other nodes.

5.2.1 Sheet / Tube

The Sheet primitive is the base component for knitting any flat or tubular structure.

Its two main parameters are its length, defining the number of courses making up the

sheet, and its width, defined over the length. At a high-level, the user can modulate

the width as a piecewise linear function over the normalized length interval [0; 1],

yielding non-rectangular profiles illustrated in Figure 5-9. If desired, the user can

128

width

le
n
g
th

Property Values

Type Flat, Tubular
Length Integer
Width [0; 1]→ R>0

Shaping Uniform, Sides, Left,
Right, Center, Custom

Alignment Left, Right, Center

Bottom Interface
Top Interface

Figure 5-8: A tubular sheet, and the table of its properties

also customize the stitch-level shaping behavior (i.e. placement of stitch increases and

decreases) using one of multiple predefined behaviours, or a user-provided function

that specifies how to allocate wale connections when changing the course width. We

provide details for these functions in Section 5.2.5, including examples of how the

shaping behavior affects the appearance of the yarn with the location of seams. The

primitive layout can be customized by choosing a specific alignment, which impacts

both the bed layout and the yarn stress distribution. This primitive has two interfaces:

the top and the bottom.

5.2.2 Joint

Our Joint primitive captures the second shaping process, called short rows, which only

knit across a subsection of the current course, while suspending the other stitches.

These partial rows induce bending in the structure, as in a sock heel. A Joint repre-

sents a collection of such short rows. The user can specify the number of short rows,

the width of each, and their respective alignment. Users can also specify a layout,

which controls the normalized location of short rows along the interface boundaries,

i.e. their offset for flat knitting, or the rotation for tubular knitting. The interfaces

are the same as for the Sheet primitive.

129

Figure 5-9: Different variations of a tubular sheet’s width function. The yellow stitch
nodes highlight the boundaries between front and back on the time–needle bed layout.

rows

Property Values

Rows Integer
Width [0; 1]→ R>0

Layout [0; 1] or “auto”
Alignment Left, Right, Center

Bottom Interface
Top Interface

Figure 5-10: Joint primitive as the heel of a sock, and the table of its properties

5.2.3 Split / Merge

Finally, our Split primitive allows for more complicated structures (like gloves) that

require topological branching and/or merging. It merely consists of a base interface

130

degree=2

Property Values

Degree Integer
Layout [0; 1]𝑑 or "auto"
Alignment Uniform, Left, Right,

Center

Folded True or False

Base Interface
Branches List[Interface]

Figure 5-11: Split primitive between one sheet branching into two, and the table of
its properties

(a) Tubular branches
Folded = True

(b) Flat branches
Folded = False

Figure 5-12: Diagram illustrating the difference between folded and non-folded splits
for a tubular base across the two needle beds. The two branches are highlighted with
different colors.

and a set of branch interfaces. It has a branching degree together with a branch layout.

For automatic layouts, the user can also provide the branch alignment. Furthermore,

for tubular bases, the branching can be folded (tubular branches) or not (flat branches)

as illustrated in Figure 5-12. Flat bases only allow flat branches. Finally, since the

interface connections are not restricted in any direction, this primitive can be used

both to subdivide an interface or to merge multiple interfaces together.

5.2.4 Editing Primitive Parameters

Our system allows multiple interaction strategies. One can work exclusively with

the abstract skeleton graph, and edit parameters using a tabular inspection panel.

131

Alternatively, one can drag the mouse to interactively extend the shapes on the bed

layout. In this approach, more complicated parameters can be specified using the

contextual menu that allows the same fine-grained control as the tabular parameter

panel.

When specifying parameters through the input panel or the contextual menu, the

user can enter either direct numbers, or #expressions that introduce global design

parameters. These are global variables that can be reused across different inputs and

node parameters, providing a means to expose important design parameters (such

as a glove’s width or length scale). For example, the user could specify the length

of a glove finger via (#Len + #LenDelta) which introduces two parameters, #Len

and #LenDelta. Each of these could be independently applied for the other finger

specifications, and any changes to the variable value would be reflected globally. These

expressions can also refer to node properties with @prop. For example, the width of

a sheet could be made equal to its length using the expression @length.

5.2.5 Programmatic Shaping

Our system allows the user to specify shaping programs for the Sheet/Tube primitives.

Although the main change in shape from such primitive comes from the difference in

course sizes, the local wale connections have two important impacts:

• They induce visual seams around the change of wale flow

• They impact the stitch stability (and thus can lead to knitting failures)

A shaping program describes a function which links stitch units between two

consecutive course rows of sizes 𝑀 and 𝑁 . Since the order is not important as we are

creating bidirectional wale connections, we assume that 𝑀 ≤ 𝑁 . The program takes

as input 𝑀 , 𝑁 , as well as the current index 𝑖 within the first course (0 ≤ 𝑖 ≤ 𝑀),

and potentially other context parameters. Its output is a (possibly empty) sequence

of mappings between cells of the first course and cells of the second course. For two

courses of same sizes, the simplest mapping is 𝑖→ 𝑖. Two common shaping programs

132

(uniform and center) are illustrated in Figure 5-13. Given the mapping from the

shaping program, our system then creates corresponding wale connections between

the associated stitch units.

In comparison, systems that build upon meshes such as AutoKnit [122] or Stitch

Meshes [186, 187, 190] do not directly provide user control over increases and de-

creases. Instead, these are implicitly encoded in the original mesh. Figure 5-13 shows

that we can use shaping programs to control the location of seams, which is of interest

when customizing a garment.

1 l e t r a t i o = M / N;
2 l e t j 1 = round (i ∗ r a t i o) ;
3 l e t j 2 = round ((i +1) ∗ r a t i o) ;
4 i f (j 2 == j1 + 1) {
5 // i maps to s i n g l e j1
6 i −> j1 ;
7 } else {
8 // i s p l i t s i n t o two
9 // at each s e c t o r boundary

10 i −> (j1 , j 1 + 1) ;
11 }

Listing (5.1) Uniform shaper program

1 l e t d = N − M;
2 l e t o1 = round (M/2 − d/2) ;
3 l e t o2 = o1 + d ;
4 i f (i < o1)
5 i −> i ; // l e f t par t
6 else i f (i < o2) {
7 // inc rea se s p l i t s in cen ter
8 i −> (o1 + 2∗(i−o1) ,
9 o1 + 2∗(i−o1) + 1) ;

10 } else
11 i −> (i+d) ; // r i g h t par t

Listing (5.2) Center shaper program

Figure 5-13: Standard shaper programs: (left) uniform distributes the increases and
decreases uniformly, (right) center accumulates them in the center of the course.
Notice the visible seam in the center. At the top are program illustrations for 𝑀 = 10,
𝑁 = 14 (these numbers are here for illustration, they vary for every row in a real
knitting structure). At the bottom are the bed layouts as well as the knitted results
for a flat triangular sheet.

133

Category Methods Explanation

Filtering all(), filter(pred) Stitches that match
a logic predicate

Sets or(x,y), and(x,y),
minus(x,y), inverse()

Standard set operations
on collections of stitches

Indexed wales(rng), courses(rng),
select(c, w)

Indexed stitches within a range

Neighborhood neighbors(rng),
boundaries()

Stitches at some distance
from the selection

Named named(), shape(name),
itf(name)

Stitches of a named entity

Masking stretch(grid),
tile(grid), img(src)

Stitches that match
a given grid mask

Table 5.1: Our categories of pattern queries with their main methods and usage
explanation

5.3 Patterning

Given a shape skeleton, our system assembles stitches for each of its nodes, and then

merges stitch information at the interfaces, producing a stitch graph whose nodes

are individual stitch units. Initially, the stitch connections (course and wale) are

defined by the shape primitives. Each stitch also includes a pattern operation that

describes how to modify the stitch with respect to its surrounding neighborhood.

These operations allow the user to design special surface textures and appearance on

top of the shape.

5.3.1 Pattern Operations

For the pattern operations of each stitch, we use the instruction set described in

Section 4.2 [91]. The main difference is that we apply those instructions not on a

one-sided regular grid, but on the stitch graph, which is then projected back to the

time-needle bed to generate the final low-level machine code. Figures 4-2 and 4-3

illustrate the types of pattern operations we support.

Importantly, our pattern operations do not create or delete stitch units. Instead,

they modify how individual units are interpreted, either by providing a different

134

operation to the target needle (purl or tuck instead of the default knit), or by altering

the wale connections (miss, move and cross). In the case of miss, any previous wale

connections of the missed stitch are transferred to the subsequent one. Move and

cross operations change the subsequent wale connection to a neighboring one along

the next course.

If a neighboring wale target does not exist (e.g. at the border of a flat sheet), then

the operation is not applied. Note that courses of tubular sheets are treated as cyclic,

so a neighboring wale connection always exists (possibly on the other bed). The

system ignores move and cross operations on irregular stitches (increase/decrease) to

ensure structural soundness.

5.3.2 Patterning DSL

To apply pattern operations on the stitch graph, we designed a domain specific lan-

guage in which the user first specifies a subset of stitches of interest – the query –

onto which they can apply a given patterning operation.

Our types of queries are listed in Table 5.1, and a subset is illustrated in Figure 5-

14. The main query is filter, on which all other queries are based (with some

specialized implementations to improve speed).

5.3.3 Drawing Layers

All our patterns are synthesized using our DSL. We split the pattern specification

into a sequence of layers: (1) an initial global layer spanning all stitches, (2) varying

sequences of per-node layers modifying stitches of specific nodes, and (3) a final

global layer. By default, all base layers are empty and we assume the base pattern is

a standard knit stitch.

Users can write their own program, use pre-existing ones, or interactively draw

node pattern layers in a manner similar to image editing software that allows pixel-

level modifications. We preview the impact of the patterns on the wales, as illustrated

in Figures 5-3 and 5-5, where move operations displace the upper wale targets.

135

Initial Range of wales . . . of courses

Area select Union neighbor

img mask tile mask Filter with noise

Figure 5-14: Illustrations of some of the main pattern queries, each highlighted on a
30× 30 flat sheet.

Our pattern layers can be exported, imported and resampled for different shapes

and sizes. The resampling behaviour can be specified by using different types of

layers. We provide three pattern drawing types – singular, scalable and tileable –

whose behaviors are illustrated in Figure 5-15.

136

(a) Pattern (b) Singular behavior

(c) Scalable behavior (d) Tileable behavior

Figure 5-15: A base 3×3 pattern and illustrations of the different resampling behaviors
for each of our layer types.

Singular Layers

This is our default drawing mode, which does not resample the initial pattern, but

simply modifies its location to account for the change in size (e.g., by centering the

original pattern).

Scalable Layers

These layers resample their pattern by nearest neighbor resizing. In this mode, we do

not allow cross operations, which are coupled in paired groups and typically applied

with a limited local range constraint to prevent yarn breakage.

Tileable Layers

These layers resample their pattern by applying a modulo operation so as to create

a tiling of the original pattern.

From Drawings to Programs

Drawings are stored as semi-regular grids of operations, which can be empty (for no

operation, the default). To apply the drawing, we transform it into a basic program

137

(a) Tubular in full gauge. width = 10 (b) Tubular in half gauge. width = 5

Figure 5-16: Illustration of the gauge parameter. The width is modified to keep the
same bed support. The half-gauge variant uses different offsets between beds to allow
reverse stitches.

that makes use of the drawing data together with a resampling function depending on

the type of layer. Singular layers relocate the drawing information, whereas scalable

and tileable layers use the stretch and tile functions, respectively.

5.3.4 Half-Gauge Knitting

For each primitive, the user can choose a desired gauge (either full or half). This

property is important because pattern operations that modify the side of the stitch

operation (regular vs reverse, or “purl”) can only occur on a given stitch if the needle

directly across from it (on the opposite bed) is empty. In the case of tubular fabric,

the opposite bed holds the other side, which can lead to conflicts. In such case,

half-gauge knitting is a typical solution, which consists in knitting on every other

needle, with both sides offset such that any needle’s counterpart on the opposite bed

is empty, as shown in Figure 5-16. Note that the need for half-gauge depends on both

the shape and the pattern. Even if it is unnecessary, it may still be desirable because

it creates looser fabric. Thus, we do not automatically choose which gauge to use, but

let the decision to the user. For full-gauge primitives, we detect conflicting patterns

and show a warning to suggest switching gauge.

138

5.4 Implementation Overview

We provide a brief overview of our pipeline implementation. It borrows ideas from

both Stitch Meshes [186, 190] and Automatic 3D Machine Knitting [116, 122]. The

initial input is the user-generated skeleton as well as a starting interface to knit from.

The pipeline can be divided into the following stages:

1. Stitch graph computation – each node is translated into a set of stitch

courses, the course traversal is scheduled and the yarn is traced to resolve miss-

ing connectivity;

2. Pattern application: pattern layers are translated into their corresponding

programs and executed, effectively assigning a pattern instruction to each stitch;

3. Layout optimization: the node courses are organized into layout groups,

whose offsets and bed sides are optimized iteratively to reduce the stress between

stitches;

4. Knitting interpretation: the whole time–needle bed is generated, and the

yarn path interpreted using both associated pattern instructions and wale con-

nections to generate a sequence of passes (cast-on, actions, transfers, cast-off);

5. Knitting simulation: the bed passes are simulated to evaluate potential dan-

gerous yarn situation (large moves, yarn piling up) and generate appropriate

warning or error messages;

6. Code generation: the bed passes are translated into low-level machine instruc-

tions including specialized needle cast-on and cast-off procedures to prevent yarn

from unravelling.

Additionally, for visualization purposes, we optionally compact the time–needle

bed by removing some of the suspended stitch sections. This generates a more com-

pact time–needle bed visualization in which nearby courses are located close-by in

“time” – the time axis becoming loosely defined.

139

5.4.1 Stitch Graph Computation

The computation of the stitch graph is done in three steps: (1) per-node courses

are generated and bound within their respective node, (2) courses are topologically

sorted and scheduled for traversal, (3) the yarn path is traced and additional missing

connectivity is resolved or created as needed.

Shape Generation Each skeleton node is individually transformed into a generic

shape made of a sequence of stitch courses, some of which are annotated as interfaces

(with respective names similar to that of the skeleton nodes). Each shape’s course is

assembled with its neighboring courses using the node’s shaper program, layout and

alignment properties.

Then all node’s interfaces are processed: connected ones are bound across shapes,

and disconnected ones are either left as-is or closed if chosen by the user.

At this stage, note that some stitch connections have not been generated. Notably,

course connections across different courses require orientation information which de-

pends on scheduling, happening next.

Course Scheduling Given the various shapes and their courses, we first group

them into connected components, and then each group is separately scheduled, course-

by-course. The scheduling is done by topologically sorting the courses according to

knitting order constraints: we require previous branches to be knitted before allowing

merge operations in split nodes.

Yarn Tracing Given the course schedule, we can now trace the path of the yarn

and generate course connections. This also involves creating additional continuity

stitches so that the yarn doesn’t jump between far away stitches.

5.4.2 Patterning

At this stage, we have the final stitch graph, and we use our patterning layers, trans-

forming them into programs that assign pattern instructions to each stitch.

140

5.4.3 Layout Optimization

From the course schedule, we generate individual disjoint needle bed assignments.

The offsets and relative sides between courses of a same node are fixed to optimal

assignments without taking other nodes into accounts, creating groups of fixed bed

layouts.

Then, the bed layout groups are optimized w.r.t. each-other’s offsets and relative

sides. The main trick here is that we can easily pre-compute optimal alignments by

approximating the yarn stress between two full beds by pre-computing their stitch

pairs, as well as their corresponding center of mass, which should typically align for

the minimal stress assignment.

5.4.4 Knitting Interpretation

The time-needle bed is generated by aggregating the layout groups, and a first pass

interpret each bed time, bed after bed, generating consecutive per-bed passes over

time.

This generates the following (potentially empty) passes for each time-step:

• Cast-on: empty needles are cast yarn onto (requires specialized procedures to

ensure the yarn catches, which is different from typical already-cast knitting);

• Actions: per-needle actions are computed for each stitch of the current time’s

bed according to their number of up-going wales, their locations, the previous

stitch actions, and their corresponding pattern instruction. Potential actions

include: Knit, Purl, Tuck, Miss, Knit Front/Back, Kickback Knit, Split Knit ;

• Transfers: necessary transfers are processed per-side at once, with relative

orderings specified by the instruction types (e.g. Cross instructions, Stack in-

structions);

• Cast-off : stitches that should be cleared off the bed are cast-off using dedicated

procedures to prevent unraveling.

141

5.4.5 Knitting Simulation

Given the interpretation, the actual knitting process is simulated to discover potential

issues due to large yarn stretching or long interactions between stitch operations (e.g.,

knit-over-miss for large miss sections, which ends up collapsing the yarn, or several

loops merging onto one, beyond the needle knitting capabilities). This produces

potential warning and error messages that the user can use to correct their topology

and node parameters.

5.4.6 Code Generation

The bed pass interpretations are translated into low-level machine instructions, which

can then be processed by the machine (typically re-compiled there to check for further

issues and assign machine parameters before knitting).

5.5 Results and Discussions

This section discusses achievable results from the perspective of an expert user, to-

gether with their limitations and potential improvements. We first consider the range

of garments that are machine-knittable using our shaping primitives. We then show-

case different pattern layer interactions as node parameters change. Finally, we cover

the performance of the system, including interactivity limitations and necessary fu-

ture work in terms of features.

5.5.1 Scope of Shaping Primitives

Our first collection of knitted results is illustrated on the 12 inch mannequin shown

in Figure 5-17, together with adult-size versions of a patterned infinity scarf and a

ribbed sock in Figure 5-18. We show the individual pieces in Figure 5-19, each knitted

with a different yarn color. This includes:

• a hat using one cylindrical sheet with a narrow closed top and a wide open

bottom;

142

Figure 5-17: Various garment prototypes on a 12 inch mannequin (left) and a glove
with lace patterns (right).

• a scarf with pocket ends, using one main flat sheet and ends that are split-

converted into cylinders (one end is open to let the other end through, and the

other is closed as a pocket);

• a yoked shirt using one open tube split into three tubes (two for the sleeves,

one for the main body);

• sweatpants as a waist tube with a split branching into two tubular structures;

• two socks using a joint for the heel and two tubes, one of which narrows down

to the toes where it closes.

143

Figure 5-18: An infinity scarf with lace patterns (left) and a sock with ribs (right).

Limitations of the Shaping Primitives

By composing three types of primitives (Sheet, Joint and Split), our design space

already spans many common garments including varieties of gloves, socks, scarves,

headbands, hats, pants and sweatshirts. The garments which we do not handle nicely

are traditionally sewed garments such as pullovers with Raglan sleeves or drop shoul-

ders. The general challenge is specifying continuous interfaces that glue primitives

over multiple courses.

One constraint of wholegarment industrial knitting machines is that they cannot

instantaneously introduce a new garment section (i.e. tubular or flat sheets) with

a perpendicular wale flow. Instead, perpendicular wale flows must be joined in a

continuous gluing operation that connects the two suspended sections laterally, as

illustrated in Figure 5-20.

The current primitives of this work do not support such continuous gluing op-

144

Figure 5-19: The individual garment pieces from the left of Figure 5-17. The scarf
uses a single-sided part that would curl on itself by default. Thus we used simple 2
by 2 ribs to keep it flat.

eration. This notably means that we cannot knit garments with sleeves extending

perpendicularly to the base trunk. Note that it is quite different from our Joint prim-

itive whose flow is continuously changed from its bottom to its top, because it does

not split the flow, but only redirect it in a single direction.

Possible solutions we envision include:

• Adding a specialized T-Junction primitive (although we are looking for a more

general and simpler-to-specify primitive).

• Introducing lateral interfaces for flat sheet primitives, which – combined with

Joints and Split – would allow the creation of T-Junction structures (and more).

• Introducing an Anchor primitive that would allow specifying regions on top

of current other primitives, to specify additional interfaces (e.g. hole sections,

145

Body

Sleeve

Glueing

Figure 5-20: Illustration of one strategy to glue sleeves to the main body – here, a
Raglan sleeve. The body and sleeves would both be knitted separately (i.e., next to
each other, one at a time), and then they would be joined with a sequence of glueing
operations joining both sides up to the neck section.

from which we could generate new lateral primitives).

Any of these unfortunately comes with many complication in terms of implemen-

tation and layout optimization because we cannot work with full courses alone and

must allow binding courses to parts of other courses over time (i.e. for the lateral

gluing operation). There is also the problem of how the user would parameterize the

gluing process as many variants exist [27].

5.5.2 Pattern Layers in Action

Figure 5-22 illustrates how shape modifications alter two overlapping patterning lay-

ers. The background consists of a tileable layer repeating a sequence of left and right

moves to create lacy holes, whereas the foreground is a scalable image mask applying

normal knit stitches. As the sheet size changes, the layers behave differently: the

background keeps tiling the same small move sequence, whereas the cat foreground

expands with the size. Figure 5-23 illustrates an extension that includes a pure pro-

146

Figure 5-21: Visualization of the pattern of our infinity scarf (left) with our mesh
visualization (right) and a close-up (center).

gram layer for the margin, and two complementary scalable foregrounds layers with

different stitch operations (knit and purls).

In Figure 5-21, we visualize the mesh of a patterned infinity scarf, which uses a

layer decomposition similar to the tiled lace. However, the tiled lace is applied within

a program mask that makes use of 2D simplex noise to create a random area selection.

Its boundaries are mapped to regular stitches within 2 stitches, and to purls from 3

to 4 stitches away.

Then in Figure 5-24 we transfer the global hole pattern to two nodes of a glove

skeleton with open fingers. This figure also illustrates the potential impact on shaping

that some patterns have. Here, the cuff of the glove has a constant width that matches

the palm node. The ribbed cuff shrinks considerably even though it is knitted over

the same bed width (in half gauge). This is the same glove as in Figure 5-17.

Smarter Pattern Layers

Our pattern layers are not guaranteed to behave nicely when resampled or applied

to a shaped primitive. A “correct” behaviour is often ill-defined: for example, at the

top of a vertically striped hat, should the stripes become thinner or merge together?

Thus, it is reasonable to defer to the user in such scenarios, as we do. A different,

recently proposed strategy [71] would be to adapt calibrated patterns to the local

context.

147

Figure 5-22: Impact of shape size on a two-layer pattern. The holes are tileable moves
from Figure 4-3. The foreground cat is scalable and stretches with the shape.

148

Figure 5-23: A four-layer pattern combining a tileable lace, a programmatic margin,
and two scalable foregrounds for different shades of a Corgi.

Figure 5-24: Patterning the glove of Figure 5-17 from left to right: base shape, cuff
in half gauge, half-gauge cuff with a rib pattern, and final glove with transferred hole
pattern on main palm, as well as an additional pattern for the 4-fingers palm.

149

Table 5.2: Runtime performances of our system for the shapes within this chapter.
All times are in milliseconds. The shape creation contains a schedule step but we
ignore it as its runtime is negligible (i.e., ≤ 1). For the same reason, we ignore the
optimize step of the layout computations.

⊢ Skeleton ⊣ ⊢ Shape ⊣ Pattern ⊢ Layout ⊣ ⊢ Yarn ⊣

Name N
od

es
P
at

te
rn

s
St

it
ch

es

C
re

at
e

T
ra

ce

D
ev

el
op

C
re

at
e

P
ac

k

In
te

rp
re

t
Si

m
ul

at
e

C
om

pa
ct

cat-32x32 1 2 1024 3 8 30 4 7 6 1 2
cat-64x64 1 2 4096 8 15 21 3 18 14 1 5

glove 10 3 5030 12 11 27 6 36 24 9 8
cat-128x128 1 2 16384 46 70 97 9 71 52 9 20

sock 6 1 17740 46 50 89 18 70 46 8 34
corgy 1 4 19200 22 78 129 13 83 60 11 24

beanie 3 1 28774 141 79 124 29 107 67 7 51
noisy-scarf 1 1 85000 199 328 1034 54 309 219 86 140

5.5.3 Performance

The running time for our system is highly dependent on the client machine and web

browser being used. However, we still provide performance tables here to highlight

the current processing bottlenecks: (1) the stitch instantiation and (2) the pattern

development.

For both issues, we refer to Tables 5.2 and 5.3 where we provide timings for most

of the shape skeletons within this chapter, excluding browser rendering times. These

are captured on 64-bit Ubuntu 16.04 with Intel® Core™ i7-3820 CPU @ 3.60GHz i7

(8 processors) and 24GB of RAM. The test browser was Chromium 74. To have a

reasonable idea of the peak performance, we ran the profiling by loading the skeleton

file, then switching to Compact mode, and generating the output 7 times consecutively

before actually measuring the times we report here. This warm-up leads the browser

to optimize hot functions with its Just-In-Time compiler. We then export the machine

code 3 times before measuring the code generation time.

The compaction time isn’t actually needed except for shapes using branches (here

mainly glove) but our implementation instantiates a new bed whether there is a need

150

Table 5.3: Summary of runtime performances of our system for the shapes within
this chapter. All times are in milliseconds. Code is the additional step that happens
when the user request the knitting program.

⊢ Skeleton ⊣ ⊢ Summary ⊣ Code

Name N
od

es
P
at

te
rn

s
st

it
ch

es

Sh
ap

e

P
at

te
rn

T
ot

al

G
en

er
at

e

cat-32x32 1 2 1024 33 51 63 27
cat-64x64 1 2 4096 65 62 86 40

glove 10 3 5030 116 119 143 46
cat-128x128 1 2 16384 278 259 375 77

sock 6 1 17740 272 265 361 101
corgy 1 4 19200 292 320 421 76

beanie 3 1 28774 482 386 606 96
noisy-scarf 1 1 85000 1335 1842 2369 335

for it (branching) or not, so the total update times might be smaller in practice if the

user does not toggle bed compaction.

Generally, these timings are not meaningful as absolute numbers, but to under-

stand the relative profile of different processes w.r.t. different shape complexities.

Both shape and pattern updates have mostly linear runtimes as shown in Figure 5-25

for the considered shapes. However, the complexity of user patterns is of course going

to be dependent on the user pattern. The linear behaviour for pattern development

comes from the fact that filter operations traverse all stitches, and thus most of our

operations end up being linear in that number.

Instantiating Stitches

The current implementation creates the layout from scratch at each update. This

makes the implementation very simple, but prevents reuse of most of the fixed data.

Unfortunately, reusing stitch information is not easy because simple modifications can

have drastic impacts on the whole needle bed (e.g., adding a course at the beginning

shifts all following stitches). For the shape part, our system runs mostly linearly in

the number of stitches, and thus we are limited in the size of our garment shape.

151

Number of stitches

Up
da

te
 ti

m
e

[m
s]

40

60
80

200

400

600
800

2000

10
00

20
00

40
00

60
00

80
00

10
00

0

20
00

0

40
00

0

60
00

0

80
00

0

Shape Pattern Total

Figure 5-25: Plot of the update times for the models in this chapter, as given in
the summary of Table 5.3. Shape update includes the time to rendering, minus the
pattern development. Pattern update includes the time from pattern development to
rendering. Both stitch and time axes have logarithmic scales.

When purely editing the pattern, we avoid recreating the whole data-structure

since the pattern development does not remove or add stitches. Instead, we clear the

stitch operations of all stitches, and re-apply the patterns, interpretation, simulation

and compaction steps (since these are dependent on both the shape and the pattern).

Pattern Development

The pattern code evaluation is of course going to be longer to evaluate the more

complex the pattern is. Our DSL implementation packs all stitches in a linear array

and then mainly relies on filtering the set of indexed stitches for the queries, whereas

the operations are done by traversing the current selected indices and applying the

operation on the corresponding stitch objects. The implementation we provide per-

formance for is purely CPU-based.

We expect possible improvements through a GPU implementation that would

152

compile our DSL as shaders or other compute programs for GPGPU.

Toward Large-Scale Interactivity

As shown in this section, the system can currently remain interactive with human-

sized gloves, socks and beanies. Patterning or shaping full-sized sweaters or sweat-

pants is challenging because of their scale. Computationally, the garments require

processing a very large amount of stitches. Their size also presents challenges for user

pattern specification, as simple pixel-based operations are insufficient.

We expect to solve the computational challenge by using hierarchical data struc-

tures that do not instantiate all stitches but only the required information (e.g., at

the boundaries or where the size changes). As for the design issue, we assume a sim-

ilar hierarchical process would help. We envision using meta-patterns on higher-level

stitch representations to be instantiated for the machine. Finally, recent patch-level

pattern simulation [97] has shown promising interactive results.

5.5.4 Missing yet Desirable Features

Handling Multiple Yarn Carriers

The current system does not yet support multiple yarns on the bed at once (e.g.,

for intarsia). However we envision that such specification can be done similarly to

our patterning by additionally introducing a stack of yarn at each stitch. The main

modification would be that yarn tracing would now also involve the specification and

optimization of the different yarn interactions. This would allow not only intarsia

but also functional fiber routing, yarn inlays, spacer fabric, and pockets. The main

difficulty lies on how to provide necessary user controls since there are often more

than one way to schedule multiple yarn carriers in parallel, yet their interactions are

often critical (i.e., avoiding tangling, properly connecting intarsia blocks, etc.).

153

Machine Independence

Currently, our system exports machine code for a set of specific machine targets:

“whole-garment” knitting machines [150]. However, our design assumptions are that

of general V-bed machines. Since our system uses very regular course structures, it

should be easy to support exporting Knitout code [115], allowing us to potentially

target other V-bed machines as well.

5.6 User Experience

To verify that our interface could be used by non-expert users and receive important

feedback, we asked two potential users without prior knitting experience to use our

system.

5.6.1 Procedure

The users were provided a 30 minute introduction to the basic operations involved in

machine knitting, including the notions of shaping and the types of stitches. We also

supplied a few sample videos of expert user sessions, and an introductory document

for our user interface. We asked them to complete a few tasks: the first ones about

patterning, and the later one for shape and pattern customization.

Patterning Task

For the first subtask, the users were given a base skeleton with a single flat sheet,

featuring an initial program pattern that flattens its margins (to prevent the single-

sided fabric from curling up). Their task was to draw some additional patterns on

the sheet.

In the second subtask, we provided examples of lace patterns, and asked the users

to create their own lace involving at least a few move operations.

For the last subtask, we provided a more complicated template of a wristband,

which is similar to the pocketed scarf in Figure 5-19. The users had to import a

154

Figure 5-26: Lace patterns generated during our non-expert user sessions. The left-
most pattern was an expert reference that we provided for inspiration; the center and
rightmost designs were novice user results.

pattern from their previous subtasks and apply it on the main part of the wristband.

Images of the physical artifacts created for the second and third subtasks are

respectively shown in Figures 5-26 and 5-27.

Shaping / Patterning Customization Task

The second task was to customize an adult-size garment of their choice, given an

initial skeleton.

Our users chose to customize a beanie and a glove. For the beanie, users had to

change the shape profile of the top section, and optionally modify the pattern of the

brim or core sections. For the glove, the goal was to change global, shared design

parameters (finger length and width, and/or cuff length) instead of directly changing

the individual node widths. The corresponding results are shown in Figures 5-28 and

5-30. Figure 5-29 shows a closeup on the laced beanie and its brim.

5.6.2 Feedback and Results

Although none of the users had prior knitting skills, each one successfully designed

sophisticated, machine-knittable structures that we were able to fabricate. Users were

surprised by their new ability to customize garments, especially the beanie.

During the design process, users cited a mismatch between their perception of the

garment size (based on our bed visualization), and size of the actual knitted result.

155

Figure 5-27: The third patterning task required users to transfer an existing pattern
onto a provided wristband template. The patterns were either designed by users in
a previous step, or selected from our repository of pre-tested designs. The top row
shows an expert reference; the middle and bottom rows are from our users.

This suggests that, beyond local editing, it may be worth tuning the relative size

of wales and courses to perceptually match that of the real yarn. However, realistic

sizing is an open problem, as current tension parameters are hand-tuned and must

be adapted for complicated patterns (e.g., changing the tension impacts the garment

size substantially). It will require a better simulation that takes the yarn tension into

account.

156

Figure 5-28: A reference beanie on the left and two customized beanies on its right.
The rightmost one required a few passes to adjust the lace pattern and its tension.

Our users generally found the patterning interface intuitive, as the image editing

analogy was sufficiently familiar. Still, it was difficult for them to reason about the

ultimate effect of complex lace patterns. Eventually, they discovered that the mesh

simulation was more helpful to preview the pattern impact, and made extensive use

of it. They alternated between the two views (layout and mesh). Furthermore, one

user found that complex skeleton constraints could hinder pattern experimentation.

Instead, they preferred to design their patterns on separate, flat sheets, then import

the design onto the final structure. These behaviours emerged organically.

157

Figure 5-29: Beanie closeup showing the main section’s lace and the curled brim with
a knit/purl zigzag.

Although our users were allowed to create new shapes, they did not actively try

to do so in our task setup. This suggests that non-experts would likely prefer to start

from templates. Our tool might also be valuable for professionals, designers and other

expert users, but we have not validated such cases.

158

Figure 5-30: Three glove variants. The green one took multiple attempts because of
the complicated tension requirements associated with continuous cross patterns.

Knittability Constraints

Flat patterns were always knitted successfully on the first try. However, this was

not the case for complex patterns on tubular structures, such as for the adult-size

garments.

We show three result beanies, the right one having required multiple iterations

to work properly. Our machine translation had very few issues, but some patterns

triggered complications during the knitting process, mainly because of fabric pile-up,

which arises from non-optimal yarn tension.

In the case of the gloves, all fully knitted from start without pile-up, but we

discovered that the sequence of knitting had some unexpected impact on the yarn.

Fingers are typically suspended on the bed before being knitted over to create the

palm and one user decided to use complex patterns on the fingers themselves. This

led to previous fingers being excessively stretched while suspended, and the yarn

locally broke. Finding the appropriate tension was the main complication for both

159

the patterned beanie and glove, which required a few trial-and-error attempts. We

describe the evolution of the green glove of Figure 5-30 in the next section.

5.6.3 Example of Issues and Iterations to Fix Them

The user design of the green glove took multiple iterations to converge to a design

that would knit properly on the machine, illustrated in Figure 5-31. The initial design

was intending to add gripping texture under the fingers. It was going to do so with

continuously shifted cross patterns. Furthermore, its finger ends were to be closed

with some shaping at their ends.

The first issue arose from the finger ends that had used very quick increases, with

unstable kickback operations next to future increases. This led to a few holes at the

finger tips. This can be fixed by changing the shaping, but also shows that one would

definitely benefit from being able to manually specify the expected shaping seams,

since then one could route the yarn correctly and avoid unstable increases.

The more interesting issue came from the move patterns on the fingers. The basic

glove skeleton we used was starting the knitting from the fingers to avoid having to

split the fingers into multiple knitting sections. This would have been required if

starting from the cuffs, because a large knitted section is eventually suspended (the

palm), from which smaller branches extends, one-by-one. In that case, the tension

at the boundary of the branches increases the farther the finger knitting is, which

eventually leads to the yarn breaking.

Typically, this can easily be solved for gloves by starting the knitting from the

fingers. However, one issue is then that the fingers are kept suspended until the

palm can be knitted (i.e., all fingers have been knitted). Unfortunately, this means

that patterning the individual fingers with patterns that include large movements

leads to the suspended yarn being stretched continuously. This is possible, but ended

up breaking the yarn in random locations with the tension we used. A scheduling

solution to this in half-gauge would be to collapse suspended structures onto a single

bed side, as done in the scheduler of Narayanan et al. [122].

Instead, our user decided to move the pattern to the main palm, which solved the

160

Figure 5-31: The evolution of the green glove from right to left.

issues with the fingers (after also improving the shape of finger tips to be stable).

Unfortunately, knitting continuous cables over a large area requires a correct tension

parameter. Our initial setup was incorrectly estimating that the required yarn tension

should be very loose (because of the many cables), but effectively they all combined

into small 2× 1 shifts, that do not stretch the yarn beyond 2 needle pitches globally.

Having a wrongly loose tension typically leads to the yarn not catching correctly,

and more unfortunately in it catching onto wrong needles on the sides. This leads to

unpredictable behaviours and eventually led to fabric pile up (stopping the machine

and also breaking a needle during the clearing process). Fixing the tension led to a

completely fine glove.

This illustrates that although our system can allow users to create programs for

shaping and patterning, there are still components missing to allow fully automated

knitting as a service. We still require some expertise in how to handle the tension and

other machine parameters, which brings up many interesting avenues for research.

161

162

Chapter 6

Sketch-based Garment Workflow

The traditional representation of garments for mass manufacturing is based on ske-

tches that represent panels of fabric to be cut and then sewn together – the so-called

cut & sew process. While the whole-garment knitting machines we consider in this

thesis are typically used to avoid any cutting and sewing a posteriori, we consider here

whether a similar sketch-based representation for knitted garment design is possible.

The main question this chapter asks is the following:

“ How can we transcribe traditional garment sketches for whole-

garment weft knitting? ”Cut & sew brings a plethora of design knowledge and resources, whereas whole-

garment weft knitting promises digital customization together with important waste

reduction through on-demand production. This chapter proposes a novel workflow

that bridges both sides.

Contents of this chapter are adapted with permission from - A. Kaspar, K. Wu, Y. Luo, L.
Makatura, W. Matusik, “Knit Sketching: from Cut & Sew Patterns to Machine-Knit Garments”,
SIGGRAPH 2021. https://doi.org/10.1145/3450626.3459752. [Copyright by the authors].

163

https://doi.org/10.1145/3450626.3459752

Figure 6-1: The segmentation of a sewing pattern for a pair of trousers with inseam
pockets. Solid lines are linked by numbers, whereas dashed lines are not linked (i.e.,
they form open boundaries of the garment).

6.1 Traditional Garment Workflow

In the traditional garment making workflow, several flat panels are cut from 2D fab-

ric and then sewn together along shared seams. Figure 6-1 illustrates an example of

garment pattern traced from the fashion magazine BurdaStyle 1. The 3D structure of

the resulting garment (e.g., curvature, topology) can be arbitrarily complex, but it is

fully prescribed by the 2D panel boundaries and their connectivity. That is, the pan-

els capture the garment’s 3D structure intrinsically. It is appealing to work in this

lower-dimensional panel space because the intermediate (and resulting) blueprints

can be easily edited, and they convey the designer’s intention in a simple, compact,

and precise manner. There is also a rich collection of sewing patterns available on-

line for various clothing styles (e.g., BurdaStyle, Deer&Doe), and customization is

straightforward with existing industrial design software, which offers short cycles be-

tween design and fabrication [25, 39, 113]. Most physical patterns typically come

with grading information allowing for manual tuning of the size [119, 148], whereas

1http://www.burdastyle.com

164

http://www.burdastyle.com

some online collections provide customizable parametric pattern (e.g., FreeSewing 2).

However, there is no clear way to design knits for whole-garment knitting directly

via a cut & sew pipeline. The fabrication process is inherently time-dependent and

requires extra information during the design stage.

In this chapter, we combine the strengths of whole-garment knitting and the

cut & sew design pipeline. For the garment design phase, we develop a user interface

based on the powerful, low-dimensional representation from cut & sew. Then, for

efficient garment construction, we propose to automatically translate the 2D panels

into a full garment that is machine-knittable. Since our approach constructs the

garment and its constituent fabric simultaneously, we can offer additional control

over the interior of each panel, rather than being limited to the boundary.

6.1.1 Digital Garment Design

Interactive physically-based garment design is a challenging problem of long-standing

interest [176]. Sketch-based design pipelines are particularly prominent [46, 77, 166,

179], because the familiar 2D-to-3D approach allows designers to use their existing

experience and intuition. Other works allow designers to edit the garment directly in

3D space, by sketching the desired fold pattern of the draped fabric [102] or directly

modifying garment shape [17]. After making the desired edits in 3D, the correspond-

ing 2D patterns are generated via a simulation framework that incorporates design

constraints. Utilizing design sensitivity analysis, Umetani et al. [169] presented an

interactive tool for garment design that allows interactive bidirectional editing be-

tween 2D patterns and 3D draped garment shape. Several methods adjust paramet-

ric shape patterns to customize an existing pattern for specific individuals, such as

profile template encoding/decoding [178], gradient descent method w.r.t. parametric

patterns [118, 179], and learning-based methods [60, 181]. Berthouzoz et al. [20] com-

bine machine learning with integer programming techniques for automatically parsing

BurdaStyle sewing patterns and converting them into 3D garment models, whereas

Shen et al. [153] combine sewing patterns and 3D body mesh data using a Generative
2http://freesewing.org

165

http://freesewing.org

Adversarial Network. Finally, Huang et al. [73] generate garment models directly

from a pair of front and back images. By contrast, we are interested in transforming

sewing patterns into instructions for garment production on weft knitting machines.

6.2 From Sketches to Knitting Programs

A whole-garment knitting workflow based on cut & sew patterns presents several

technical challenges. Since knit fabric relies on sequentially interlocking loops, the

standard cut & sew panel representation must be augmented with time and direction

information. Moreover, some cut & sew patterns do not immediately yield machine-

knittable garments: in some cases, the knitting sequence produces undesired artifacts;

in other cases, valid knitting sequences may not exist at all. To allow users to itera-

tively refine such designs, our system must offer rapid inference of the garment’s final

3D structure and computation of the high-level knitting sequence.

A natural approach would be to combine existing methods that translate cut & sew

patterns to 3D meshes [20], and then translate these into knitting programs using

recent computational knitting methods [122, 123, 188] as illustrated in Figure 6-

2. However, given that the complexity of both translations and their computational

costs prevent interactive design, we choose to bypass the 3D mesh representation. Our

pipeline operates exclusively in the 2D domain shown in Figure 6-1, which corresponds

to the standard flattened view available in professional garment editing software. In

particular, our computational workflow only relies on intrinsic surface metrics and

local connectivity, thus bypassing a global 3D embedding of the desired garment (e.g.,

a 3D mesh). Although a 3D preview would still be helpful for designers, our work

shows that all required knitting information can be inferred and efficiently computed

from the intrinsic 2D representation.

Our high-level knitting sequence uses a representation similar to Narayanan et al.

[122], with a time function over the sketch manifold that details the relative fabrication

order among different areas of the garment. We develop new ways to solve for the time

information and generate low-level stitch placement and knitting programs without

166

this work

Berthouzoz 2013 Narayanan 2018

Figure 6-2: Illustration of the domains tackled by current workflows: from sketches
to 3D meshes and back (digital garments), and from 3D meshes to machine knitting
(concurrent workflows). Our workflow bypasses the 3D representation completely.

the use of a 3D mesh. Lastly, to support a wide range of garment structures, our

scheduler provides basic support for mixed planar and tubular structures, which is a

challenging problem not addressed by previous works: Narayanan et al. [122] compute

a schedule dedicated to compound, tubular structures whereas Wu et al. [188] focus

on complex flat panels that need to be bound manually.

In the rest of this section, we present an overview of our proposed user workflow.

The remaining of the chapter provides details about our computational workflow:

Sections 6.3 to 6.5 are the core of our new workflow (time computation, region de-

composition and stitch sampling). Sections 6.6 to 6.8 detail our implementation of

the rest of the pipeline, based on the work of Narayanan et al. [122]. Section 6.9

introduces our additional layer-based form of customization. Section 6.10 discusses

results and Section 6.11 finishes with performance considerations for full interactivity.

6.2.1 Proposed User Workflow

Our approach hinges on the fact that complex 3D garments can be partitioned into

a set of simple, closed regions that can be embedded within the 2D plane as in the

traditional cut & sew workflow. In differential geometry, each region of the garment’s

3D manifold is called a chart, and the 2D embedding is the chart’s image under the

flattening function. For notational simplicity, we use the term chart to refer to the

167

Seam
Update

Wale
UpdateTime + Regions + Validity Stitch Graph

Schedule

Fabricate

User Input

Computation

Feedback

Sampling
Preferences

Knitting
Preferences

Stitch Program

Input
Update

Sketching Boundary Linking Time Function Speci�cationStart

a

Compute Time Function Region Segmentation

Section 4 Section 5

b

Seam Annotations

d

e

Stitch Sampling

Section 6

c

Figure 6-3: Summary of our workflow: (a) the user sketches a garment, links its
boundaries and specifies time constraints; (b) the corresponding time function is
computed, and its regions segmented; (c) given user sampling preferences (size and
course/wale ratios), a stitch graph is sampled; (d) the user can provide additional
seam annotations to influence the wale distribution until satisfied; (e) given knitting
preferences, a schedule is generated and the physical artifact can then be knitted.

flattened 2D domain. As in differential geometry, the collection of 2D charts that

fully prescribes a given garment is called an atlas.

This section provides an overview of our design process for a given atlas, as illus-

trated in Figure 6-3.

Sketching The user starts by inputting the desired atlas. Each chart is specified

by its boundary shape, which is given by a closed poly-Bezier curve. The user can

either draw the charts from scratch or import external SVG files (e.g., from existing

cut & sew patterns).

168

Boundary Linking Users must also indicate the charts’ intended connectivity by

annotating boundary segments that should be linked in the final garment. Practically,

each Bezier curve along the chart boundary is a linkable boundary segment. A pair of

boundary segments should be considered linked if they are co-located on the assembled

garment. We restrict the design of the base shape to be 2-manifold so that any

boundary segment can be linked to at most one other segment.

Time Function Specification Knitting is a time-dependent process. The time

function characterizes many important features of the garment such as the relative

location of stitches and course/wale orientations. The user can design their own

knitting time process by specifying different types of time constraints over the atlas.

Time and Region Computations Once the user has provided a linked atlas

with the desired time function constraints, our system automatically solves for the

time 𝑡 over each chart (Section 6.3). Our system also provides feedback about the

feasibility of the time function w.r.t. the knitting program space, and reports any

notable physical issues, i.e., excessively large local time stretch which may lead to

yarn breakage. Based on this time function, our system decomposes the atlas into

simple regions (e.g., tubes and sheets) that are straightforward to knit (Section 6.4).

These often coincide with semantically meaningful portions of the garment, such as

the sleeves, torso, and yoke of a sweater. These steps are solved at an interactive

frame rate, which allows the user to get continuous feedback as they adjust their

desired shape and constraints.

Stitch Sampling Once the user converges to a garment specification, they set the

desired sampling size (from sketch space to physical units) as well as course and wale

sizes. Our system then constructs a stitch graph that, when knitted, will yield the

desired garment (Section 6.5). The user can further tweak a set of weights to control

the relative tradeoff between the size accuracy of the garment and the topological

simplicity of the final stitch graph.

169

Scheduling and Fabrication Given the stitch graph, our system traces the real

path of the yarn (Section 6.6), schedules stitches onto needles over time (Section 6.7),

and outputs machine-independent instructions (Section 6.8). This takes into account

any user preferences for fabrication (e.g., the type of increase stitch to use, and the

cast-on/off procedures), and a list of user-specified stitch programs that map from

stitch to knitting instructions, enabling colorwork and surface texture (Section 6.9).

The resulting Knitout file [115] can be compiled for the target knitting machine before

actually knitting it.

6.3 Computing the Knitting Time Function

Given a garment atlas with multiple linked charts, the first computational step is

to determine the knitting time over the domain. In particular, we must determine

the order in which the garment is knit, the orientation of each stitch course (row),

and the wale (column) connections between rows. We define a continuous scalar field

of the time 𝑡 over the garment atlas to represent when the knitting process happens

locally. The courses align with the time isoline curves, along which 𝑡 remains constant.

The wale connections follow the direction of the time gradient 𝜑 = ∇𝑡/‖∇𝑡‖. This

direction field should be as smooth as possible, because variations in the field imply

local stretching or contraction between stitches. Excessive deviations cause visual

artifacts and potential failures during the knitting process, so they must be avoided.

From an optimization perspective, we are seeking a function 𝑡 whose gradient is

intrinsically smooth, i.e., minimizing

∫︁
𝑀

‖∇ · (∇𝑡)‖2 =

∫︁
𝑀

‖∆𝑡‖2 (6.1)

over the garment atlas 𝑀 , subject to user constraints (either soft or hard). The

first set of user constraints are direction constraints ; these are curves whose tangents

or normals dictate the orientation of the direction field 𝜑. The second set are time

equality constraints, which specify individual time isoline curves.

170

Figure 6-4: Color visualization of the time function over the back of a sweater, to-
gether with the underlying mesh illustrating the mixed quad-triangle neighborhoods.
Each sample is annotated with a small tack ⊥ representing the flow direction 𝜑.
The purple arrowed curves are flow direction constraints; the light blue curves with
orthogonal arrows are time isoline constraints, with a given flow orientation.

Narayanan et al. [122] create a similar time function by specifying the start and

end interfaces and interpolating the time in between with Laplacian interpolation.

Instead, we provide control on intermediate isolines and the direction field, with an

emphasis on interactive editing of the sketch domain and constraints. We solve for

a suitable 𝑡 automatically using a series of optimizations over increasingly fine chart

discretizations.

6.3.1 Discretization

To discretize each chart into a mesh with a given resolution, we first generate grid

samples, which are uniformly distributed throughout the interior of the chart using a

regular grid with spacing ∆𝑠. Then, we generate a set of boundary samples to capture

the boundary of each chart. These are distributed along the boundary as uniformly

as possible while adhering to several guidelines.

In particular, we always require boundary samples at the start and end point of

each boundary segment. If the boundary segment is not linked to any other segment,

171

we sample the rest of it using a uniform arc-length sampling that matches the local

grid cell size, ∆𝑠. However, if the boundary segment is linked (i.e., it is co-located with

another segment in the final garment), the linked boundaries must have a consistent

representation that can be used to reconcile field values across the charts. To ensure

this, we require a bijection between the samples on each linked boundary. Each pair

of linked samples given by this bijection must be co-located in the final garment.

With respect to the final garment, the boundary samples are distributed according to

the larger of the linked charts’ sampling rates. The spacing of the boundary samples

may differ in each local chart embedding as the edge lengths of linked sketch borders

are not required to match exactly.

The resulting boundary and grid samples are then connected to their neighboring

samples in order to create the mesh over each chart. On the interior of the mesh,

we use quads to connect the grid samples with their neighboring samples. The more

complex boundary region between the interior and the border uses a Delaunay trian-

gulation, as visualized in Figure 6-4.

For the sake of brevity, we introduce the following notation:

• A vertex 𝑣 refers to some location on the inferred (but never explicitly instanti-

ated) garment manifold. Each 𝑣 corresponds to one or more samples embedded

in the charts.

• ℒ(𝑣) is the set of samples that are images of 𝑣 within the charts. ℒ(𝑣) has

one element if 𝑣 corresponds to an unlinked sample, or more than one if 𝑣

corresponds to linked samples.

• 𝒩 (𝑠) is the set of neighboring samples that share an edge with sample 𝑠. All

samples in 𝒩 (𝑠) must belong to the same chart, and cannot cross any boundary

segments (including linked segments that belong to the same chart).

• 𝒞(𝑠) = {𝑐|𝑠 ∈ supp(𝑐)} is the set of constraints which 𝑠 is in the support of (i.e.,

𝑐 affects 𝑠 directly).

Every sample 𝑠 has an associated value for each of the two fields: the time 𝑡(𝑠) and

172

time �eld

Coarser Finer

direction
�eld

Figure 6-5: Illustration of the alternating iterations between solving for the direction
field and the time field in a coarse-to-fine manner. Each mesh level and field (𝜑 then
𝑡) is solved until convergence before moving to the next field and mesh level.

the direction 𝜑(𝑠). The quantities associated with linked samples are independent

from one another, but we reconcile the values to ensure consistency. Both fields are

extended over the entire chart domain by interpolation: linear over sample mesh

edges, barycentric over triangles and bilinear over quads.

6.3.2 Computing Time and Direction Fields

Our strategy is to successively solve for the direction and time fields in a coarse-to-fine

manner over meshes of increasingly higher resolution to ensure fast convergence, as

illustrated in Figure 6-5. At each level, we solve for the direction field and integrate

it to get the time function. To ensure interactivity and fast visual feedback, each

optimization is done using Gauss-Seidel iterations that update the quantity at each

sample. The updates are done first in the interior of the charts, and then along the

border samples. The optimization stops once early termination criteria are satisfied

or the maximum number of iterations have occurred. Then, the time and direction

fields are upsampled for the next higher-resolution mesh, and the process repeats.

173

Solving for the Direction Field

We use the normalized direction averaging strategy of Jakob et al. [80] to efficiently

solve for the direction field 𝜑(𝑠) at each sample 𝑠, namely:

𝜑(𝑠)←

∑︀
𝑠𝒩∈𝒩 (𝑠)

𝑤𝑠𝒩𝜑(𝑠𝒩) +
∑︀

𝑐∈𝒞(𝑠)
𝑤𝑐𝜑𝑐(𝑠)∑︀

𝑠𝒩∈𝒩 (𝑠)

𝑤𝑠𝒩 +
∑︀

𝑐∈𝒞(𝑠)
𝑤𝑐

, 𝜑(𝑠)← 𝜑(𝑠)

‖𝜑(𝑠)‖
, (6.2)

where 𝑤𝑠𝒩 = 1/‖𝑝(𝑠𝒩)− 𝑝(𝑠)‖ and 𝑤𝑐 = 𝛾𝑐/‖Π(𝑠, 𝑐)− 𝑝(𝑠)‖ with 𝛾𝑐 being a per-

constraint, positive, user-tunable weight. 𝜑𝑐 is the fixed direction that constraint 𝑐

enforces on 𝑠; 𝑝(𝑠) refers to the position of 𝑠 in local chart coordinates; and Π(𝑠, 𝑐) is

its Euclidean projection onto the curve of 𝑐. For all samples in the support of hard

constraints, we set 𝑤𝑠𝒩 = 0.

After each iteration over the full atlas, the directions across linked samples are

reconciled to ensure a consistent solution: the samples must have the same orientation,

but can have either the same direction (through-flow) or an opposite one (source or

sink).

To compare direction vectors across different charts, a common coordinate system

is necessary. Given vertex 𝑣, all the linked directions are rotated into the domain of

one of the charts associated with 𝑣. Then, the average orientation is computed and

transformed into individual directions that are rotated back to the local domains of

the corresponding linked samples.

Integrating the Knitting Time

After the direction field has converged, we iteratively propagate the time over the

atlas. On each iteration, the time is computed by (1) integrating it locally over the

full atlas, (2) enforcing the time isoline constraints, and (3) averaging the time across

linked samples across charts.

Before starting, we select one seed sample 𝑠seed with a large neighborhood to

propagate from, and fix its time to be 𝑡(𝑠seed) = 0.

174

Step 1. The time integration uses the converged direction field 𝜑 to update the

time at vertex 𝑣 based on the time values at its neighbors:

𝑡(𝑣)← 1

|ℒ(𝑣)|
∑︁

𝑠∈ℒ(𝑣)

1

|𝒩 (𝑠)|
∑︁

𝑠𝒩∈𝒩 (𝑠)

[𝑡(𝑠𝒩) + 𝑑𝑡(𝑠𝒩 → 𝑠)]. (6.3)

The | · | operator is the set cardinality and 𝑑𝑡(𝑠𝒩 → 𝑠) is the expected local time

difference, computed as the dot-product (·) between the average direction and the

position difference:

𝑑𝑡(𝑠𝒩 → 𝑠) =
1

2
[𝜑(𝑠𝒩) + 𝜑(𝑠)] · [𝑝(𝑠)− 𝑝(𝑠𝒩)]. (6.4)

Step 2. The time isoline constraints are enforced by averaging the contribution of

all samples within their support, and then back-propagating that average time to the

individual samples. We average the expected time after projecting the samples onto

the curve of the isoline constraint:

𝑡(𝑐)← 1

|supp(𝑐)|
∑︁

𝑠∈supp(𝑐)

[︀
𝑡(𝑠) + 𝑑𝑡[𝑠→ Π(𝑠, 𝑐)]

]︀
, (6.5)

𝑡(𝑠)← 𝑡(𝑐)− 𝑑𝑡[𝑠→ Π(𝑠, 𝑐)]. (6.6)

Step 3. Finally, the time is averaged across linked samples:

𝑡(𝑣)← 1

|ℒ(𝑣)|
∑︁

𝑠∈ℒ(𝑣)

𝑡(𝑠), then 𝑡(𝑠)← 𝑡(𝑣)
⃒⃒
𝑠∈ℒ(𝑣). (6.7)

6.3.3 Termination

For each field, we measure the variation of the field among the samples inside of the

charts at the end of each iteration 𝐼 and stop the computation when it is below a

given threshold, i.e., max𝑠 |1 − 𝜑𝐼(𝑠) · 𝜑𝐼−1(𝑠)| < 𝜖𝜑 and max𝑠 |𝑡𝐼(𝑠) − 𝑡𝐼−1(𝑠)| < 𝜖𝑡,

respectively. Once the time function has been solved over our finest resolution sample

mesh, the system checks its validity. If the function is deemed invalid, feedback is

provided to the user and the processing stops. Otherwise, a topological opening is

175

applied to normalize the shape boundaries and simplify the later region computations.

Validity of Time Function

The continuous time function is used to decompose the final garment into a set of

simple knittable regions. After its computation, we provide two different types of

feedback: 1) checks for the feasibility of a region decomposition and 2) warnings

when the direction field changes too fast locally, as well as when the local time stretch

becomes large (see Section 6.3.4 for its definition).

Feasible Region Decomposition The main requirement is that local time ex-

trema do not occur at vertices that are strictly inside the domain of a chart. This

restriction is similar to that of Narayanan et al. [122]. Our system further allows time

extrema on chart boundaries that are not manifold boundaries (i.e., closed cast-on

and cast-off seam locations), and which get automatically transformed into actual

manifold boundaries via topological opening (see Section 6.3.5). To verify the time

requirement, we compute the set of local time extrema at vertices in our sample mesh.

Our interpolation scheme guarantees that point-wise extrema can only occur at mesh

vertices.

Knittability While those validity checks provide useful feedback, they are in no

way sufficient to ensure that we end up with a “knittable” result. This is because we

should also take into account the problem of scheduling the stitch graph which gets

sampled a posteriori. That problem is much more involved, and we do not provide

any guarantees. Instead we rely on a best-effort strategy which can unfortunately fail

in some scenarios involving complex flat structure interactions.

Intuitively, the mixing of flat with tubular structures can eventually represent

any form of 2-manifold surface, and while this leads to obvious scheduling scalability

issues as discussed in Section 6.7, it also makes it hard to provide guarantees w.r.t.

to knittability without restricting the design space.

176

6.3.4 Curvature and Time

The time integration from Equation 6.3 assumes that the time function has unit mag-

nitude everywhere. Although individual sketches can be viewed as planar surfaces,

the sketch atlas is in general not a developable surface. Furthermore, time isoline

constraints typically induce local curvature.

We investigated the addition of a curvature term 𝜅 = ‖∇𝑡‖ as part of our time

function decomposition. Our time integration update stays the same as Equation 6.3

whereas the local time difference 𝑑𝑡(· → ·) is updated to includes the local magnitude

𝜅(·) to scale the direction as

𝑑𝑡(𝑠𝒩 → 𝑠) =
1

2
[𝜅(𝑠𝒩)𝜑(𝑠𝒩) + 𝜅(𝑠)𝜑(𝑠)] · [𝑝(𝑠)− 𝑝(𝑠𝒩)]. (6.8)

In practice, our system tends to work and converge in a stable way without re-

quiring any curvature information (i.e., 𝜅 = 1), as long as the user time constraints

are not contradicting and do not induce large curvature.

Specifically, close-by isoline constraints can induce large local curvature, and those

specific cases tend to make the integration unstable in the region of induced high

curvature as shown in Figure 6-6. In such cases, specifying the local curvature 𝜅(·)

becomes necessary to get a proper time function without local time extrema in the

interior of the sketch domains.

One way to visualize some form of induced curvature from the time is by using

what we call the time stretch, which we provide as a visualization layer. It appears to

be helpful in selecting where to introduce curvature when needed. Computationally

speaking, we define it as

𝑡𝑠(𝑣) = 2×
∑︀

𝑠∈𝒩 (𝑣) |𝑡(𝑠)− 𝑡(𝑣)|
|𝒩 (𝑣)|

, (6.9)

where 𝒩 (𝑣) =
⋃︀

𝑠∈ℒ(𝑣)𝒩 (𝑠) is the union set of the sample neighbors from each sample

image 𝑠 of vertex 𝑣.

Intuitively, when the flow is straightforward and there is no curvature, the average

177

(a) Time, 𝜅 = 1

(b) Time stretch, 𝜅 = 1

(c) Curvature annotations

(d) User-defined 𝜅𝑢

(e) Time, 𝜅𝑢

(f) Time stretch, 𝜅𝑢

Figure 6-6: Notion of time stretch and its correspondence with the local curvature
in a case where it is needed for proper time convergence. From left to right: (a)
the time result without user curvature, which has invalid local time extrema in the
center-left section (triangular warning signs); (b) the corresponding time stretch (red
when 𝜅 < 1, pink when 𝜅 > 1); (c) the closed tubular rectangle with time constraints
and curvature annotations; (d) the corresponding user-defined curvature; (e) the time
result using the user curvature converges properly without local time extrema in the
curvature region; (f) the time stretch is similar although more pronounced.

absolute delta time around a sample should be approximately 1
2

(thus the 2× factor

in front). This is because the delta time forward is +1, the delta time backward is

178

−1, whereas both lateral sides have delta time 0. This measure behaves similarly

to the curvature 𝜅(𝑠), which is 1 by default, smaller than 1 when the time is going

slower, and larger when going faster.

We use the time stretch to provide feedback to the user when we detect abnormal

values, which corresponds to large local curvature, and thus a higher likelihood of

local time extrema.

6.3.5 Topological Opening

As a post-processing step after the time function computation (or pre-processing

step before the next region computation), we topologically open the sketch domain

at boundary locations where we have closed sources or sinks of the time function.

By assumption, valid sources and sinks must be either (1) on the boundary of the

manifold (i.e., unlinked borders of the sketches), or (2) at a local extremum on linked

borders of the sketches.

The topological opening targets the latter case and makes it appear the same as

the former so that the region computation becomes simpler. Furthermore, our system

currently keeps those openings in the final garment artifact. The closing of those

regions could potentially be done automatically using specific cast-off procedures,

but keeping them open simplifies scheduling and code generation.

There are two scenarios for the topological opening. Fig. 6-7 illustrates both, using

the top of the beanie as an example sink to be opened. In general, the sources/sinks

are either:

1. Edgewise - distributed on a portion of the sketch boundaries, or

2. Pointwise - concentrated at a single vertex.

In the first edgewise case, we can simply break the link connections on the mesh

in the interior of the isoline. Tracing does the rest. In the second pointwise case, we

use an offset isoline at the closest vertex nearby to represent the source/sink isoline.

The physical beanie result is of the singular case, which we knit with an open

179

Closed Open

Po
in

tw
is

e
Ed

ge
w

is
e

Top
Figure 6-7: Illustration of the topological opening at the closed top of the beanie
for two different time extrema: edgewise and pointwise. The top views show the
opening in the center and a corresponding isoline profile (dashed lines). The extrema
on the earflaps are already on the manifold boundaries and do not need opening.

top, and manually close by passing thread across all last stitches and pulling a thread

which we close inside of the beanie.

6.4 Region Graph Construction

The next step is to automatically decompose the linked garment into a minimal set of

regions that are simple to knit, such as tubes and flat sheets, while conforming to the

time and direction fields. A simple region must be knittable using only traditional

forms of shaping, including stitch increases/decreases and short-rows. In particular,

simple regions cannot contain non-trivial topological features like splits or merges.

The time isolines that serve as interfaces between a garment’s minimal set of simple

regions are called critical isolines.

180

(a) Input time function on
the garment manifold

(b) Isoline segments and
separating vertices (�)

(c) Dependency paths for
resolving the regions

T
im

e
(d) Equivalent views of the bipartite region graph relating

the garment regions and isoline interfaces over time

Figure 6-8: Illustration of the steps of our region computation: (a) we start from
the time function defined on the garment atlas, (b) we trace a set of isolines that is
sufficient to segment the sketch domain into simple regions to knit, each isoline being
further decomposed into different oriented segments, (c) we create regions on each
side of the isoline segments and merge them by following dependency paths along the
sketch manifold, and (d) we create the corresponding bipartite graph with 2-coloring
separating nodes into regions and isoline interfaces.

These critical isolines include all isolines that coincide with:

• a topological split or merge,

• a topological change (from flat to tubular, or vice versa), or

• a boundary of the final garment manifold (e.g., the edge of a cuff or neckline).

181

Note that regions may be bounded by some portion of a given isoline if the isoline

coincides with a topological split, merge, or change, e.g., when joining the sweater

sleeves and trunk into the yoke region in Figure 6-8b. Thus, we denote each simple

region with a pair of lower and upper isoline segment sets (𝒮 low,𝒮up), in which each

set 𝒮 contains a number of isoline segments {𝜎0, 𝜎1, . . .} at time isoline 𝐿low and 𝐿up,

with time values 𝑡(𝐿low) < 𝑡(𝐿up), respectively.

We aim to compute the set of critical isolines and simple regions, along with the

knitting time dependency between them. However, it is difficult to directly extract

all critical isolines, as topological structures are not always apparent from the linked

atlas alone. Instead, we follow the 3-stage process outlined in Figure 6-8. Given a

time-annotated garment, we first identify the collection of candidate isolines that are

likely to serve as delimiters between neighboring regions (Section 6.4.1). Then, we

build the directed connections between all simple regions (Section 6.4.2). Finally,

we transform the region and interface dependencies into a directed acyclic bipartite

graph (Section 6.4.3).

6.4.1 Tracing Candidate Isolines

We begin by identifying the set of vertices 𝒱 from which we should trace candidate

isolines. This includes vertices that are located at (1) corners (start or end of chart

boundary segments), or (2) local time extrema along their boundary segment. The

corner vertices are where the most common topological splittings and mergings hap-

pen; the time extrema along boundaries capture the remaining topological events

(including flow sources and sinks). Note that 𝒱 is complete, but not all its elements

are necessary, e.g., subdividing a sketch boundary does not necessarily indicate a

change in topology.

Beginning from vertex 𝑣 ∈ 𝒱 with time 𝑡(𝑣), an isoline is traced by alternating

between two operations: (1) from a given neighborhood (vertex, edge, or face), find all

adjacent edges that contain the given time 𝑡, and (2) from a given edge, find all faces

that are adjacent to it. This generates a continuous isoline path over the garment

manifold, as illustrated in Figure 6-9.

182

(a) Initial vertex

(c) Final isoline

1 2 3 4 5

678910
E F E F

F

E

EF E F

(b) Sequence (1 to 10) of finding edges (E) and faces (F)

Figure 6-9: Illustration of isoline tracing: starting from a location (here a vertex),
we alternate between the adjacent edges (E) that contain the given isoline time, and
their adjacent faces (F), until we’ve traced the whole isoline domain. Here the color
of the mesh visualizes its time function.

Any isoline paths that encompass non-trivial topological features (e.g., topological

split, merge, or change) are then subdivided into multiple segments. The isolines are

partitioned at the topologically critical points, or separating vertices, which are given

by one of two scenarios. In the first case, a separating vertex coincides with more

than two edges of the isoline for time 𝑡 (as in the armpit of Figure 6-8b). The second

case indicates the point at which an isoline path transitions between being on the

interior of the garment manifold and being on its boundary. This is illustrated by

the central isoline of the beanie, which separates the ear flaps from the main body

in Figure 6-10. The isoline is primarily on the garment’s interior, but it intersects

the boundary at each of the two separating vertices (�). This is interpreted as a

topological change over this isoline: the two lower flat regions merge into the upper

circular body region.

6.4.2 Computing Regions from Dependency Paths

The next step is to uncover the simple regions by inferring the connectivity between

the candidate isolines. Each simple region must be bounded by two sets of isoline

183

Figure 6-10: Examples of separating vertices (�) at the boundaries of the garment
manifold. The central isoline is split into two segments separated by vertices that
form transitions between being inside the shape (above each ear flap), and at its
boundary (between both ear flaps). The top isoline surrounds a pointwise sink of the
time function, which was topologically opened.

segments — 𝒮 low and 𝒮up — that can be connected along a continuous path through

the garment without passing through any other candidate isoline. Thus, the set

of regions and their extents can be determined by tracing paths from each isoline

segment to its next reachable neighbor, in order to confirm their local connectivity.

Each isoline segment 𝜎𝑖 can be associated with at most two regions: its preceding

region (for which 𝜎𝑖 ∈ 𝒮up), and its subsequent region (for which 𝜎𝑖 ∈ 𝒮 low). Initially,

no other members of 𝒮 low or 𝒮up are known, so it is only possible to allocate a partially-

known region for each side of 𝜎𝑖. Then, a dependency path is traced from each lower

segment 𝜎𝑖, eventually reaching another isoline segment 𝜎𝑗 (with 𝑡(𝜎𝑖) < 𝑡(𝜎𝑗)). This

confirms that the subsequent region of 𝜎𝑖 and the preceding region of 𝜎𝑗 are identical

and allows us to merge them into a single region with the union of the corresponding

isoline segments on either side.

Our system generates dependency paths by following edges of the mesh in a specific

time direction until some isoline segment is reached. Reaching essentially means that

the last edge 𝑒 of the path intersects an isoline. This intersection may occur within

𝑒 or at an end vertex of 𝑒. In the former case, the dependency always indicates a

184

σup
3

σlow

σup
3

σup
2 σup

1

Figure 6-11: When a dependency path (blue line) reaches a candidate isoline at a
separating vertex (�), we must take extra steps to determine which of the incident
isoline segments (𝜎up

1 , 𝜎up
2 , or 𝜎up

3) bound the region in question (blue). We decide this
by traversing the triangle fan that surrounds the vertex, until reaching (or crossing)
the nearest candidate isoline segment in each direction (𝜎up

1 and 𝜎up
2).

single isoline segment 𝜎𝑗. If the latter case occurs at a separating vertex 𝑣, there may

be several incident isoline segments that partition the local neighborhood around 𝑣

into sectors representing distinct regions, as shown in Figure 6-11. In such a case,

the dependency path only reaches the isoline segment(s) that delimit the sector from

which the path originated.

Necessary Dependency Paths

Our region computation initially allocates two regions per isoline segment. Intuitively,

one should not need more because the segments represent the potential sides of the

regions at the interfaces, and different regions neighbor either (1) different segments,

or (2) same segments, but on different sides.

The choice of dependency path is actually important to ensure we properly merge

all regions. Tracing two dependency paths per isoline segment (one upward and one

downward) is sufficient to resolve all the initial regions since each allocated region

185

σup
3 σup

3

σup
1σup

2

Figure 6-12: Illustration of the adjacent region merging at a separating vertex. Seg-
ments 𝜎up

1 and 𝜎up
2 from the trunk region can reach each others, thus the front and

back span the same region. Circulating around the sleeve region has no effect since it
is upper-bounded by a single segment 𝜎up

3 . As for the segments on the other side of
the isoline (lower segments of the upper neck region), all get merged together: 𝜎low

1

reaches 𝜎low
3 on the right, and 𝜎low

2 reaches 𝜎low
3 on the left.

gets resolved. However, this can lead to too many regions if the side regions are not

merged properly. We consider two options to properly resolve regions laterally:

1. Merging regions by circulating around separating vertices ;

2. Explicitly tracing all sketch boundaries as dependency paths.

The former option actively merges regions around separating vertices when they

are reachable. Figure 6-12 shows such merging happening at the original sweater’s

armpit.

The latter option relies on the fact that separating vertices all arise on the sketch

boundaries, and thus, by tracing dependency paths along all sketch boundaries, we

end up automatically merging all regions that need merging around those separating

vertices. This is the strategy we use.

186

6.4.3 Building the Bipartite Region Graph

Armed with the garment’s topological structure, non-critical isolines are filtered out

to produce the desired minimal set of simple regions. The non-critical isolines are

those which (1) connect a single preceding region to a single subsequent region, and

(2) have topologically identical structures on both sides (i.e., flat to flat, or circular

to circular). Note that both criteria are necessary for pruning. For instance, if an

isoline has a single previous and a single next region but its topology changes (from

flat to circular or vice versa), the isoline is considered critical. Once a non-critical

isoline is removed, its preceding and subsequent regions are merged.

After resolving the minimal set of regions, we construct a bipartite region graph

that represents the final garment decomposition. This graph has a node set ℐ to

represent interfaces (critical isolines), another node set ℛ to represent each simple

region, and a directed edge set ℰ to connect related isolines and regions. Each di-

rected edge e𝑖 ∈ ℰ corresponds to an isoline segment set 𝒮𝑖 = {𝜎0, 𝜎1, . . .}. Moreover,

for a given interface node 𝜂, any incident edges in ℰ in
𝜂 originate at a preceding re-

gion/interface, and those in ℰout
𝜂 lead to a subsequent one. This yields the final graph

𝐺 = ({ℐ,ℛ}, ℰ) as shown in Figure 6-8d.

Graph Post-Processing and ∆𝑡min

In practice, due to small asymmetries in the user input, we often end up with a graph

that is not ideal.

Our region graph can easily end up with many small regions in between (or at the

boundaries of) larger regions. For example, the case of the 3-way merge interface of

the sweater assumes that we end up with an identical time at both armpits. Here,

we measure specifically the time extents ∆𝑡(𝑟) of some region 𝑟 = (e𝑖, e𝑗) ∈ ℛ as the

time range across its boundaries: ∆𝑡(𝑟) = |t(𝐿𝑗)− t(𝐿𝑖)|.

Our system allows the user to tune the minimum allowable time extents ∆𝑡min.

Given that threshold, we reduce the original region graph by iteratively collapsing

any simple region whose extents are too low, until either all regions have sufficient

187

Original
Graph

Trunk
base

Base of sleeve Base of sleeve

Neck seam

Sleeve

Sleeve

Trunk

Neck

Reduced
Graph

Trunk
base

Base of sleeve Base of sleeve

Neck seam

Sleeve

Sleeve

Trunk

Neck

Region
Collapsing

Figure 6-13: (Left) the original graph of the sweater example when the sources and
sinks are not sufficiently constrained – e.g., no hard time isoline constraints are set
on the sketch boundaries –, (right) its reduced graph that looks identical to the ideal
one.

time extents, or there remains only one simple region. Simple regions that collapse

become parts of new interface nodes.

Figure 6-13 illustrates the impact of region collapsing on an insufficiently con-

strained sketch atlas so that its graph is reduced into one that is a more ideal one.

In practice, this control is desirable because slight variations of the charts and

time function can lead to large variations of the region topology, notably near the

source and sink locations. In particular, small offsets may inadvertently introduce

clusters of critical isolines that are very close to one another, resulting in simple

regions that may be too small to hold any stitches during the later sampling and

instantiation processes. By pruning these small regions, we increase the robustness

of our algorithm, and allow the user to control for any 𝜖-errors in the chart sketches

and constraints a posteriori.

188

a

b

c

de

n1

n0

n2 n3 n4n7n5n6

interfaces

regions

courses

wales
short-rows

N

rk

m0

m4m3 m2m1

Figure 6-14: Illustration of the steps of our sampling algorithm: (a) optimizing stitch
numbers at region interfaces, (b) optimizing course number, short-row densities and
stitch numbers in each region, (c) creating stitch courses, (d) pairing stitches between
adjacent courses across interfaces and within regions, and (e) generating short-rows.

6.5 Hierarchical Stitch Sampling

In order to generate machine knittable instructions from the region graph, a stitch

graph must be instantiated. Our stitch graph computation is formulated as a global

hierarchical optimization over the region graph and sketch atlas. Unlike previous

works, each phase of our optimization accounts for both (1) the garment size accuracy

and (2) its topological simplicity. These goals are fundamentally conflicting, because

irregular topologies (shaping or short-rows) often improve size accuracy, but this

typically happens to the detriment of a simple topology (regularity of stitches). Our

system solves optimization problems that allow the user to navigate the tradeoff

between garment size accuracy and topological simplicity. Moreover, our formulation

enables the user to interactively control the wale alignment using seam annotations.

189

Our optimization approach has multiple stages illustrated in Figure 6-14. First, we

optimize the number of stitches at each interface (Section 6.5.1). We then optimize

the number of full courses and short-rows within each region and the number of

stitches placed along each full course (Section 6.5.2). Next, we create all course

stitches with their course connectivity, and optimize the wale connectivity across

the interfaces and within each region, while taking the user’s seam annotations into

account (Section 6.5.3). Finally, we insert short-row stitches (Section 6.5.4).

6.5.1 Interface Sampling

To determine the stitch count 𝑛𝑖 at each edge e𝑖 ∈ ℰ within the bipartite region

graph 𝐺 = ({ℐ,ℛ}, ℰ), we formulate an Integer Quadratic Programming problem

(IQP) with linear constraints:

arg min
n

𝜆crs

∑︁
e𝑖∈ℰ

𝐸crs(𝑛𝑖) + 𝜆smpl

∑︁
(e𝑖,e𝑗)∈ℛ

𝐸smpl(𝑛𝑖, 𝑛𝑗)

s.t. ∀ 𝜂 ∈ ℐinternal,
∑︁
e𝑖∈ℰ in

𝜂

𝑛𝑖 =
∑︁

e𝑗∈ℰout
𝜂

𝑛𝑗. (6.10)

The first term 𝐸crs measures the per-edge course accuracy for the stitch count 𝑛𝑖

along e𝑖:

𝐸crs(𝑛𝑖) =
⃒⃒⃒
𝑛𝑖 −

𝜔𝑖

𝐷crs

⃒⃒⃒2
, (6.11)

where 𝐷crs is the expected distance between the center of adjacent course-connected

stitches and 𝜔𝑖 is the user’s desired course width, as indicated by the scaled atlas.

The simplicity term 𝐸smpl penalizes large differences in stitch counts (𝑛𝑖, 𝑛𝑗) be-

tween the beginning and end of a given region (e𝑖, e𝑗) so as to encourage simple

regions with minimal shaping:

𝐸smpl(𝑛𝑖, 𝑛𝑗) = |𝑛𝑖 − 𝑛𝑗|2. (6.12)

The constraints in Equation 6.10 ensure that courses on either side of an internal

interface (i.e., those with ℰ in
𝜂 , ℰout

𝜂 ̸= ∅) have the same number of stitches. The user-

190

specified weights 𝜆crs and 𝜆smpl control the trade-off between course accuracy and

simplicity.

6.5.2 Region Sampling

After optimizing the stitch count 𝑛 for each of the interface edges, we optimize the

sizing along the wale and course directions, respectively, within each region. All

regions can be solved in parallel.

Sizing Along the Wale Direction

To ensure that each region has the desired measurements along the wale direction, we

minimize an energy penalty for the wale size accuracy across the region. In particular,

we subdivide the region by tracing 𝑁 isolines uniformly along its time extents and

accumulating the local wale error across those while accounting for a number of

additional short-rows r to fill the distance in between. The subdivision produces 𝑁

isoline segment sets 𝒮𝑖 ∈ 𝒰 for 𝑁 + 1 sub-regions (𝒮𝑖,𝒮𝑗) ∈ 𝒜. We optimize for both

the number of subdivisions 𝑁 and the local short-rows r between each sub-region:

arg min
𝑁, r

∑︁
(𝒮𝑖,𝒮𝑗)∈𝒜

(︀
𝜆wale𝐸wale(𝒮𝑖,𝒮𝑗) + 𝜆srs𝐸srs(𝒮𝑖,𝒮𝑗)

)︀
, (6.13)

where the energy term 𝐸wale measures the size accuracy along the wale direction and

the short-row simplicity term 𝐸srs penalizes adjacent short-row densities that change

too fast.

To measure 𝐸wale and 𝐸srs, 𝐾 sample pairs (𝑠𝑖,𝑘, 𝑠𝑗,𝑘) are uniformly distributed

along 𝒮𝑖 and 𝒮𝑗, respectively. We let 𝑟𝑘 be the number of additional short-rows

between each sample pair. For efficiency, our value of 𝐾 is typically much smaller

than the final number of stitches on the courses. In particular, 𝐾 is computed based

on the curve lengths ℓ(·) and the distance ∆𝑠 between adjacent grid samples at the

finest mesh resolution: 𝐾 = ⌈max(ℓ(𝒮𝑖), ℓ(𝒮𝑗))/∆𝑠⌉. Then, 𝐸wale and 𝐸srs can be

191

defined in a discretized form as follows:

𝐸wale =
𝐾∑︁
𝑘=1

⃒⃒⃒G(𝑠𝑖,𝑘, 𝑠𝑗,𝑘)

𝐷wale
− 1− 𝑟𝑘

⃒⃒⃒2
, 𝐸srs =

𝐾∑︁
𝑘=1

|𝑟𝑘 − 𝑟𝑘−1|2, (6.14)

where G(𝑠𝑖,𝑘, 𝑠𝑗,𝑘) is the geodesic distance between samples 𝑠𝑖,𝑘 and 𝑠𝑗,𝑘, and the −1

term accounts for the implicit wale step that happens between 𝒮𝑖 and 𝒮𝑗.

Full courses are preferable to short-rows wherever possible, as the latter tend to

increase knitting complexity. To enforce this, we require that at least one sample

pair from every sub-region ends up with no intermediate short-row density– i.e.,

∃ 𝑘, 𝑟𝑘 = 0 between each (𝒮𝑖,𝒮𝑗). By optimizing Equation 6.13 subject to this

constraint, we bias the solution toward full-course isolines (large 𝑁 , small 𝑟𝑘) rather

than relying on short-rows (lower 𝑁 , large 𝑟𝑘).

Sizing Along the Course Direction

Given the best value of 𝑁 , we optimize for the number of stitches 𝑚𝑖 along each 𝒮𝑖 ∈

𝒰 . This is formulated as a similar constrained IQP problem to that of Equation 6.10,

with a tradeoff between course accuracy and simplicity:

arg min
𝑚

𝜆crs

∑︁
𝒮𝑖∈𝒰

𝐸crs(𝑚𝑖) + 𝜆smpl

∑︁
(𝒮𝑖,𝒮𝑗)∈𝒜

𝐸smpl(𝑚𝑖,𝑚𝑗)

s.t. ∀ (𝒮𝑖,𝒮𝑗) ∈ 𝒜, ⌈𝑚𝑗/𝐹max⌉ ≤ 𝑚𝑖 ≤ ⌊𝑚𝑗 𝐹max⌋. (6.15)

The constraint enforces a user-defined maximum shaping factor 𝐹max ∈ (1, 2], which

limits the rate at which stitch counts can change between adjacent courses. The

bounds on 𝐹max ensure that stitch counts can be instantiated into a valid stitch

graph, where each stitch has at most two next wales, and at most two previous wales.

Because the stitch counts 𝑛𝑖, 𝑛𝑗 at the extents of each region have already been fixed

by the interface sampling step, the value 𝐹max also implies a minimum value of 𝑁

that must be respected for a given region: 𝑁min =
⌈︁
log𝐹max

[max(
𝑛𝑖

𝑛𝑗
,
𝑛𝑗

𝑛𝑖
)]
⌉︁
− 1.

192

6.5.3 Stitch Connectivity

After determining the number of courses and stitches in each region, stitches are sam-

pled uniformly along their corresponding isoline. Then, course and wale connections

between them are computed to form an initial stitch graph.

Course Connectivity

Adjacent stitches on the same isoline segment set are connected first. The process is

trivial for singleton sets, as the sequence of neighboring stitches is clear. For multi-

segment sets, it is necessary to determine a course path over the segments first, to

ensure that the stitch sequence is well-defined. The course path traces a consistently-

oriented Eulerian path over the isoline segments, where the orientation is defined

as the sign of the cross-product between the local displacement and the local time

direction field between two subsequent locations in the same sketch. The arrows in

Figure 6-8b illustrate the default positive orientation.

Connectivity across Interfaces

After connecting stitches on each course within the regions, all regions are connected

together by computing a 1-1 wale assignment between the stitches on either side of

an interface. Our system optimizes for the alignment between the paired stitches,

while enforcing that the adjacent regions have a valid layout on the final needle bed

for scheduling.

A greedy wale distribution approach is used to ensure that any circular structures

sandwiched between other structures end up split evenly across both knitting beds.

For the general case, our system binds 𝑁 lower courses to 𝑀 upper courses. We

reduce this to a pair of simpler interfaces (an 𝑁 -to-1 interface followed by a 1-to-𝑀

interface), both of which can be solved in a symmetric manner. Our base case is a

course that needs binding to 𝑀 courses, for which we greedily search the best 1-to-1

stitch alignment by

1. selecting an ordering (𝜋)𝑀𝑘=1 of the 𝑀 upper courses, then

193

2. sequentially searching for the best layout of the course 𝜋𝑘, which minimizes the

geodesic distance between existing stitches after left-to-right packing of courses

𝜋1 to 𝜋𝑘, and

3. using the overall best ordering 𝜋 and its wale assignments.

The left-to-right packing assumes that intermediate circular courses get split

evenly between front and back. If more than one intermediate course is circular,

it may end up with irregular odd packing as described in Narayanan et al. [122]. To

avoid this, our system enforces the optimization in Section 6.5.1 to produce even-

parity stitch counts for any interface of 𝑀 > 3 courses.

This approach enables a wide array of practical garment topologies. However,

scheduling constraints can be arbitrarily complex for intricate garments, and the

general case remains an open problem.

Wale Connectivity

To assign the remaining wale connections between stitches in the region interiors,

we extend the Dynamic Time Warping strategy of Narayanan et al. [122] with a

modified penalty function 𝐸penalty and apply it between each pair of adjacent courses

independently. The modified penalty between a source stitch Ωsrc and a target stitch

Ωtrg is defined as follows:

𝐸penalty = 𝜆dist 𝐸dist(Ω
src,Ωtrg)

+ 𝜆seam

∑︁
Ω∈{Ωsrc,Ωtrg}

𝜒(Ω) 𝐸seam(Ω) , (6.16)

where 𝜒(·) is an indicator of the stitch’s irregularity: 𝜒(Ω) = 1 if Ω is the source

of a 1-2 connection, and 𝜒(Ω) = 1 if Ω is the target of a 2-1 connection; otherwise,

𝜒(Ω) = 0.

The first term 𝐸dist is the normalized squared geodesic distance between Ωsrc and

194

Ωtrg on the garment manifold:

𝐸dist(Ω
src,Ωtrg) =

(︂
G(Ωsrc,Ωtrg)

𝐷wale

)︂2

. (6.17)

The second term 𝐸seam is introduced to gather irregular wale connections around

the user-specified seam annotations, by penalizing irregular wales that occur far away

from any seam location:

𝐸seam(Ω) = min (𝛼seam,
∆seam(Ω)

𝐷crs
) , (6.18)

where 𝛼seam = ∆𝑠

√
2 is the interaction support of any seam annotations, ∆𝑠 is the

distance between adjacent grid samples at the finest mesh resolution, and ∆seam(Ω)

is the Euclidean distance between stitch Ω and the closest seam location in its 2D

chart.

After computing the wale connection, users are allowed to further edit their seam

annotations interactively. To incorporate the new annotations, the wale distribution

optimization described above has to be repeated. To expedites this process, our

system preemptively caches the geodesic distances between each stitch pair Ωsrc and

Ωtrg during the initial pass of the wale connection optimization. This dramatically

reduces the evaluation time for 𝐸dist(Ω
src,Ωtrg). Note that 𝐸seam(Ω) cannot be cached

because the seam distances must be recomputed with respect to the new annotations,

but the Euclidean distance evaluations are fast enough to support interactive editing.

6.5.4 Short-row Insertion

After connecting all stitches along full courses, short-row stitches are inserted ac-

cording to 𝑟𝑘 from Equation 6.13, which indicates the number of short-rows to be

instantiated between the sampled pair 𝑠𝑖,𝑘 and 𝑠𝑗,𝑘. Our system considers each wale

connection between full course stitches (Ωsrc
𝑢 ,Ωtrg

𝑢), and subdivides the wale into 𝑟𝑢

stitches, as shown in Figure 6-15. Since the number of stitch pairs generally exceeds

the number of sample pairs, the density 𝑟𝑢 between (Ωsrc
𝑢 ,Ωtrg

𝑢) takes on the value 𝑟𝑘

195

rk =1rk =0 rk =2 rk =1 rk =0

(a)

rk=1rk=0 rk=2 rk=1 rk=0

(b)

(c) (d)

Figure 6-15: Short-row formation by splitting wales: (a) setup with initial wales
and short-row densities, (b) uniform distribution of stitches over wales, (c) short-row
stitch grid given user alignment (bottom), and (d) the final short-row connectivity.

from the closest sample pair (𝑠𝑖,𝑘, 𝑠𝑗,𝑘).

For a 1-1 wale connection, the wale is subdivided into 𝑟𝑢 uniformly-spaced stitches.

The same process applies for 2-1 wale connections, except stitches are added to both

wales in this manner. For 1-2 wales, short-row stitches are uniformly placed along

the wale path between Ωsrc and the average location Ω
trg of the two target stitches.

The wale connections from the source up to the upper-most short-row stitch are 1-1;

only the upper-most short-row stitch has a 1-2 wale connection to the original target

stitches.

After the short-row stitches have been inserted within the wales, they are con-

nected into courses based on a user-defined vertical alignment in a virtual grid. The

contiguous stitches in each row of the grid get course-connected, forming the final

short-row topology. Our system supports three different vertical alignments (bottom,

middle, and top), as illustrated in Figure 6-16.

This step concludes the generation of our stitch graph. Some implementation

details related to sampling can be found in Appendix B.

196

Figure 6-16: Different vertical alignments: from left to right, bottom, middle (biased
towards bottom) and top.

6.6 Yarn Tracing

The previously sampled stitch graph is technically a Knit Graph as per the nomen-

clature of Narayanan et al. [122]. Namely, courses form disconnected rows and wales

are their columns. Similarly to our yarn tracing step in the previous chapter (see

Section 5.4), we must trace the yarn over this data structure to create the actual

yarn path for which we can generate a needle schedule. We do so with the rule-based

procedure of Narayanan et al. [122]. Its main idea is to trace over each stitch twice.

This provides us with a guarantee that we can trace over short-rows with a single

yarn carrier, whereas tracing only once may require the use of multiple carriers. This

section briefly describes the procedure.

Figure 6-17 illustrates a tracing example across three tubular courses and a pair

of short-row stitches between the last two courses. As the tracing proceeds, stitches

get marked as knit once (∙∘) and knit twice (∙∘), whereas stitches that have yet to

be knit are either ready (∙∘) – when all column-wise predecessors of stitches in their

row have been knit twice –, or pending (∙∘) otherwise. Furthermore, the traced

yarn keeps an orientation state (CCW or CW) that gets updated with the tracing

rules. By default, the orientation starts counter-clockwise (CCW). The conjunction

of double-tracing and the structure of our stitch graph guarantee that the first stitch

being traced in any full course always starts in CCW orientation.

The tracing rules are attempted in order, until one is found. The tracing then

restarts searching for a matching rule until all stitches have been traced twice.

R1 – Start Yarn: If no yarn is active, start a new yarn by knitting a stitch that

is either ready or knit once. When choosing the starting stitch, we pick in priority:

197

(1) endpoint stitches (only one course neighbor), (2) stitches with a course neighbor

that is knit twice, (3) stitches with no previous wale or no next wale, and (4) stitches

on seams or sketch boundaries.

R2 – Next Row: If the previous step updated a set of stitches to ready by complet-

ing the last of their predecessors, then move to the newly readied group of stitches. In

the tubular case, use the stitch that follows in the current orientation; otherwise, use

the stitch directly above (next wale of) the last knit stitch, in the opposite direction.

In the short-row case, further mark the base stitch as having a next tuck.

R3 – Continue: If the course neighbor of the last stitch in the current orientation

has not been knit twice, knit it.

R4 – Tuck and Turn: Upon reaching the end of a row (i.e., no course neighbor

in the current orientation), if the current stitch has not been knit twice, mark the

current stitch as having a next tuck, switch to the opposite orientation and knit the

last stitch.

R5 – End Short-row: Upon reaching the end of a row, if the current stitch has

been knit twice, knit the next stitch beyond the row if any is available in one of the

previous rows.

R6 – End Yarn: If no other rule applies (i.e., no row-wise or column-wise adjacent

ready node exists, and all adjacent nodes have been knit twice already), then stop

the current yarn.

Next tucks

A next tuck is a hint to tuck the next stitch in the current orientation within the

final bed layout. Whether a tuck is actually generated is dependent on user settings

and the safety of the actual tuck in the final knitting program (e.g., are there already

multiple loops in the needle?).

198

(a) Stitch graph (b) Source stitches
are marked as ready

(c) R1: Start yarn (d) R3: Continue . . .

(e) R3: Continue
(end of first pass)

(f) R3: Continue
(start second pass)

(g) R3: Continue . . . (h) R2: Next row
(start first pass)

(i) R3: Continue . . .
(short-row is ready)

(j) R2: Next row
(start short-row)

(k) R3: Continue (l) R4: Tuck and
turn

(m) R3: Continue
(second pass)

(n) R5: End
short-row

(o) R3: Continue
(next course ready)

(p) R2: Next row

Figure 6-17: Tracing example of a tubular structure: three full courses and two short-
row stitches between the last two courses. “Continue . . . ” corresponds to a sequence
of application of rule R3 – Continue.

199

6.7 Scheduling Stitches onto Needles

The scheduling stage transforms the yarn trace into a sequence of needle bed slices

and then optimizes the layout of the stitches on these needle bed slices.

6.7.1 Slicing

Needle bed slices represent local snapshots of the yarn path as it gets created on the

machine. They are local as we only consider the yarn within its current local branch.

When multiple branches are on the bed, we thus have multiple slices next to each

other. Importantly, the only slices that interact with slices outside of their region are

slices at region interfaces.

We represent a slice with:

• A list of stitches forming a continuous CCW-oriented cycle on the bed, and

• A mapping from stitch to state (Expected, Active or Suspended)

Slicing serves two purposes: (1) it provides an abstract representation of cycles of

stitches on the needle bed and (2) it enables us to divide the time sequence into steps

for code generation.

The latter purpose provides a few constraints that drive the slicing procedure so

as to match the interpretation during code generation:

1. There should be only one active yarn within a slice,

2. Two wale-connected stitches should not appear in the same slice (because they

must always happen at different times),

3. The cast-on / off needs of active stitches must be the same,

4. The active trace orientation should be the same within a slice, and

5. The number of active increases / decreases should not be too large.

200

The last constraint is tunable by the user: allowing more shaping at once may

lead to fewer passes to the detriment of more dangerous operations. By default, we

restrict ourselves to 2 increases or decreases per flat slice, and 4 per tubular slice.

Fresh Slice

Given a stitch, we create a fresh slice with all the knit-once stitches of its row in

stitch graph before tracing. Fresh slices always contain full-course stitches and never

short-row stitches. By default, the state of the stitches is set to Expected.

Slicing

The slicing procedure successively goes over the stitches of the yarn trace and either

(1) generates a fresh new slice, (2) derives a new slice from the last one, or (3) updates

the last slice. The iterated stitch gets marked as Active and the process goes on until

all stitches of the yarn trace have been visited.

Fresh new slices (1) are generated when visiting a stitch of a new region.

New slices get derived (2) upon encountering a conflicting constraint (e.g., a stitch

that is wale-connected to a stitch in the current slice, a change of trace orientation,

shaping levels beyond the user threshold, etc.).

The last slice gets updated (3) when encountering a decrease stitch that merges two

currently Suspended stitches. In such case, the two decreasing stitches are replaced

by their common target stitch.

Slice Derivation

Slice derivation consists in a per-stitch and state remapping:

• Expected stitches stay as-is,

• Decreasing stitches3 (either Active or Suspended) stay as Suspended, and

• Other Active stitches get replaced by the (0, 1 or 2) stitches of their next wale

connections, as Expected.
3A stitch with a single next wale neighbor that has two previous wale connections

201

(a) Stitch graph (b) Traced graph

a a a a a

(c) Slice 1

a a a a a

(d) Slice 2

a a a a a

(e) Slice 3

e a
a a

e

(f) Slice 4:
partial activation

e a a e

e

(g) Slice 5:
partial activation

a a
a a

a

(h) Slice 6

a a a a

(i) Slice 7

Figure 6-18: Slicing steps for the example traced in Figure 6-17. The red stitches
are Active (label “a”) whereas gray stitches are Expected (label “e”).

Increase vs Decrease

In the increase case, activating a stitch directly results in two new stitches in the next

slices (the next wale connections of the splitting stitch). In the decrease case, activat-

ing stitches that are decreasing does not always directly result in the merged stitch in

the next slice. Notably, if only one decreasing stitch is activated, we must keep it on

the needle bed until the resulting merged stitch gets activated. The Suspended state

serves to keep decreasing stitches on the needle bed until the merge action effectively

happens. This is notably important with short-rows as the decreasing stitches can

202

(a) Stitch graph (b) Traced graph

a a a a

(c) Slice 1

a a a a

(d) Slice 2

a a a a a

(e) Slice 3

e a
a a

e

(f) Slice 4:
partial activation

e a a es

(g) Slice 5: partially active
and suspended stitch

a a
a as

(h) Slice 6: partially active
and suspended stitch

a a a a

(i) Slice 7

Figure 6-19: Slicing steps for the an example variation that includes shaping (increase
at bottom and decrease between the two last full courses). The red stitches are
Active (label “a”), the gray stitches are Expected (label “e”) and the blue stitches
are Suspended (label “s”). Compared to Figure 6-18, the slices differ notably in the
short-row region between the last two full courses. The difference is due to the stitch
decrease that keeps the decreasing stitches suspended until they effectively merge.

stay suspended for a few slices before actually getting merged into the decrease stitch.

Figure 6-18 illustrates the basic slicing mechanism whereas Figure 6-19 highlights the

impact of shaping and notably the suspended state. Notice the wale transformation

between stitch graph and traced graph in Figure 6-19: the (1-2) wale pair is after the

second pass of the splitting stitch, whereas the (2-1) pair is directly before the first

pass of the merging stitch.

203

6.7.2 Layout Representations

Each slice can be laid out on the needle bed in different ways. A reasonable slack con-

straint is to require that successive stitches be reasonably close – i.e., their respective

needles should have offsets 𝑜1 . . . 𝑜𝑁 such that

∀𝑖, |𝑜𝑖+1 − 𝑜𝑖| ≤ 1. (6.19)

In the following, we consider different types of layout parameterizations that sat-

isfy Equation 6.19. In general, we assume the layout parameterization to deal with

the relative layout of stitches. This notably excludes a global needle offset that is

represented separately in the scheduling problem.

Circular Layout

Similarly to Narayanan et al. [122], we parameterize the layout of circular stitch cycles

with two components:

• A roll parameter that corresponds to the rotation of the cycle, and

• A nibble parameter that decides the layout of the corners of the cycle.

Then, assuming the offset constraint of Equation 6.19, for 𝑁 stitches, we have

either 5𝑁 or 4𝑁 possible circular layouts for 𝑁 even, respectively 𝑁 odd, as illustrated

in Figure 6-20. Rolls are visualized in Figure 6-21.

Nibbles: If we consider the nibble parameter to represent the corner defects (i.e.,

lack of stitch at a given corner from the default fully aligned cycle), and name the

corners (FL - front-left, FR - front-right, BL - back-left, and BR - back-right), then

the even case has 5 possible defects: none, FL+FR, BL+BR, FL+BR and FR+BL.

The odd case has only 4 possible defects: FL, FR, BL and BR. Note that some

combinations are irrelevant (e.g., FL+BL is the same as no defect with a global offset

to the right, and similarly FR+BR is equivalent to no defect).

204

N=5 N=6
Figure 6-20: All possible circular layouts shapes for 𝑁 = 5 and 𝑁 = 6 without
considering the roll parameter (kept constant as roll = 0). The blue circle ∙∘
represents the first stitch.

Figure 6-21: The regular (no-nibble) layout for 𝑁 = 6 and all its roll variants. Starting
at the bottom-left, going counter-clockwise, the roll goes from 0 to 𝑁 − 1 = 5. All
cycles have stitches in counter-clockwise order and the blue circle ∙∘ represents the
first stitch.

Single-Fold Layout

The single-fold layout parameterizes the layout of 𝑁 stitches by using that of a tubular

layout with 2𝑁 stitches, while using only its 𝑁 first stitches. In practice, there are

some nibble configurations that become invalid as the roll changes since we only have

at most two corners available at any time (on the side where the fold happens).

A priori, that puts us in the same space as circular layouts for complexity (linear

in 𝑁), but one complication is that scheduling doesn’t require only the layout for

binding, but also to constrain the available locations of other layouts. In the case

of the circular layouts, the pair (𝑁, nibble) is sufficient to compute the extents of

205

F
B

Figure 6-22: Examples of flat layouts for 𝑁 = 8 stitches: single-fold with 𝑟 = 2 (left),
and c-shaped with 𝑠 = 𝐹 , 𝑙 = 1, 𝑟 = 2 and 𝑚 = 5 (right).

the layout – i.e., the rotation doesn’t matter. In the flat case, however, the rotation

matters when packing cycles next to each others. This increases the search space

substantially.

C-Shape Layout

The C-shaped layout refers to a flat structure that is potentially folded twice over the

bed, to form a C-shape (modulo some rotation).

One potential parameterization for such layout is as follows, sequentially:

• A number of main stitches 𝑚 ∈ [⌈𝑁/2⌉;𝑁],

• A side for the main stitches 𝑠 ∈ {𝐹,𝐵}, and

• A number of secondary left stitches 𝑙 ∈ [0;𝑁 −𝑚].

From 𝑁 , 𝑚 and 𝑙, we can infer the number 𝑟 of secondary stitch locations on the

right side (for the secondary fold) as

𝑟 = 𝑁 −𝑚− 𝑙. (6.20)

Obviously, one can change the parameterization through that substitution as is

done in Figure 6-22 with (𝑠, 𝑙, 𝑟) instead of (𝑚, 𝑠, 𝑙). Furthermore, note that we do

not consider nibbles, although they would matter in the general case.

Unfortunately, because we need two parameters whose extents vary proportionally

to 𝑁 , the number of possible layouts 𝐶(𝑁) becomes now quadratic in 𝑁 .

A second issue concerns the extents of the layouts during left-to-right packing on

the bed (and collision avoidance between layouts). In the general case, the scheduler

should allow other flat layouts to nest in between two folds of one C-shaped layout.

206

Simplified C-Shape Layout

In practice, given the scalability issues of the general C-Shape layout, we instead use

a simplified version of it. Since our scheduler implementation does not support any

form of nesting of layouts, the simplified layout can assume that we don’t do any form

of nesting. Furthermore, to make the layout exploration space linear, we restrict it

to use a single parameter that scales with the stitch number 𝑁 .

We basically keep only the first two parameters of the previous layout: a number

𝑚 ∈ [⌈𝑁/2⌉;𝑁] of main stitches, and their side 𝑠 ∈ {𝐹,𝐵}. The remaining values 𝑙

and 𝑟 are inferred while assuming that the secondary side spreads the folded stitches

uniformly between left and right side.

To avoid having to choose between layouts, we can add an additional parameter

𝑎 ∈ {left, right, both} that describes the secondary layout: either all packed on the left,

right or spread evenly across both sides. This results in a flat layout that encompasses

both the single-fold and simplified c-shape layouts.

6.7.3 Schedule Optimization

The schedule optimization is based on the same inter-layout cost and hierarchical

formulation as Narayanan et al. [122]. The optimization consists in finding an optimal

assignment of bed layout and bed offset for each slice. Note that the relative time

between slices is fixed by the yarn tracing sequence.

Cost

The optimization selects layouts to minimize the number of operations needed to knit

the target topology. We effectively try to minimize the number of loop movements

that arise in the knitting program. The cost tuple that we minimize is

Cost(𝐵𝑖, 𝐵𝑗) = (Align(𝐵𝑖) + Align(𝐵𝑗),Roll(𝐵𝑖, 𝐵𝑗), Shift(𝐵𝑖, 𝐵𝑗)) (6.21)

where 𝐵𝑖 and 𝐵𝑗 are two bed slice layouts at adjacent time steps.

207

The interpretation of the terms is as follows:

• Align(𝐵) equals 0 if the bed layout 𝐵 is naturally aligned – i.e. no nibble for a

circular layout and no folding for a flat layout –, and 1 otherwise;

• Roll(𝐵𝑖, 𝐵𝑗) counts the number of loops that must change bed between layout

𝐵𝑖 and 𝐵𝑗;

• Shift(𝐵𝑖, 𝐵𝑗) counts the number of loops that must change needle offset between

layout 𝐵𝑖 and 𝐵𝑗.

The first alignment term favors naturally aligned layouts since those tend to lead

to natural layouts. The second roll and third shift terms jointly serve to align layouts

over time. The first part of the schedule optimization attempts to minimize the cost

sum
∑︀

(𝑖,𝑗) Cost(𝐵𝑖, 𝐵𝑗,) over all related adjacent layouts (𝐵𝑖, 𝐵𝑗).

Schedule Hierarchy

Since fresh new slices are generated upon reaching new regions, each region node of

the garment gets a natural sequence of slices that is associated with it. While each

of the slices of a node gets an associated layout 𝐵𝑖, the node gets an additional post-

shaping layout 𝐵ps that allows us to modify the location of the stitches on the bed

after the actions of the last slice have happened. This additional degree of freedom

allows for some bed transformation (without any stitch action) at the end of each

node that makes the full optimization simpler.

Instead of solving the schedule optimization as a branch-and-bound over the full

problem, we can now divide the problem into solving for the schedule between nodes

(at their interfaces), and within each node separately.

Between-Nodes Scheduling

The global between-node optimization is done with branch-and-bound and seeks to

find both (1) the layouts of the node interfaces, and (2) their left-to-right ordering.

In the fully-tubular case, this effectively enforces that there is a planar embedding of

208

CBA

A B C

AC B

Figure 6-23: Example of bridges at a 3-1 interface. The merged cycle has 4 bridges:
two for each tubular adjacency of the branches (left). The B branch has 2 bridges
so that it must end up between both A and C. This results in only the A-B-C and
C-B-A layouts being possible (right).

the region nodes as required for a valid tubular schedule [122]. When flat layouts are

used, then some of the orderings may be interchangeable (for flat layouts that overlap

but are across beds).

A key to efficiently search the exponential space of layouts is to quickly reject

invalid pairs. When considering a given (partial) ordering of layouts and a new

layout to insert, we can rule out invalid locations based on the known interaction

of the current layout with neighboring layouts in the stitch graph. Notably, at a

merge/split, neighboring layouts have critical adjacent stitch pairs, which we call

bridges, illustrated in Figure 6-23. A stitch pair (Ω𝑖,Ω𝑗) in a given slice is considered

a bridge if and only if

• Ω𝑖 is course-connected to Ω𝑗 and

• the wale connection of Ω𝑖 across the interface is not course-connected to the

corresponding wale connection of Ω𝑗.

The number of bridges is directly related to the number of branch separations

in the region graph. This number is topology-dependent and thus does not change

as the scale of the stitch layouts increase. Since a valid layout should have bridges

laid out tightly, bridges serve as a direct means to reject orderings for which we know

there is no possible compact bridge layout, without having to verify the entirety of the

layout cost. For example, in a 3-1 circular merge interface such as in Figure 6-23, the

209

Figure 6-24: Illustration of the directionality of the greedy algorithm for each re-
gion node given the central interface having been fixed. The region nodes are only
constrained from that interface and thus start their greedy layout propagation from
it.

bridges can be used to pick one of the 2 possible left-to-right orderings. The remaining

4 orderings can be ruled out because their adjacency does not enable compact layouts

of all bridges.

Within-Nodes Scheduling

Given the layout of the internal interfaces fixed, we optimize the layout within each

node separately. This is done with a greedy, sequential strategy: (i) we pick an

interface layout to start from, and then iteratively (ii) find the following layout by

minimizing the cost of Equation 6.21, until all layouts in the node have been found.

If both interfaces were initially fixed (i.e., both were internal interfaces), then we

start from the bottom interface. If one interface was fixed only, then we start from

that one, as illustrated in Figure 6-24 with the 3-1 interface of the sweater. If no

interface was fixed – i.e., we have a single node –, then we start from the bottom

and consider all potential layout pairs between the two bottom layouts and pick the

minimizing pair. The iterations then successively fix layouts until the whole node

210

is set. Note that if both interfaces were fixed, then the greedy strategy does not

change the last post-shaping layout. That last layout acts as a buffer that takes care

of dealing with any missing alignment. This could in practice lead to unfortunately

large layout transformations.

One major shortcut to speed up common layouts concerns consecutive layouts

that have the same cardinality and no shaping in between (from 𝑁 stitches to 𝑁

stitches through 𝑁 wales). In those cases, we simply reuse the fixed layout directly

since this automatically leads to an ideal transition.

Offset Optimization

After all slices have been attributed a specific layout, we build the sequence of left-

to-right blocks of stitches that would eventually fill the needle bed with their fixed

layouts (but currently missing offset). This notably assumes that we create suspended

blocks after a node has been processed, by separating the stitches that are used in

the next node from those that are not. Figure 6-25 visualizes a simplified schedule of

a yoked sweater that contains suspended blocks for each of the nodes knitted before

the last node to the 3-1 merge.

We then optimize for their offsets while taking the left-to-right ordering of nodes

into account. We parameterize the offsets of a row of blocks with one left offset for the

leftmost block, and one non-negative gap between each following block on its right.

Furthermore, we must ensure that shaping can be properly done for the active block

to its next one. The related constraints are that (1) unless the active block does not

need any layout transformation to its following block, we need some spacing between

it and its adjacent blocks – i.e., the corresponding gaps must be at least 1 – and (2)

the stitch transformation through shaping must be possible without conflicting with

the blocks on the sides – i.e., the side gaps must account for any block size increase

to that of the next block.

The optimization starts by using a simple left-to-right packing. It then iteratively

goes over all rows from bottom to top, and then from top to bottom, with local

updates to improve the local offset and gaps of the iterated row. The iterations stop

211

Figure 6-25: Example of simplified schedule for a yoked sweater: the full schedule
(left), and closeups of each node (right). Node 0 generates a sequence of suspended
block to the left of node 1. Node 1 generates yet another sequence of suspended
blocks. Nodes 0, 1 and 2 merge into node 3 which takes over all suspended stitches
and finishes the knitting program. This visual schedule only shows the front bed
and further hides transfers which are implicitly visualized with the wale connectivity.
It includes additional stitch blocks for yarn insertion, yarn cast-on and cast-off (i.e.,
zigzag section at the end).

when either a maximum number of forward and backward passes has been reached,

or no udpate has improved the situation in the last forward and backward passes.

Each row update searches within some interval of the current offset and gap values

of the row, and picks the ones that induce the least amount of shifts, as measured with

the L2 offset error between related needles of the current row and both the previous

and next rows. Needles between two rows are considered related if they correspond

to either a same stitch, or two stitches that are wale-connected.

212

6.8 Code Generation

The process of transforming the nodes, their slices and needle blocks into knitting

code is structured around the schedule slices. Each slice potentially triggers

• A yarn start pass that introduces the principal yarn carrier;

• A cast-on pass that casts the yarn onto the active needles of the current slice;

• Either a cast-off pass that casts the yarn off the active slice needles, or both an

action pass that triggers the actions of each active stitch in the current slice,

followed by a shaping pass that transforms the resulting stitches to match their

following layout;

• An alignment pass that applies a sequences of transfers to move the inactive

blocks on the current row to match their target location in the following row;

• A yarn end pass that removes the yarn of the principal yarn carrier.

After the passes of a node have been completed, an additional post-node alignment

pass is inserted to deal with potential needle alignments that are necessary before

processing the next node.

The rest of this section first details each of these passes (Section 6.8.1), and then

considers the issue of the knitting gauge (Section 6.8.2). It finishes by describing two

different shaping transfer algorithms (Sections 6.8.3 and 6.8.4).

6.8.1 Code Passes

We describe the different passes and provide illustrations with the schedule visual-

ization from our sketch interface. Circles represent stitches, triangles represent tucks

and flat rectangles represent explicit misses. Note that the illustrations show both

front and back bed (the latter being rendered with less bright colors). We also provide

example Knitout code [115] that matches the illustrations.

213

Action
Action
Action

Yarn
Start

Cast
On

Figure 6-26: Time–needle bed layout at the introduction of a node (top), including
a yarn insertion pass, a cast-on and then multiple action sequences (without visible
shaping or alignments because those are empty here).

Yarn Start Pass

The yarn insertion can be done automatically, either by using the yarn insertion

mechanism of the knitting machine [150] or simply drawing it and catching it with

simple direction-alternating tucks as illustrated in Figures 6-26 and 6-27. When the

yarn has caught, it can be released from the yarn holding hook device. In practice,

there are machine-dependent constraints depending on the mechanism being used:

e.g., the first tuck must be on the bed side opposite to the insertion unit for it to

properly do insertions, and the tucks should not be in the range of the insertion

mechanism before release. Furthermore, depending on the type of yarn, one may

want to use more or less tucks. Lighter yarn weights may require more tucks to get

proper friction and prevent it from getting pulled back by any tensioning device being

used.

Cast-On Pass

Knitting a stitch on a needle can only happen if there is already a loop in the hook.

Otherwise, the operation typically corresponds to a tuck since there is no yarn loop

214

Figure 6-27: Sections of knitting code corresponding to the introductory passes.

being knocked over the new one. Tuck loops4 have the particularity that their location

is not stable w.r.t. their needle. If the carriage triggers successive needles in one

direction, all containing a single tuck, then the yarn can directly slide across all

opened hooks and operations are likely to fail5.

One solution to this initial instability is to only trigger knit stitches on every other

needle that has a single tuck. By keeping every other needle hook closed, the yarn

is caught on both sides of the needle operation and is thus more likely to succeed.

Another similar option is to interlace the initial tuck passes so that the knitting pass

can be done on every needles directly. The resulting yarn is not directly connected

to the successive needles, which makes the initial knit stitch formation stable. This

is called the interlock cast-on, illustrated in Figure 6-26. The cast-on procedure first

alternates by casting yarn on every other needle location, and then casts it on the

remaining ones only. The knitting process follows directly. In the code of Figure 6-27,

note that the cast-on happens with needles offset by 4, which is every other needle in

half-gauge.

4Sometimes referred to as pick-up stitches when alone in a needle hook.
5A related issue – although not at the heart of the cast-on problem – is that one cannot tuck on a

needle and then directly tuck it again in the opposite direction. The second tuck effectively undoes
the first one.

215

Action Pass

The action pass goes over each active stitch of the current slice and triggers the

associated action with each of these. By default, these actions include knit, kickback

(i.e., a knit in the opposite direction), miss and split, which are needed for different

types of stitch increases. However, we explicitly make the action pass modular to

support additional user actions associated with each stitch. Examples of different

user actions and passes are developed in Section 6.9.

Given a slice, we get the action associated with each active stitch in sequence,

and check whether the sequence needs to be divided. This is the case for actions that

happen on the opposite bed (e.g., purls). In such case, we divide the sequence into

the largest sub-sequences that use needles from the same bed side.

Each stitch action can be made of a sequence of different steps motivated by the

“pre-main-post” stitch face actions from Narayanan et al. [123]:

• Pre-steps for introducing any new local yarn, or transferring stitches to their

necessary bed (e.g. purl patterns that use the opposite bed);

• Main steps that trigger the main knitting actions; and

• Post-steps for finishing transfers and potentially remove local yarns.

The action pass goes over each sub-sequence in order, starting with each of the

pre-steps (covering all stitches of a sub-sequence, for each step index at a time), then

continues with all main steps, and further post-steps. Figure 6-28 illustrates a course

using purl continuously. This gets divided per bed-side, and we get three steps per

action block: a pre-transfer, the main knit action, and the post-transfer back to the

initial bed. Figure 6-29 illustrates a small 1× 1 rib structure over two courses, which

highlights the alternating process between front and back stitches for each pass.

The main step that triggers the base yarn also potentially adds tucks on its sides

depending on the tracing result (e.g., for short-rows, or potential intarsia tucks) and

the user settings.

216

Pre
Main
PostPre

Main
Post Pre

Main
Post

Figure 6-28: Time–needle bed layout for two consecutive purl courses. Note that the
layout is slightly rotated so each slice gets split into three: one for the small back
bed on the right (two stitches), one for the full front bed, and one for the remaining
back bed. The post-transfer and pre-transfer steps across beds automatically get
consolidated into a single pass.

Pre
Main
PostPre

Main
Post Pre

Main
Post

Figure 6-29: Time–needle bed layout for one 1× 1 rib course.

Shaping Pass

The shaping pass computes a sequence of needle transfer operations that transform the

current layout into the next one. The needle transfer is supposed to be always possible

because the offset optimization took into account this shaping step and introduced

necessary gaps for complex layout transformations that require space for rotating

stitches. We use one of two different transfer algorithms described in Sections 6.8.3

and 6.8.4, illustrated with a simple decrease shaping example in Figure 6-31.

217

Figure 6-30: Sections of knitting code corresponding to the purl and rib sections.

Figure 6-31: The layout decrease with implicit shaping (top), the corresponding trans-
fer passes with the Collapse-Shift-Expand algorithm (middle) and with the Rotate-
Shift algorithm (bottom).

218

Figure 6-32: An alignment pass shifting a suspended block by two needles to its left
so as to make space for future actions of the active block on the right.

Alignment Pass

The alignment pass produces a sequence of transfer operations that shift entire blocks

of stitches on the bed. The algorithm is less involved than the more general shaping

ones: (1) we first measure the offset that each current stitch should translate by, (2)

we then alternate between applying grouped lateral moves on the front and back beds

with a limited distance (i.e., between -2 and +2 needles), (3) we update the necessary

shift of the stitches that have moved given their last translation. The process continue

until all stitches have reached their location. Lateral moves are done by transferring

all moving stitches to the opposite bed, then racking (from −2 to +2 depending on the

target moves), and transferring back to the original bed. The procedure eventually

terminates since any moving stitch in an iteration ends up decreasing its distance.

Cast-Off Pass

The cast-off pass deals with active slices that have no next stitches: i.e., the stitches

are terminal and must be closed. Dropping stitches from the needle hook is not a

good solution for the finishing of any knit topology because the loops in the hook are

not connected to any other loop and would thus unravel if left unattended. Casting

off deals with automatic closure of those loops. The typical procedure sequentially

creates a stitch in the sequence to close, moves it to its next course-neighbor, and goes

219

Figure 6-33: Sections of knitting code corresponding to the default castoff pass (left)
and with pick-up stitch (right).

on from that neighbor, as illustrated with the code of Figure 6-33. This effectively

links each stitch to its neighbor, except for the last one that requires some manual

closure outside of the machine (similarly to the first stitch during cast-on). We further

provide the option to add an additional pick-up stitch inserted at each closing stitch,

which makes the closing course looser.

Yarn End Pass

Upon ending the yarn, a dedicated pass triggers the yarn removal, typically done

automatically with the yarn insertion unit to cut the yarn locally before bringing it

back to the yarn holding hook. If this pass happens after a cast-off pass, then the

yarn is closed and we add a small tail of yarn to simplify the manual closing of the

last stitch as having more yarn is helpful in that scenario.

6.8.2 Half-Gauge vs Full-Gauge

Similarly to Narayanan et al. [122], the scheduling is done without taking into account

whether the output is meant to be knit in full gauge or half gauge: i.e., as if done

in full gauge. However, their implementation relies on the Collapse-Shift-Expand

algorithm from McCann et al. [116] to do shaping. Unfortunately, that algorithm

220

Figure 6-34: Two yarn ending procedures including the castoff pass and the yarn
removal with added tail for easy manual closing. The left variant is the simplest
bind-off procedure whereas the right one adds additional pick-up stitches to loosen
the ending edge of yarn.

makes assumptions that prevent it from working for full-gauge knitting if the carrier

ends up being inside of the shaping transfer region. In such scenario, the transfer

algorithm should explicitly take care of moving the carrier around, whereas Narayanan

et al. [122] rely on the implicit carrier movements taken care of by their basic Knitout

compiler [115]. Implicit carrier moves greatly simplify the algorithm implementation,

221

but they are unfortunately not possible during full-gauge shaping transfers because

the machine must use sliders. To our knowledge, the SWG091N2 machine does not

support carrier movements while stitches are on needle sliders. This is mainly a

hardware limitation and it can be bypassed in software by using a different algorithm

that explicitly deals with explicit carrier movements, and which we call Rotate-Shift.

By default, we assume a half-gauge output since it is looser, supports tubular

purl operations and generates larger pieces for a smaller computational cost (see Sec-

tion 5.3.4). In such case, we rely on the Collapse-Shift-Expand algorithm for shaping

transfers, and the needle locations are expanded to half-gauge after the transfers have

been computed [116]. If the user requests a full-gauge version of the garment, our

shaping passes are instead switched to rely on the Rotate-Shift algorithm.

6.8.3 Shaping with Collapse-Shift-Expand

The Collapse-Shift-Expand (CSE) algorithm [116] provides a solution to the transfer

planning problem. Namely, given a cycle of stitches on the needle bed and a set of

constraints, the optimization problem seeks to find a sequence of transfer and racking

operations that transforms the stitch cycle from its initial configuration into a new

one while satisfying the given constraints. The constraints typically include: (1) a

free needle range, (2) a set of slack values describing the maximum allowed distance

between successive stitches, and (3) a maximum racking offset.

The CSE algorithm works by sequentially applying three types of transformations:

• Collapse transfers all stitches from one bed side to the other side – which is

always possible thanks to the slider locations; while doing so, it will typically

focus on either the frontmost or rightmost location on the initial bed and ensure

the remaining slack constraints;

• Shift optionally applies a bed shift while transferring all stitches back to the

starting bed (and the associated slider locations) without changing the relative

locations;

• Expand then distributes the stitches on the sliders back to the opposite bed.

222

F
FS

BS
B

Collapse Shi� Expand
Figure 6-35: Example of cycle transformation with the Collapse-Shift-Expand proce-
dure. B / BS / FS / F refer to the needle bed types: back, back-sliders, front-sliders,
front.

Figure 6-35 shows an example of CSE round that enables a rotation of a stitch cycle.

The optimization part consists in deciding what moves to select during the collapse

and expand stages, as well as any useful shift to apply in between. This is done with a

recursive penalty function that describes the total circulation cost of stitches around

the bed until reaching their target, given minimum and maximum free needles.

What prevents the application of this strategy to full-gauge knitting is the fact

that the procedure heavily relies on the storage of stitches on the slider locations.

In practice, this is not an issue with half-gauge knitting since those locations get

translated as needle hooks, and thus no slider is necessarily involved.

6.8.4 Shaping with Rotate-Shift

Our Rotate-Shift (RS) strategy for full-gauge knitting is a simpler transfer procedure,

specifically dedicated to the shaping pass. It consists in composing two intuitive,

basic operations needed for shaping a stitch cycle, illustrated in Figure 6-36:

• Rotate collapses a corner of the current cycle to improve a winding number–

based penalty, possibly using a few instances of Shift to enable the collapse;

• Shift applies lateral moves to the current layout to move current stitches left or

right while taking into account the available free needle range, as well as carrier

locations.

223

F

B

Shi�

F
FS

BS
B

Collapse
Rotate Shi�

Figure 6-36: Example of cycle transformation with the Rotate-Shift procedure. The
Rotate step uses Shift to prepare the bed, before apply a Collapse operation. The last
Shift step deals with increase/decrease shaping. In this example, the cycle rotates
once and then applies a stitch decrease. Both shifts are shown as group moves (top
section) and as developed two-step transfers (bottom section).

To easily deal with carrier movements, our main simplification is to assume that

the slack of each stitch is at least 2. This is a necessary relaxation of the algorithm

to allow us to move stitches by themselves locally, which is necessary when a carrier

is within the cycle and acts as a barrier that stitches need to cross one-by-one.

Rotate Procedure

We choose the rotation to pick (which corner to collapse) based on which one de-

creases the absolute sum of minimum winding numbers the most. We use the wind-

ing numbers defined as in the work of McCann et al. [116] – i.e. as the number of

counter-clockwise crossing across beds for a stitch to reach its target location.

The corner collapsing basically consists in shifting the bed to have the needle

opposite to the stitch corner free, and then transferring that stitch to the other bed.

When all stitches are on their target bed, we apply a last shift step to distribute

them to their target locations, effectively applying stitch increases and decreases.

224

F

B

Group shi� Carrier move Group shi�

No carrier con�ict

F

B

With carrier con�ictGroup shi�

Figure 6-37: Example of simple lateral shift similar to the first one in Figure 6-36
where the four front stitches are moved the right by one needle. The difference is that
the main stitch to which the yarn is attached is inside the cycle, marked in blue. The
arrow below denotes the side of the carrier relative to that stitch. It starts to its left,
which invalidates moves for stitches on the left of the barrier. Thus, the first shift
step moves the two stitches from the barrier to the right (left). Then, the carrier is
switched to the other side of the barrier (center). Finally, the last two stitches on the
left can now move by one stitch to the right.

Shift Procedure

The main complication happens during this shift procedure in which we must provide

an explicit treatment of carrier moves when they conflict with needle transfers. The

base idea is to split the current bed into four quadrants: front stitches going left, right,

and similarly back stitches going left, or right. The shift procedure then moves stitches

within each of these quadrants so that they eventually reach their shift location. A

quadrant shift must however deal with potential barrier locations induced by the last

stitches knitted by an active carrier, as illustrated in Figure 6-37.

When a stitch forming a barrier is moving, it splits its moving group into two

sub-groups that move separately, possibly in small steps to enforce slack constraints.

225

When other stitches must cross a barrier (i.e., on the other bed), they do so by

(1) approaching up to the barrier, with the corresponding carrier being on the shift

direction away from the barrier; then (2) the barrier carrier is switched to the other

side, (3) which lets the stitches at the barrier needle and beyond go through by at

least one stitch. The procedure is continued, until all stitches have reached their

target shift location.

The stitch-by-stitch traversal of the barrier is potentially slow but its main lim-

itation is the fact that stitches have to move one by one to cross the barrier. This

requires a slack of at least 2 needles since the needle at the barrier offset must become

empty to let the next stitch pass. While the available slack decides on how far the

group ahead of the barrier can move, there is typically no advantage in moving more

than one needle away as long as the barrier is present since its crossing is done one

stitch at a time.

Comparison to CSE

On the positive side, RS deals explicitly with carrier conflicts, which enables its use for

shaping during full-gauge knitting. In contrast to CSE, stitch merging only happens

at the end of the procedure. This explicitly reduces the number of overlapped loop

transfer operations and may thus be safer when knitting.

On the downside, the procedure is based on a greedy strategy that collapses

stitches one by one. While the local shifts are grouped by quadrant, each of these

are done separately. Thus, we expect the procedure to be potentially a lot slower

for complex shaping operations. Although, for simple shaping, it can be as effective,

if not better than CSE such as in Figure 6-31 where a single step is sufficient for a

stitch decrease. Another potential issue with the RS procedure is that it requires

a larger available slack between stitches and may wear the yarn faster than CSE.

This is however to put in the perspective of CSE being effectively used for half-gauge

knitting, and thus with double the original slack.

226

6.9 Layer-based Customization

All the algorithms and procedures of this chapter, up to now, mainly deal with the

shape of the garment. Yet, the patterns and colorwork that may happen on a sketch

are critical operations. Here, we develop a strategy based on layers to integrate typical

garment customization such as stitch patterns and colorwork on top of sketches.

We start by describing the general method we use to program patterns (Sec-

tion 6.9.1). We then consider whether a layer should live in sketch space or stitch

space (Section 6.9.2). The rest starts with a generic layer interaction model (Sec-

tion 6.9.3) before detailing different layer implementations: stitch patterns, multi-

yarn patterns, Jacquard patterns and intarsia layers.

6.9.1 User Stitch Programs

Similarly to the patterning done with the parametric skeleton graph in Section 5.3,

we let the user specify user actions associated with each stitch. The underlying graph

is the traced graph, which we augment with the original pre-tracing stitch graph

information – notably for the course and node information.

The per-stitch actions are represented by a set of passes similar to those of

Narayanan et al. [123]. Each pass consists in one or a sequence of functions that

take the local context as input (e.g., needle, direction, bed and machine states) and

output Knitout code [115]. Listing 6.1 illustrates the definition of the purl pattern

action, as well as different actions related to fair-isle colorwork. Note that the front,

back and tuck actions have multiple stages for their main pass. Listings 6.2 and 6.3

illustrate user programs to apply stitch patterns and fair-isle colorwork respectively.

One of the major differences with the patterning from Section 5.3 lies in how we

generate local grid structures. In the skeleton graph, the primitives provide an inher-

ent structure that allows for regular patterning automatically. Since we cannot rely

on a fixed primitive-based structure, we instead rely on a new method for inserting the

structure locally: namely, we use two new constructions waleGrid and stitchGrid

to produce some form of regularity that is instantiated from a stitch selection.

227

1 // basic purl
2 const purl = Action.register({
3 pre: ({ k, n, rn }) => k.xfer(n, rn),
4 main: ({ k, d, rn, cs }) => k.knit(d, rn, cs),
5 post: ({ k, rn, n }) => k.xfer(rn, n),
6 splitBySide: true
7 });
8 // main colorwork yarn actions
9 const cs2 = ['2'];

10 const back = Action.register({
11 main: [
12 ({ k, d, n, cs }) => k.knit(d, n, cs),
13 ({ k, d, n }) => k.miss(d, n, cs2)
14],
15 splitBySide: true
16 });
17 const front = Action.register({
18 main: [
19 ({ k, d, n, cs }) => k.miss(d, n, cs),
20 ({ k, d, n }) => k.knit(d, n, cs2)
21],
22 splitBySide: true
23 });
24 // floating tuck connections
25 const tuck = Action.register({
26 main: [
27 ({ k, d, n, e, cs }) => e.actIdx % 5 === 2 ? k.tuck(d, n, cs) : k.

miss(d, n, cs),
28 ({ k, d, n }) => k.knit(d, n, cs2)
29],
30 splitBySide: true
31 });
32 // second yarn handling
33 const yarnIn = back.extend({
34 pre: ({ k, d, n, e }) => {
35 k.inhook(cs2);
36 k.tuck(d, n, cs2);
37 k.tuck(d, e.stepNeedle(2), cs2);
38 k.tuck(-d, e.stepNeedle(1), cs2);
39 k.releasehook(cs2);
40 }
41 });
42 const yarnOut = back.extend({
43 post: ({ k }) => k.outhook(cs2)
44 });

Listing 6.1: Section of user program defining user actions

waleGrid(waleRange, steps) extends a current stitch selection by extruding it in

the wale direction by a specified number of stitches. The initial selection is considered

228

1 const twoInches = prog.lengthToWaleStitches('2 in');
2

3 // neck edge
4 const neckLen = twoInches + twoInches % 4;
5 const neckEdge = prog.filter(s => s.countNextWales() === 0);
6 const neck = neckEdge.waleGrid(0:end, -neckLen);
7 neck.tile(0b10, 2).prog(purl);
8 // sub-ribs
9 for(let i = 1, ci = 0, pass = 1; i < neckLen - 1; ++i){

10 const crs = prog.courses(-2 - ci).pass(pass);
11 const cl = crs.left();
12 const cr = crs.right();
13 // go over wales
14 const seeds = prog.withIndices([]);
15 for(let si = 0; si < crs.indices.length; ++si){
16 const s = crs.stitches[crs.indices[si]];
17 const l = cl.stitches[cl.indices[si]];
18 const r = cr.stitches[cr.indices[si]];
19 if(!s.getProgram()
20 && !l.getProgram()
21 && !r.getProgram()){
22 prog.withIndices([s.index]).prog(purl);
23 seeds.indices.push(s.index);
24 }
25 }
26 seeds.waleGrid(0:end, -(neckLen - i)).prog(purl);
27 // seeds.waleGrid(0:end, neckLen - i).prog(purl);
28 pass = 1 - pass;
29 if(pass) ++ci;
30 }

Listing 6.2: Section of user program that associates pattern actions to stitches.

as a sequence of stitches for an abstract X-axis whereas the extrusion forms an explicit

Y-axis of the final wale-based grid. This abstract grid can then be used to apply scaled

and tiled patterns, as naturally done with a regular 𝑋 − 𝑌 grid. Listing 6.2 shows a

few examples.

For example, line 6 (neckEdge.waleGrid(0:end, -neckLen)) extrudes all the wales

(0:end) along the edge at the neck boundary by neckLen stitches below (“-” sign).

It then uses a simple 1 × 1 rib tiling (neck.tile(0b10, 2).prog(purl);) to create ribs

that go radially from the neck. The sub-ribs code from lines 9 to 30 completes the

base ribs by spawning additional ribs when the neck shaping makes it possible so that

we end up with a complete radial extrusion in spite of the large decreases happening

before the neck edge.

229

1 const caturl = 'data:image/png;base64,<dataurl...>';
2

3 // center stitch on front
4 const cs = prog.sketch(0).nearPosition({ x: 0, y: 150 });
5 const bl = cs.down(32).left(66);
6

7 const rows = bl.stitchGrid(Infinity, 100);
8 const img = prog.parseImage(caturl);
9 rows.prog(purl)

10 const cat = rows.tileMap(img, {
11 0: front,
12 255: back
13 }, 46, 3, 0);
14

15 // replace tiling remainder with a simpler one
16 if(rows.maxWidth){
17 const rw = rows.maxWidth % 46;
18 if(rw){
19 const rem = bl.stitchGrid(Infinity, 1).waleGrid([-rw-1,-2], 100);
20 rem.tileMap(0b1001, {
21 0: front, 1: back
22 }, 2);
23 rem.filter(s => noise.simplex2(s.index * 2, 0) > 0).prog(front);
24 rem.filter(s => noise.simplex2(s.index * 2, 0) <= 0).prog(back);
25

26 // borders
27 bl.stitchGrid(Infinity, 1).waleGrid([-rw-1,-rw+1], 100).tileMap([[0,

1, 0]], { 0: front, 1: back });
28 bl.stitchGrid(Infinity, 1).waleGrid([-4,-1], 100).tileMap([[0, 1,

0]], { 0: front, 1: back });
29 }
30 }
31

32 // yarn handling
33 rows.first().prog(yarnIn);
34 // rows.first().up().prog(yarnRelease);
35 rows.last().prog(yarnOut);

Listing 6.3: Section of user program that associates colorwork actions to stitches.

stitchGrid(w, h, opts) instantiates a grid from the current single stitch selec-

tion. Given a number of stitches along the course (𝑤) and wale (ℎ) directions, it

instantiates a grid by first creating a sequence of stitches along the first axis (course

or wale), and then extrudes each of these along the secondary axis. The options

include the grid alignment w.r.t. to the stitch, as well as the primary axis of the grid.

Listing 6.3 provides a few examples.

Notably, line 7 (bl.stitchGrid(Infinity, 100);) instantiates a grid from its bottom-

230

Figure 6-38: Example color-coding of programs including those from Listings 6.1 to
6.3 as applied on the front of a sweater sketch. The left highlight shows the radial
ribs from the neck. The right highlight shows the fair-isle colorwork.

left corner stitch given an unlimited width (i.e., all the stitches available over each

courses), and a height of 100 stitches. This is used to tile a small cat image of 46

pixels in width over that region. The tiling width may not match the image width so

that lines 16 to 30 replace the remainder section that does not complete a full tiling

by some random simplex-based noise pattern. The main fair-isle actions (front and

back) from Listing 6.1 correspond to the front and back yarns that have two main

passes: one that knits its corresponding yarn, and the other missing the other yarn.

Finally, note that the secondary yarn is explicitly inserted and removed with the

actions of lines 33 and 35.

6.9.2 Screen-space vs. Stitch-space Layers

While using layers is an intuitive approach to customization, we have to deal with an

obvious conflict which is that our patterns are applied on the stitch graph, whereas

visual layers in vector graphics are typically in the same sketch space so that they

interact appropriately.

231

Figure 6-39: The stitch covering of a 20× 20 anchored grid in stitch space (left) and
a rectangular sketch grid (right). The upper section shows a high-curvature region
and its impact in terms of stitch coverage and regularity. The lower section shows a
low-curvature region in which both options are quite similar, notwithstanding some
recurring alignment issues with the boundaries of the sketch-space rectangle.

This brings multiple options for representing layers such as

• Using children sketches – in sketch space;

• Using dedicated rectangle objects – in sketch space; or

• Using pointwise anchors that span regular grids – in stitch space.

The first two options (general children sketches and specific rectangle objects) are

in sketch space, whereas the last one uses a pointwise location in sketch space, to-

gether with a grid specification similar to that of stitchGrid in the previous section.

Figure 6-39 illustrates both the anchored grid and the rectangular grid.

Practically speaking, geometric shapes in sketch space are great as masks since

they provide a trivial way to select regions to apply patterns on (i.e., we just have to

232

check whether the position of a stitch is within the corresponding polygon). Unfor-

tunately, the underlying stitch structure may typically not align well with arbitrary

layers so that these will often require tuning by the user when the underlying stitch

graph changes. As a result, we should not expect to use them for complex local

structures such as with lace patterns. We allow the use of general children sketches

(any geometry shape) as masks to clip the impact of other layers, whereas specialized

rectangle shapes can be associated with an image that serves as a stencil for basic

scalable stitch patterns or colorwork.

The stitch-based layer anchor serves to sample the closest stitch to its location in

sketch space. Then, this stitch is used to instantiate a grid with stitchGrid and its

associated parameters (width, height, main axis and alignment).

6.9.3 Layer Interactions

In vector and raster graphic applications [14, 98], layers typically don’t exist in com-

plete separation. We thus need a means to compose them on top of the sketches. The

main idea is to apply their logic in different steps that allow for information to be

combined appropriately. Our system applies layers by: (1) selecting the associated

stitches (typically based on the layer container – an anchored grid or a specialized

rectangle); (2) marking the stitches with information corresponding to that layer (i.e.,

the stitch type, the yarn stack, or the base yarn); and finally (3) unifying the stitch

information into an action similar to programmatic user actions.

In our implementation, the unification step is basically a single procedure that

looks at the yarn stack at a stitch, together with its stitch type, and the relative yarn

stacks at the stitch neighbors to decide what the action should be at the given stitch.

The order of layers has an impact on their application and the result. For example,

with color patterns, later, overlapping patterns may overwrite the information from

preceding ones. The user can eventually change that order. And we envision that

one could even decide how this information “merging” happens with modes similar to

graphics blend modes [98].

In the remaining sections, we describe the different layers we implemented, their

233

Figure 6-40: Example of lace pattern in the editor (left), its corresponding color-
coded program visualization as the hem of a tubular sketch (top-right), and the
corresponding knitted artifact (bottom-right).

intents and provide relevant implementations details. All are applied on top of the

traced graph, with the exception of the last intarsia layers that work with the initial

stitch graph and lead to re-tracing. In layer editing mode, after the sampling has been

done, the user can modify the layers and get direct visual feedback (i.e., stitch type

and yarn) until they are satisfied. At that point, the rest of the pipeline is re-enacted

to get the final schedule and code.

Two common properties of all layers are: (1) a single-channel pattern image that

represents the pattern data as a grid of pixels, together with (2) a mapping from pixel

data to layer representation (e.g., stitch type or yarn index). The image can typically

be input either as a text file (i.e., for stitch patterns), as an image file, or directly

drawn as part of our interface.

6.9.4 Stitch Pattern Layers

Stitch pattern layers are basically the equivalent of those in the primitive-based design

of Section 5.3. We use the same pattern instructions to describe the individual stitch

type during the marking step, and allow the user to select either a scaling or tiling

mode of the layer pattern. Figure 6-40 shows our pattern editor with a lacy hem

pattern that is tiled along the bottom boundary of a tubular sketch.

234

Front
Yarn

Back
Yarn Description

True None A basic front yarn stitch (based on the stitch type)
True Miss

←˒

True Tuck

←˒

True Knit A front-back knit operation for double-sided fabric
False None The yarn is not present
False Tuck The yarn tucks to the front side to maintain connectivity

during floating (i.e., wide fair-isle)
False Miss The yarn floats in the back (i.e., general fair-isle)
False Knit A basic knit stitch for the opposite side of a double-sided

fabric (i.e., Jacquard knitting)

Table 6.1: The potential states for each yarn and the corresponding interpretation

6.9.5 Multi-Yarn Pattern Layers

Multi-yarn patterns modify a stack of yarns per stitch, which is composed of two

parts: (1) a front yarn and (2) a set of back yarns with attributes. Here, the terms

front and back refer to the side of the fabric, respectively the outer and the inner

sides. Notably, they do not refer to the needle bed so that a front yarn may happen

on the back needle bed and vice versa.

The Front Yarn corresponds to the yarn we want to appear on the outer side of

the fabric being knitted (i.e., one of the available carriers). By default, this is the

base yarn being used in the trace (which may be modified by the intarsia layers).

The set of Back Yarns represents the additional yarns that pass in the inner side

of the fabric. Each yarn is associated with a mode that can be one of: None, Miss,

Tuck or Knit. The default is for a yarn to be absent: i.e., its mode is None.

Multi-yarn patterns can modify both the front yarn and the back stack. The

meaning of the possibles combinations for a given yarn 𝑌 are listed in Table 6.1.

Marking. A multi-yarn pattern effectively allocates the back yarns not only for the

region it covers, but for its full lateral extents, up to intarsia boundaries.

235

Unification. By ensuring that we cover the full lateral extents of the local region,

then the multi-yarn actions at each stitch become very simple: we can assume that

all the stitches we encounter in the active slices are covered by all the yarns we have

allocated, so that the per-stitch actions have as many main steps as there are locally

allocated yarns – i.e., one step per yarn, in a given fixed order.

Special pre and end steps are added to the first stitch of such region if the previous

(respectively next) stitch has a different yarn stack so that the yarn difference can be

inserted (respectively removed).

Float Patterns

Float patterns essentially specify the front yarn and allocate back yarns as floating in

the back – i.e., the non-front yarns that are part of the pattern at a different location.

Figure 6-41 illustrates a simple checkerboard pattern that is tiled from the trunk

region across the neck interface of a yoked sweater.

Tuck Patterns

Tuck patterns describe the location of tucks when floating yarn in the back over large

number of needles. They are an important component of complex fair-isle colowork.

Fair-isle colorwork typically knits on the front side to show the pattern and floats

in the back otherwise. If the pattern changes often between front and back, then the

floats end up well-connected to the front fabric. In the general pattern case, we can

have yarn that floats for long ranges of needles and this leads to dangerous operations.

Large floats are not stable – i.e., the yarn tends to be loose – and may get caught by

needle actions or prevent proper needle operations. By inserting tucks to the front

side, we can introduce local connectivity (e.g., every 𝑁 stitches) to ensure that the

floating yarn is properly connected and stable. Figure 6-42 shows a fair-isle pattern

that covers a small section of a tube. It includes a simple float pattern layer in the

center, whereas the rest is covered by a tiled tuck pattern (we show two different

variants of the tuck pattern). The tuck pattern ensures proper connectivity for the

floats outside of the base local pattern.

236

Figure 6-41: Example of simple float pattern that does not require any tuck pattern
because the tiled checkerboard pattern ensures that floats are tightly connected to the
main fabric. The close-ups from top to bottom: program, knitted sample, and inside-
out version. The anchored grid is aligned to the bottom center and its primary axis
is a wale, with 100% course width. The primary wale does not cross any short-row
so that these end up excluded from the pattern.

Figure 6-43 shows a failure case due to the lack of negative tuck pattern inside

of the main float pattern. Because the main pattern has wide sections of the same

color, we end up with long floats and these lead to issues at their boundaries. The

237

Figure 6-42: Local float patterns typically need accompanying tuck patterns to ensure
floats are properly connected to the fabric at regular intervals.

two potential fixes are: (1) changing the float pattern so that it does not include such

long floats, or (2) introducing a tuck pattern on top of the float pattern for proper

connectivity within the long floats.

One user option concerns the interpretation of floats. They can be implicit or

explicit. In the former case, no action is actually triggered, and the float is implicitly

happening through the carriage movement to the next operation. This implies that

if there is no next front stitch or next tuck in the current pass of the code generation,

then there is no float. It enables minimal float regions but may create incomplete

float regions if the layer extents are over a whole tubular structure. The latter explicit

case uses an explicit miss operation.

238

Figure 6-43: A failure example whose main float pattern ends up with too wide floats
that lead to failure at their boundaries.

Jacquard Patterns

The term “Jacquard knitting” typically refers to the process used for creating two-

sided knit fabric. Section 3.2 includes multiple Jacquard packages from Shima and

their corresponding knitted results. Our Jacquard patterns emulate the same process.

239

Figure 6-44: Jacquard patterns with 2 colors: their fronts and their backs. In clock-
wise order, from the top-right: floating, horizontal, tubular, pique, vertical. Note
that the sample with horizontal backing (bottom-right) looks taller. There are as
many front stitch as for the other, but the backing generates twice the density, which
stretches the fabric vertically and introduces some bending.

The principle can be considered as a generalization of fair-isle patterns, but one

which loses the ability to work with tubular structures. In our system, a Jacquard

pattern ends up acting like a float pattern in that it enforces that the underlying

image ends up visible in the front of the fabric. The main difference is in how we

treat the backing of the fabric.

Importantly, Jacquard fabric is restricted to flat sheets of fabric. This restriction

enables us to have a larger degree of freedom in terms of the operations that happen in

the back of the fabric because we can effectively use the opposite needle bed without

restrictions – i.e., we can knit the fabric backing there.

Backings. The Float backings act like in fair-isle patterns, with fixed tuck spacing

to enforce proper connectivity to the front of the fabric. The Tubular backings knit

the back yarn directly on the back bed – while partially floating in between when

using more than 2 colors. The Alternate and Pique backings alternate the yarn

that knits in the back to get a mostly uniform noisy checkerboard pattern. The

Horizontal and Vertical backings form correspondingly oriented stripes of the different

yarns. Figure 6-44 shows the front and backs of a same 2-colors pattern with different

backings, whereas Figure 6-45 includes 3-colors patterns.

240

Figure 6-45: The front of the CSAIL logo with a tubular backing (top) and the front
and back of a 3-colors cat with an alternate backing (bottom).

241

6.9.6 Intarsia Layers

The term “intarsia” generally refers to artistic techniques used to insert decorative

elements inside of a more general matrix – notably with wood inlaying [79]. In the

knitting world, it refers to a form of local decomposition of the fabric into smaller

sections that act similarly to parts being inserted.

Two important aspects of intarsia are: (1) it makes use of separate yarns in

different sections of the knit structure, and (2) it requires proper connectivity between

each of the regions, notably across the course boundaries.

We deal with the first part by changing our tracing algorithm to take into account

new sub-regions of the stitch graph that only let specific yarns pass. This effectively

forces the yarn to switch direction and requires a new rule to introduce yarn locally.

The connectivity issue is dealt with by our tuck annotations during tracing.

Marking. The intarsia layers deal with a yarn mask that is specified on each of

the initial stitches of the base stitch graph – before tracing. No unification is needed

since no action is actually generated for those stitches.

Tracing with Intarsia

The first modification is that the tracing algorithm keeps information about pending

yarns and their tracing state (stitch, pass, orientation).

Then, while all previous rules are kept, they must now check whether the next

stitch they are leading to can be reached with the current yarn. This is done by

checking whether its corresponding yarn mask includes the current yarn – in which

case we can proceed – else the rule is rejected.

When all rules are rejected, we then attempt to switch to a locally pending yarn.

We repeat this at least once for each of the pending yarns. Assuming all pending

yarns have failed – i.e., we are in a form of locking scenario where no yarn can

proceed without cutting –, then we try to introduce a new local yarn. This is an

additional rule on top of those of Narayanan et al. [122].

242

(a) Stitch graph (b) Source stitches
are marked as ready

(c) Initial steps . . . (d) R4: Tuck and
turn (R3 fails)

(e) R3: Continue . . .
(up to intarsia)

(f) R4: Tuck and
turn (R3 fails)

(g) R3: Continue . . .
(up to next course)

1

1

(h) R7: Local yarn
start (intarsia)

1

1

(i) R3, R4, R3
(next course ready)

1

1

(j) R2: Next row
(intarsia)

1

1

(k) R3, R4
(second tuck)

1

1

(l) R3: Continue
(last intarsia)

1

1

2

2

(m) R2: Next row
(swap to first yarn)

1

1

22

(n) R4 (tuck), R3
. . . (up to intarsia)

1

1

22

(o) R4: Tuck and
turn

1

1

22

(p) R3: Continue . . .
(next course ready)

Figure 6-46: Tracing example of a tubular structure with a block of intarsia (square
nodes with distinct yarn mask). The step (d) happens because the first yarn does not
match the mask of the intarsia block. Step (l) is the last within the intarsia block.
Step (m) switches to the pending first yarn.

243

R7 – Start Local Yarn: Search for an available yarn that is not currently active

and can start from one of the ready stitches available – i.e., it matches the corre-

sponding yarn mask. If a yarn is available and can start from a ready stitch, then

switch the tracing state to the new yarn – storing the previous one as pending – and

knit the corresponding stitch.

If none is available, then the rule is rejected and the tracing iteration ends locally.

This happens in two scenarios: (1) when we’ve completed a region of the region graph

that is either the last one, or requires us to restart from a different region; and (2)

when we’re unable to complete a current region node without cutting one of our

pending yarns. In both scenario, we basically end up triggering rule R6 - End Yarn

with the current yarn, before restarting the tracing iterations. Figure 6-46 illustrates

the new tracing with a basic block of intarsia inside a tubular structure.

Note that a pending yarn that cannot do any action and has its upper stitches

all completed can be stopped automatically so that it can be reused before the end

of the current node. Furthermore, to avoid that each node gets a new yarn, we use

a restrictive yarn mask by default: i.e., the default yarn mask is set to the first yarn

only, which requires cutting at the end of a region node if another disconnected node

must be completed.

Slicing and Scheduling

We modify slicing by simply requiring a new slice whenever the yarn changes. The rest

works without modification. Especially, scheduling does not require any change as it

did not make any assumption regarding the underlying yarn. Figure 6-47 illustrates

slicing given the tracing of Figure 6-46.

Examples and Limitations

Figure 6-48 illustrates the use of intarsia at the center of the trunk region of a small

sweater prototype. Figure 6-49 illustrates the combination of an intarsia layer with

a float pattern to create local colorwork. This relies on the fact that the extents of

the multi-yarn patterns end at the boundary of intarsia regions.

244

(a) Traced graph

a a a a a

(b) Slice 1 (Y1)

a a a a a

(c) Slice 2 (Y1)

a a e e e

(d) Slice 3 (Y1)

a a
e e a

(e) Slice 4 (Y1)

e e
a

ee

(f) Slice 5 (Y1)

a a

e ee

(g) Slice 6 [Y2]

a a
e ee

(h) Slice 7 [Y2]

a ae ee

(i) Slice 8 [Y2]

a a
e ee

(j) Slice 9 [Y2]

eaa

ee

(k) Slice 10 (Y1)

ee

a
aa

(l) Slice 11 (Y1)

Figure 6-47: Slices of the trace shown in Figure 6-46. The active yarn is indicated
with (Y𝑖) in the caption of each sub-figure.

Tuck Connectivity. Tuck annotations happen during tracing when one of the rules

that changes the yarn direction is triggered. In the base tracing without intarsia, this

happens whenever we reach the end of a short-row (or the end of a course in flat

fabric) and have to change direction. With intarsia layers, this effectively happens

245

Figure 6-48: A small intarsia sample illustrating a single intarsia layer that carves a
section with a distinct yarn.

also when we reach an inaccessible intarsia region and have to turn back. The real

tuck is generated during the action pass based on the tuck annotations and its safety

considering the needle bed state.

Ideally, the algorithm should be distributing the side tucks uniformly. A corollary

is that we should not be tucking twice on a same stitch with the same yarn, as doing

so implies that we are lacking a tuck somewhere else. Our basic algorithm extension

does unfortunately not necessarily prevent double tucks. Because of double-tracing,

we may end up doing two passes against a barrier until we must stop, as illustrated

in step (k) of Figure 6-46. One basic improvement consists in switching yarn if there

is any pending yarn, before or after turning back from an intarsia barrier, which we

use for Figures 6-48 and 6-49. Another strategy would be to synchronize the pending

yarn traces so that they move all in the same direction: e.g., disable a yarn if it needs

to change direction but another pending yarn is going in the current direction. A full

solution would optimize for the switching by searching across the different options.

246

Figure 6-49: An intarsia sample that uses an additional float pattern over the intarsia
layer. The pattern consists in a sample ring. The remaining yarn is chosen so that
its color is the same as the main sweater yarn. The inside-out picture (right) shows
that, as a result, the float is only local.

6.10 Results and Discussions

6.10.1 Knitted Garment Samples

All the following results were knit with 2/30 1-ply acrylic yarn. They are knit

in half-gauge, with the following size measurements on a tubular swatch: 𝐷crs =

300 mm/100 stitches and 𝐷wale = 135 mm/100 stitches.

Most of our garment patterns are created by manually redrawing on top of original

patterns selected from BurdaStyle. The only exception are: the first sweater, which

we drew from scratch to showcase the capabilities of our system and to serve as a

simple introductory design, and the beanie, which is based on the Joyful baby bear

hat from Joy Kelley at howjoyful.com.

247

https://www.howjoyful.com/

Figure 6-50: Our larger examples on a 4-foot boy mannequin, together with top-down
views of the individual garment pieces and a zoom on one of the inseam pockets of
the trousers which are knit as inside-out tubular structures merging with the body.

Young boy garments Figure 6-50 shows the larger-scale examples we knitted for

a 4-foot-tall boy mannequin, including three garment pieces. These results verify our

pipelines’ ability to scale to human-sized garments. The primary constraint prevent-

ing a full adult-scale garment is our knitting machine target. Keeping in mind that

we knit in half-gauge, our largest example, the sweater, takes over 309 needles of our

knitting machine bed, out of 541 available.

The beanie with earflaps showcases a mixed flat/tubular structure. Both earflaps

use a garter pattern over their entire structure to avoid curling and folding, which

248

is particularly pronounced with flat Jersey fabric. The upper section uses a fair-isle

pattern that is tiled horizontally and floats the background yarn inside.

The sweater includes partial rib patterns at the wrists, a waffle pattern at the base

of the trunk, and a radial rib pattern for the neck. It also includes fair-isle colorwork

in the center section.

The pair of trousers uses ribs around the waist and garter patterns on the ankles.

The original trousers pattern did not have any pockets. The inseam pockets on the

side of our trousers were added by cutting and pasting the segmentation of a pair of

pockets from a different garment. This illustrates that multiple existing sketches can

be reused to build more complex ones.

Both the trousers and the shirt exhibit yarn breakage in the armpit regions unless

short-rows are used.

Smaller mannequin garments Figure 6-51 shows different garment pairs (uppers

and bottoms), whereas Figures 6-52 and 6-53 show the top-down views of the com-

plex upper garment patterns, together with a visualization of their sketch atlas with

linking. They are scaled to fit on a 16-inch wooden mannequin. All garment patterns

use patterning at their extremities, typically ribs or garter stitch, to ensure that they

don’t curl or fold.

The cardigan is knitted flat from top to bottom, to avoid having to split the yarn

between three sections (front left, front right, and the back). Splitting can lead to

yarn breakage unless each section is knit in parallel; our scheduler is sequential, so we

do not support this. For the same reason, we do not link the top section, but bind

it manually instead. Since the whole structure is flat, we use a global garter stitch

pattern to prevent it from curling and folding.

The hoodie and jacket examples both showcase c-shaped knitting layouts for which

one side of the panels are not linked. The turtleneck dress was originally opened at

the top of the back to make it easier to put on. However, we closed the opening to

simplify its manipulation given its physical scale.

The princess dress is knit in two variants. The first version in Figure 6-53 is knit as

249

Figure 6-51: Examples of dresses on 16-inch mannequins

250

Figure 6-52: Top-down views of upper garments (left) and their corresponding sketch
atlas (right): the cardigan (top), the hoodie (middle) and the jacket (bottom).

a single piece, showcasing one of the potential advantages of whole-garment knitting.

The pleats found in the original pattern are non-trivial to knit automatically, so we

substitute a series of darts at the interface between the skirt and the body. We

attract irregular stitches to the dart edges via seam annotations, and use rib patterns

251

Figure 6-53: Continuation of Figure 6-52: the princess dress (middle) and the turtle-
neck dress (bottom).

above that waist interface to strengthen the visual impact of the folds. Near the top

of the neck and the bottom of the skirt, we showcase different tiled lace patterns.

The second version of the dress, shown in Figure 6-54, features the original pleated

pattern, which can be knit in two sections and bound manually.

6.10.2 Scheduling Algorithms

Existing scheduling algorithms [103, 122, 188] either work with tubular or flat fabric,

but not both. To support the scheduling for some of our mixed flat and tubular

designs, we extended the work of Narayanan et al. [122] with single-fold and c-shaped

layouts. The main take-away is that scheduling becomes, perhaps counter-intuitively,

harder. Flat structures can be folded in different ways, and their parameter-varying

252

Figure 6-54: Two-parts version of the princess dress, with manual binding done with
box pleats.

extents substantially increase the search space. While some of the structures may

appear simpler locally, their interactions become more complex.

One major issue we encountered with existing schedulers is that they rely on the

assumption that transferring stitches around is fine as long as excessive slack and

unwanted loop overlaps are avoided. Our experience seems to indicate that large

stitch cycle transformations typically lead to some form of failure (due to transfers).

Similarly, the current general-purpose transfer procedure Collapse-Shift-Expand [116]

enforces slack and overlap constraints, but allows unrestricted overlapping loop trans-

fers for loops that have the same target needle. While having a same target needle is

necessary (i.e., for decrease shaping), overlapping loop transfers are a common source

of failure. Figure 6-55 shows failure cases caused by both issues.

We envision that part of the scheduling should be guided by the user similarly

to how our workflow allows control of the directions and isolines of the knitting time

process. Current schedulers have enabled many applications, but they would be more

practical if the user could interactively manipulate their process.

253

Figure 6-55: Example of knitting failures due to failing needle transfers: the left ex-
ample failed at large decreases above the crotch due to non-ideal schedule alignments;
the right example had catastrophic failures due to overlapping loop transfers during
shaping transfers.

6.10.3 The Importance of Details

We highlight three different aspects that have important impacts on the final garment

appearance: the placement of seams, the impact of colorwork and customizable stitch

patterns, the problem of proper sizing and the implementation of specific knitting

procedures.

Seams

Figure 6-56 illustrates the impact of the irregular stitches and how our wale penalty

deals with their specific placement. While the location of the singular stitches is

254

Figure 6-56: Illustration of the impact of seam annotations with the corresponding
irregular stitch placement.

reasonably clear in such samples, one limitation of our penalty-based editing is that

the wale distribution is done independently per course pair. Thus, we do not have any

notion of the alignment of irregular stitches across subsequent courses. Although this

global alignment is important in practice, it is not fully controllable in our system.

Another limitation comes from double-tracing of the stitch graph: irregular stitches

of a kind (increase vs decrease) only happen on every other course. This results in

seams that are less prominent from those we could generate in Chapter 5 (see notably

Section 5.2.5). The seam location is not the only part of the design that matters for

the final appearance of the seam. One needs sufficient alignment between successive

irregular stitches to produce an appealing seam. Furthermore, the general clusters of

wale directions also plays an important role in making the seams appear more or less

visible.

255

Figure 6-57: The addition of color work and stitch patterns can highly improve the
final appearance, which calls for dedicated means to specify those.

Customizing Stitch Patterns

Figure 6-57 shows that for a same shape in our system, the addition of some color

work can have a dramatic impact on the perceived quality of the result. Having

proper tools to design this on top of the stitch graph is critical.

Garment Sizing and Preview

Sizing is a critical part of garment design. Our system allows to specify the final

scale, but getting the proper scale can be tricky. In the sweater of Figure 6-58, by

slightly changing the scale, we go from a shirt that looks pretty tight, to one that is

appropriately loose, if not too loose.

Our stitch sampling strategy makes the simplifying assumption that the number

of stitches along courses and wales are sufficient to describe the garment size through

two constants 𝐷crs and 𝐷wale. This is a gross approximation and does not account

for the impact of the underlying garment curvature or the impact of different stitch

operations and surface textures. From a design perspective, we are missing two

components: (1) a more accurate simulation of the size, which would inform the

sampling strategy (e.g., through fast simulation [97, 179]), and (2) a means to adjust

256

Figure 6-58: Two slight scale variations of a same shirt input showing the importance
of proper sizing.

the desired size along specific target curves directly (either by optimizing the sketch,

time function or the stitch graph), rather than searching for it iteratively as in the

current workflow.

Finally, our system only tackles the intrinsic aspect of knitted fabric, whereas a

full system would benefit from a full 3D garment preview. Flattened shape editing

requires experience with the traditional cut & sew workflow and an intuition for how

local pattern editing influences the final shape. A clear next step is to provide an

interactive 3D preview and manipulation alongside the 2D pattern editing capabilities,

as is already common in professional garment authoring software [39, 113].

Local Knitting Procedures

Figure 6-59 shows that the type of knitting procedures for local aspects of shaping

can have a big impact on the final appearance. We highlight here the case of the

shaping increase procedure, which is purely local to the stitch it happens at. It

results in varying degrees of tightness, and potential visible hole artifacts that can be

important.

Similarly, binding the yarn on and off the needles can be done in various ways

that change the tightness and appeal of the garment boundary edges. In general,

this calls for a more general framework that can explore those customization capabil-

257

Kickback Split R-Split In R-Split Out

Figure 6-59: Local appearance of different stitch increase procedures: kickback, split,
reverse-split inward, reverse-split outward.

ities intuitively and possibly select them locally given functional specifications from

the user (e.g., yarn looseness, tension, structure strength and durability at critical

interfaces).

6.10.4 Binding Fabric

In this work, we consider the binding of garment panels as a direct one-to-one con-

tinuation of the fabric. This provides a very simple and intuitive support for darts,

which our system simply considers as direct links from one side of the fabric to an-

other (no fabric is actually cut or folded). However, cut & sew supports various other

means of manually binding pieces of fabric together, including pleats, ruffles, zippers,

or other non-manifold bindings of multiple fabric layers together.

258

Figure 6-60: Pleat binding: blue regions are links between the two panels (in gray),
red regions are the intermediate regions to fold / bind off.

Of those, pleats are likely the next, most amenable to automation. The current

workflow is theoretically able to deal with pleats at least partially: users can bind

a larger interface to a small one by splitting the large one into pairs of linked and

unlinked sections that cover the binding of the smaller one (see Figure 6-60). With

dedicated schedules or knitting procedures, one may be able to automate the folded

binding of the intermediate regions. A partially manual solution is to bind off the

intermediate section, which the user can then fold and link. The main bottleneck is

that large changes to the number of stitches without coordinated increases/decreases

lead to excessive stitch rotations that are hard to knit successfully.

Another related issue is that of the fabric purpose. In our system, all sketch charts

have the same purpose: composing the apparent garment shape. However, cut & sew

includes various types of fabric panels, such as lining or facing. Each typically serves

a distinct purpose such as to modify the fabric’s appearance, structure, or rigidity.

When interpreting a garment pattern purely from the shape perspective, our system

would typically discard the additional fabric panels. By contrast, it would be ideal

to account for their intended function using compatible weft-knitting techniques. For

example, inlay interlocks thread in between wales without creating loops, which re-

stricts the stretch of the fabric; similarly, stitch patterns can modify the appearance,

texture, and tactile feel of the knit fabric. Ideally, those would all be customizable

properties of the garment representation.

259

Table 6.2: Statistics about the result samples shown in this chapter. The number
of stitches corresponds to the number of traced stitches which are used to generate
the schedule. Given that the yarn is traced twice over, this is twice the amount of
stitches in the stitch graph.

Sample Complexity
Target Size Sketch Charts Constr. Regions Stitches Instr.

4 feet
mannequin

beanie 2 8 3 13184 34892
sweater 2 19 4 47624 97987
trousers 12 22 6 57254 120364

16 inch
mannequin

cardigan 4 12 4 12290 31351
dress 14 26 4 17238 41704
hoodie 6 18 5 12874 29136
jacket 5 17 4 11252 31184
turtleneck 8 24 4 13426 24752
shorts 4 23 3 2842 7673
l trousers 12 22 6 11104 25226
w trousers 6 14 3 14804 25014

6.11 Scalability and Performance

Our system is implemented as a client web browser application in Javascript and

WebAssembly. We first look at the complexity behind the examples shown in the

previous section. Then, we list the existing parameters and their ranges, highlighting

the dynamics behind the simplicity terms within our sampling algorithm. Finally, we

measure the performance of our system

6.11.1 Complexity

Table 6.2 provides statistics about each of the results presented in this work. As can

be observed, the number of charts varies a lot, but most of our garments are made of

a small number of simple regions (from 3 to 6).

6.11.2 Parameters

Table 6.3 lists the varying parameters across our results. The default ∆𝑡min threshold

was set to 0.25 and varied for some of our samples so as to ensure simple merging

260

Table 6.3: The list of parameters used for the result samples shown in this chapter.

Sample Parameters
Target Size Sketch ∆𝑡min 𝜆srs Options

4 feet
mannequin

beanie 0.25 0.0 Uniform branching
sweater 0.25 0.1 —
trousers 0.5 0.1 —

16 inch
mannequin

cardigan 0.25 0.1 Reverse time
dress 0.5 0.1 Reverse split
hoodie 0.5 0.3 —
jacket 1.0 0.1 Reverse split
turtleneck 0.25 0.1 —
shorts 0.25 0.1 Reverse split
l trousers 0.5 0.1 —
w trousers 0.25 0.1 Reverse split

interfaces. The sampling tradeoff parameters were modulated through the simplicity

weights 𝜆smpl, 𝜆srs and the seam weight 𝜆seam. The other weights were fixed: 𝜆crs =

𝜆wale = 𝜆dist = 1. By default, we initially set the course simplicity 𝜆smpl = 0 to try and

get perfect accuracy and increased it between 0.1 and 0.3 when our initial knitting

results had issues with the scheduling (e.g. for the crotch section of the trousers).

By later adjusting the sketch, the course simplicity can typically be reduced, if not

completely removed (i.e. set back to 𝜆smpl = 0). The only final result which still

required the simplicity term was the hoodie with 𝜆smpl = 0.1. The short-row simplicity

was set to 𝜆srs = 0.1 by default. The two cases were it was changed were the beanie

for which we disabled short-rows completely, and the hoodie which took us a few

attempts to knit properly.

The last column of Table 6.3 lists options which are associated with the individual

results. Uniform branching was used to enforce that the two ear flaps of the beanie

would end up with the same number of stitches on both sides, which leads to a much

simpler layout space. Reverse time is a simple toggle that allows the user to reverse

the sketch time instead of manually reversing the constraints. The initial design of the

cardigan had a time function from bottom to top, which was then reversed. Reverse

split corresponds to using a more advanced form of stitch increase instead of the

261

Table 6.4: Runtimes using a single computation thread. Sections that are not included
(e.g., global sampling, short-row insertion, offset optimization) are too fast to be
relevant (typically less than 100 milliseconds is spent). The column values correspond
either to number counts or time measurements in seconds.

Sketch C
ha

rt
s

L
ev

el
s

T
im

e

Se
gm

en
t

G
eo

R
eg

io
ns

L
oc

al

B
in

di
ng

St
it
ch

es

W
al

es

It
fs

N
od

es
C

od
e

beanie 2 3 0.2 0.1 1.1 3 8.6 0.1 13184 12.1 0.4 0.8 1.1
sweater 2 3 0.1 0.1 0.3 4 5.2 13.5 47624 27.9 2.1 2.9 3.7
trousers 12 3 0.3 0.2 0.8 6 9.8 13.7 57254 40.9 1.9 3.9 6.6

cardigan 4 3 0.1 0.1 0.6 4 2.8 0.0 12290 3.3 0.0 0.0 0.7
dress 14 2 0.8 0.4 0.8 4 8.4 1.9 17238 17.3 1.3 0.8 1.8
hoodie 6 3 0.8 0.2 24.4 5 36.4 2.1 12874 7.8 17.6 0.1 1.3
jacket 5 3 0.5 0.1 12.9 4 18.8 1.7 11252 7.7 0.4 0.3 1.2
turtleneck 8 3 0.8 0.1 1.8 4 11.0 3.0 13426 10.6 1.2 0.4 0.8
shorts 6 2 0.1 0.1 1.0 3 4.2 0.4 2842 2.7 0.5 0.1 0.3
l trousers 12 3 0.2 0.4 0.8 6 7.8 1.9 11104 8.2 22.2 0.3 2.5
w trousers 6 3 0.6 0.2 2.5 3 13.0 0.7 14804 7.3 0.2 0.2 0.8

default, simpler kickback increase. For those results, we used the reverse split inward

variant shown in Figure 6-59.

6.11.3 Interactivity

Table 6.4 lists runtimes of different sections of our system, computed using an Intel

Xeon i7 CPU with 32GB of RAM, as a single-threaded web worker computation

beside the UI thread. The main take-aways are that time and regions computations

achieve both interactive frame rates, whereas sampling and scheduling do not, unless

done at a small scale. However, because sampling results are cached, the user can

edit seams and modify layers at interactive frame rate after the first pass of sampling

has completed. The scheduling does not benefit from caching, but it is typically not

required for user feedback. The following paragraphs provide an interpretation of the

runtimes.

Mesh-based Timings The timings of the left group (time, segment, geo) are

mainly dependent on the mesh levels. The first two parts (time and segment) deal

262

with the iterative system for specifying the time function and getting its correspond-

ing region graph. This all happens within a second, and visual feedback typically

comes in even less time given the coarse-to-fine, iterative nature of our computations.

In practice, we throttle the user feedback to some fixed frame rate (i.e., 60FPS)

as web-worker transfers together with asynchronous scheduling induce a noticeable

overhead on the total computation.

The Geo column considers the geodesic distance precomputation, which is not

triggered until sampling. Section B.2 presents our default strategy based on the Heat

Method [42] from Geometry Central [152]. For the sketches hoodie, jacket and w

trousers, we had to resort to a simpler Dijkstra-based precomputation because of

issues with the underlying meshing implementation. This leads to a major overhead,

although we do not need to compute it again for different sampling parameters, or

while editing seams and layers.

Region-based Timings The center group (local, binding) is bound to the number

of regions and their interfaces. While local sampling is one of the two most expensive

stages of our computations, it could easily be parallelized across regions. Similarly,

the binding computation could be parallelized in theory, but we note that the current

large times are for cases where such binding is spent mostly at a single interface, and

thus would be hard to parallelize in practice. However, since a lot of the computations

done during that step are very similar to the scheduling of interfaces, we may benefit

from sharing information across both sides (to speed up the scheduler).

Stitch-based Timings Wale distribution is the other most intensive computation

of our system, but it can also easily be parallelized, and at even larger scale. One

element that is less visible in Table 6.4 is that the variance of the remaining schedul-

ing operations can highly vary depending on the symmetries of the structure to be

scheduled (up to the eveness of the number of stitches). For example, the cardigan is

scheduled completely flat and allows for a trivial initial solution that helps the branch

and bound exploration finish very quickly.

263

6.11.4 Convergence of the Optimizations

The time function computation is prone to local extrema. As discussed with the

notion of curvature, this is highly dependent on the user-specified constraints and

their interactions. For example, close-by time isoline constraints can lead to large time

stretching which make the underlying system poorly conditioned, namely because

the constrained sketches do not represent flat intrinsic geometry anymore. Another

example is that of nearby conflicting directions constraints. Our strategy is focused

on getting early visual feedback (both through a coarse-to-fine computation, and fast

iterative updates), so that the user can explore those issues interactively and address

them.

The stitch graph sampling has two main hierarchical steps that behave quite differ-

ently in terms of convergence. In practice, none showed cases of obvious local extrema,

but this is likely because our garment results had simple shaping constraints.

Global Sampling

The global step typically converges well because the variables interact in small groups,

purely locally, for which branch and bound can quickly reach a global extremum.

Local Sampling

The local steps have a more complex, sequential interaction profile (constraints be-

tween adjacent isolines) that can supposedly lead to bad local extrema in case of wild

shaping. We did not encounter odd behaviors in our examples. We had mainly two

regimes: (1) fast single-direction shaping regions for which the local region bound-

aries would induce an obvious single optimal solution (e.g., top of sweater), and (2)

slowly shaping regions for which the local constraint interactions were reasonably far,

and thus with good convergence. We expect that the main cases where local extrema

would occur are for reasonably fast shaping regions that alternate increase/decrease

within nearby locations. One solution to those would be to allow the user to subdivide

the regions locally, which would break ambiguities at the local region level.

264

6.11.5 Subdivision Strategies

Geometric applications typically get performance improvements when modeling com-

plex geometries by performing the user interaction on a lower-resolution mesh that is

then subdivided to provide a higher-resolution result (e.g., for finer appearance mod-

eling, or simulation). In this section, we propose a similar subdivision mechanism for

our system. Because the user has a specific knitted resolution in mind, subdivision is

not done with the intent of getting a higher-resolution knitted artifact. Instead, the

goal is to allow for costly sampling computations to be done at a lower resolution,

and then subdivided to the desired final resolution that represents the physical scale

of the knitted artifact.

We initially considered two different subdivision strategies:

• Geometry-based – relying on the stitch graph having a geometric representation

– i.e., its dual stitch mesh;

• Sampling-based – relying on our highly structured stitch graph to go from 𝑁

to 𝑘𝑁 stitches in both course and wale directions.

While geometric subdivision has been extensively studied [32, 45, 149], it brings

two issues: (1) we need to generate an appropriate dual stitch mesh on-the-fly, which

may be complicated because our short-rows can have arbitrary heights and profiles,

and (2) we would need to properly support non-watertight surfaces that arise from flat

or mixed flat-tubular garment sketches. This latter problem becomes tricky at region

interfaces since we can end up with different number of stitches that require specific

care (i.e., when merging two flat sheets onto the interface of a tubular structure).

Sample-based Subdivision

Our subdivision mechanism is based on sample numbers: we multiply the stitch

results from global and local sampling in Sections 6.5.1 and 6.5.2 by the subdivision

factor 𝐾subdiv (e.g., 2, 4 or 8). Note that we are not restricted to powers of 2.

265

Figure 6-61: Example of graph subdivision: coarse graph (left), division by 2 (center)
and division by 4 (right).

Subdividing Courses Given a course that is expected to have 𝑁 stitches in

the coarse version, the finer, subdivided version simply samples 𝐾subdiv𝑁 stitches

– whether the course is circular or not.

Subdividing Interfaces Internal interfaces consist in two sets of courses that need

to be bound together. They are located in time on the sketch domain, and as such

do not require any subdivision across the wales. To keep things simple, we use our

original interface binding as is – see Section 6.5.3. We only apply it between the

subdivided courses of the interfaces – i.e., we do not do coarse interface binding.

Subdividing Regions Within regions, we first go over the coarse course sampling

and wale distribution. Notably, we want to be able to reuse the result of the coarse

wale distribution since this one of the major interactivity bottlenecks we’re facing

with large stitch counts.

Given the coarse solution, we transform it into a subdivided version. The stitches

of the coarse course pair can trivially be mapped to stitches of the subdivided course

pair given their indices: from 𝑖 to 𝐾subdiv𝑖.

Now, we consider every adjacent coarse wale pairs. We have different cases de-

pending on whether the wale pairs are disconnected – i.e., they form an intrinsic quad

– or not – i.e., they form an intrinsic triangle. Figure 6-61 illustrates a coarse graph

and its subdivided version at two different refinement scales.

If the wales are disconnected, then the intrinsic quad structure can be subdivided

into (𝐾subdiv−1)× (𝐾subdiv−1) quads, as illustrated in Figure 6-62: (1) we map each

successive subdivision stitch from the source course to that of the target course, (2)

266

(a) Initial
coarse quad

(b) Course
subdivision

(c) Geodesic
wale paths

(d) Wale
splitting

(e) Course
connectivity

Figure 6-62: Subdivision of an intrinsic quad.

(a) Initial
coarse triangle

(b) Wale
subdivision

(c) Geodesic
course paths

(d) Course
splitting

(e) Wale
connectivity

Figure 6-63: Subdivision of an intrinsic triangle.

we trace geodesic wale paths between these pairs, and (3) we subdivide the geodesic

paths uniformly to get 𝐾subdiv− 1 new stitches in between. The intermediate stitches

form new intermediate subdivided courses.

If the wales are connected, then we either have a 2-1 or 1-2 wale pair corresponding

to a stitch decrease, respectively decrease. Both cases represent intrinsic triangles and

their subdivision is illustrated in Figure 6-63: (1) we subdivide each of the two coarse

wales to get 𝐾subdiv − 1 intermediate stitches, (2) we trace geodesic course paths

for each of the pairs of intermediate course levels, (3) we subdivide the geodesic

paths uniformly to get an adaptive number of new stitches along each intermediate

course, and (4) the intermediate wales are distributed. The number of subdivision

is linearly increased or decreased depending on whether the wale pair is an increase

(1-2) or decrease (2-1). This effectively produces one irregular wale pair at each of

the intermediate levels and enables us to get gradual shaping. The location of the

irregular wales in each intermediate course pair can be decided with the same penalty

as in the coarse wale distribution – except that the computation is purely local and

can be done by exhaustive search.

267

Table 6.5: Evolution of the computation timings with the sketch complexity and
subdivision levels. The number of stitches and instructions are provided to highlight
that the subdivision does not change the final topology much for a given scale. All
time measurements are in seconds.

Sketch Scale 𝐾sd St
it
ch

es

In
st

r.

L
oc

al

B
in

di
ng

W
al

es

Su
bd

iv
.

Sweater

1mm/2px
1 19106 54163 3.9 4.2 8.3 —
2 19044 52231 3.3 3.9 2.5 0.7
4 19008 50767 2.7 3.9 0.6 0.5

1mm/1px
1 74350 186400 5.2 26.0 26.7 —
2 75222 183642 4.1 23.2 8.4 1.3
4 74994 171942 3.2 23.1 2.5 1.2

Trousers

2mm/1px
1 36898 79283 7.1 3.9 15.3 —
2 37440 77530 6.2 3.2 4.8 1.3
4 37704 79975 5.3 3.2 1.3 1.1

4mm/1px
1 146148 298352 9.9 22.2 53.9 —
2 146220 285578 7.7 17.6 16.0 2.9
4 148436 288007 6.1 16.6 4.8 2.7

Short-row Densities After the subdivision is done, wale splitting resumes with

the subdivided stitch graph. We can either keep the short-row densities fixed for the

first course (and empty for the later subdivisions), or we can diffuse them across the

subdivision to get smoother short-rows – depending on a user setting.

Performance Improvements

Table 6.5 provides the evolution of runtimes through finer subdivisions. Both stitch

and instruction numbers are very similar across subdivisions, which suggests roughly

similar sizes. Local region computations are slightly faster with subdivision, but there

is no clear improvement. Interface binding is as complex, but may become slightly

faster thanks to the evenness of branches. Wale distribution is the clear winner of

subdivision: the operation has a seemingly quadratic computation time, and the

subdivision factor thus allows quadratic time decreases, with a minimal overhead for

the additional subdivision computation (last column).

268

Limitations

There are three notable limitations of this subdivision strategy: (1) it does not com-

pletely solve the interactivity problem, (2) it can produce geometric artifacts in high-

curvature regions, and (3) it reduces the resolution of the garment in terms of sizing

accuracy. Figure 6-64 illustrates a subdivison on a full sweater sample with different

levels of subdivision and an example of seams to showcase that seam placement does

not necessarily suffer from the resolution loss.

Interactivity: while we dealt with the issue of wale distribution – which could

further be improved with parallelization –, now we have a new bottleneck with the

interface binding. While we envisioned a strategy to do interface binding on the

coarse graph, its translation into a subdivided version has yet to be developed.

Geometric Artifacts: these are not important when we consider the shape only

since the stitch embedding is not important, but they become an issue when we

consider layers that are embedded on top of the sketch. The artifacts are due to

the subdivision procedure for intrinsic triangles being sub-optimal when dealing with

stitch irregularities in high-curvature regions.

269

(a) No subdivision

(b) 𝐾subdiv = 2 (c) 𝐾subdiv = 4

(d) Coarse graph (𝐾subdiv = 2) (e) Seams (𝐾subdiv = 4)

Figure 6-64: Example of subdivision on a sweater. For all subdivision examples,
the short-rows are diffused. The cases with 𝐾subdiv = 4 show artifacts in regions of
large curvature where the irregular structure (i.e., intrinsic triangles). The seam ver-
sion showcases our ability to control seam placement within the subdivided irregular
structures.

270

Chapter 7

Conclusion

This thesis presented three different high-level design tools for programming flat-bed,

weft knitting machines. It proposed both CAD and CAM solutions for the corre-

sponding three design spaces: (1) pattern programming by using image examples, (2)

a parametric graph composition of shape primitives, and (3) a sketch-based workflow

to translate existing cut & sew designs into knitting programs. Each of these spaces

corresponds to a high-level design space. By moving from low-level programming to

higher-level design abstraction, we showed that we can simplify the user interaction

and enable more accessible workflows for customizing garments.

In the learning-based approach, we developed a domain-specific language for pat-

terning, and a large dataset of real and simulated patterns with their pattern in-

structions. We formulated a mathematical learning framework that enabled us to

effectively harness both sources of data, complementing the real – but scarce – with

the synthetic – and plentiful. Our system implementation showcases high knitting

program retrieval rates (around 94% accuracy on our test set). These results il-

lustrate that images and other simple examples of garments are potent sources of

knitting designs, and they do not require any design experience for the user.

Our parametric, primitive-based workflow introduced bidirectional design capa-

bility that decouple shape and patterns so that one can edit both simultaneously.

Although we only considered three shape primitives, their composition permitted

many interesting garment results. The digital customization was the highlight of this

271

workflow both from an expert perspective and through our user examples that showed

unexpectedly high levels of customizability for first-time, inexperienced users.

Finally, the sketch-based workflow enabled us to reuse existing professional gar-

ment patterns we acquired from BurdaStyle and reproduce the corresponding gar-

ments in a knitted form. By augmenting the traditional sketches with knitting-specific

annotations, we introduced new customization capabilities including the specification

of the time process, the direction of the wale flow, and the location of shaping seams.

Each of these editing capabilities were achieved at interactive framerates by relying

on specific, low-dimensional representations and hierarchical, iterative optimizations.

7.1 Impact Summary

By using higher-level user inputs, we were able to (1) showcase automatic knitting

program recovery, (2) enable parametric, digital customization, and (3) translate ex-

isting professional garment patterns for weft knitting, automatically. While those

system instantiations were mere prototypes that have several limitations, they each

enabled non-expert designers-to-be to get a step closer in the design and manufac-

turing of garments with weft knitting machines. Practically speaking, most of the

examples in this thesis required some low-level fine-tuning before getting knitted on

the machine, but they provided a large, initial amount of work that made it possible

for people without knitting expertise to produce knitting programs that an expert

knitting technicians would then be able to quickly fix and knit on the machine.

7.2 Future Work

The projects presented in this thesis were all research prototypes. As such, there

is a large amount of work that is needed toward creating proper design tools, or

integrating them into existing systems. Figure 7-1 lists some of the relevant domains

involved across the general pipeline from design to fabrication – i.e., from CAD to

CAM and finally the fabrication itself.

272

CAD Representations

• Image exemplar

• Parametric primitives

• Sketches

• Boundary (B-reps)

• Functional (F-reps)

Fabrication Assistance

• Topological validity

• Slack-based constraints

• Simulated validity

• Data-driven validity

• Live error detection

• Yarn marking

CAM Procedures

• Shape primitives

• Transfer planning

• Stitch patterns

• Fair-isle

• Jacquard knitting

• Intarsia

• Functional procedures

• Finishing procedures

• Inlay

• Elastic yarn

• Spacer fabric

• Tangling

Figure 7-1: Important domains and concepts related to this thesis. The concepts we
did not consider are shaded in light blue.

Design Representations: we only consider here high-level, parametric represen-

tations. This excludes string-rewriting systems and stitch meshes as explained in

Section 3.3: their design spaces are too low-level and both lack the parametric as-

pect. This does not mean that they are not relevant, especially as long as the result

of the system requires low-level fine-tuning before knitting. As of yet, the work

of Narayanan et al. [123] is still one of the most complete while working with a visual

representation that makes it more accessible than typical low-level knit programming.

In the higher-level parametric world, boundary representations (B-reps) may appear

as a good replacement over stitch meshes given that they are fully parametric and

provide more intuitive 3D representations. However, machine knitting is typically

273

quite restricted in its ability to merge wale flows with sharp geometric features – e.g.,

the corners of a cube – and these naturally occur with boundary representations.

There may be space for dedicated 3D geometric constructions targeted at knitting,

but those would likely not be the ones from traditional CAD software [11, 108]. As for

functional representations (F-reps), they model volumetric data whereas weft knitting

deals mostly with geometric shells – e.g. garments on a human body.

Manufacturing Procedures: this thesis only considered basic weft knitting pro-

cedures. It did not cover more involved functional procedures that happen at the

interfaces of garments parts or within specific stitch pattern for improving their me-

chanical properties and aesthetics: e.g., between the fingers of a glove, or before cable

patterns. Similarly, we only implemented basic cast-on and cast-off procedures that

do not necessarily produce nice finishing of the yarn. Beyond their use for smart

textiles, some techniques used in functional fiber applications also have typical use-

cases with normal garments: yarn inlaying is extensively used with elastic yarn such

as in socks, and multi-layer fabrics can be programmed for garment pockets as well

as spacer fabric for cushioning. Finally, while we briefly introduced some multi-yarn

interactions in the last chapter, we did not look at the issues caused by yarn tangling

– nor the potential for new design spaces it may create.

Fabrication Assistance: the feedback and constraints imposed by our systems

are based on the stitch topology, together with some slack-based heuristic constraints

that prevent some unreasonable transfers. As mentioned in some of our failing cases,

these constraints are not sufficient. A real “manufacturability” check would likely

require more complete solutions such as based on low-level yarn simulation, or using

data-driven tests to learn what is acceptable or not to knit. Another important aspect

is how we can help the user figure out what fails when something goes wrong on the

knitting machine. Because of the complexity of the stitch interactions, many failures

are currently not easily reproducible. This makes debugging a long trial-and-error

process which could be help in several ways. Two notable directions include: (1)

274

the development of live error detection such as with machine vision, and (2) the

usage of yarn markers to facilitate backtracking from errors in the final artifact to

their locations in the digital program. This could potentially be done by dying (or

coating) the yarn in some programmatic way.

7.2.1 Learning-based Workflow

Machine learning and data-driven methods have recently flourished in various do-

mains. Yet, a lot is still needed for automating manufacturing processes and making

them more accessible. Related to knitting program synthesis, the main directions we

foresee include (1) the integration of unsupervised learning as part of the learning

framework, (2) the development of more expressive simulations, and (3) new hierar-

chical representations of the knit structure.

More diverse data. Our learning framework is the first to tackle the automatic

inference of knitting programs from images. However, in comparison to existing

large-scale learning systems [143], we rely on a knitting dataset that is several orders

of magnitude smaller. Our data lacks yarn diversity and only considers single-yarn

knitting patterns. Given the existence of large stitch pattern collections [49, 154], it

would be very useful if we can include some form of unsupervised learning as part

of our framework and harness the large amounts of images of unstructured knitting

patterns in the wild. For the synthetic data supplement, we relied on a black-box

knitting simulation from Shima [150]. The resulting synthetic data could be improved

given novel state-of-the-art knitting simulations [86, 87, 97, 185, 191].

More complex models. The resulting knitting programs are made knittable by

ad-hock post-processing rules and no modeling of the knittability or knit structure is

explicitly integrated as part of the current framework. While we only consider simple

20× 20 knitting patterns, many interesting patterns span larger numbers of stitches.

We envision that the knitting program structure could be augmented with hierar-

chical interactions to model the large-scale interaction between some of the knitting

275

instructions – notably moves and cables. A hierarchical representation [101, 157] may

enable us to work with larger patterns, or remove the fixed pattern size constraint

completely. Finally, a large body of future work is necessary to deal with the initial

problem at hand: inferring large-scale knitting programs for whole garments. Both

novel datasets and garment representation will be necessary. Our work may have ac-

tually started two of these: a primitive-based skeleton graph for garment composition,

and a sketch-based representation.

7.2.2 Primitives-based Workflow

Parametric CAD/CAM software [11, 94, 108] has been developed over many decades

and is still largely evolving. While our shape primitives showcase the potential to

develop something similar for garments, future work is still plentiful. Notable critical

components we envision include (1) additional shape primitives, (2) the parameteri-

zation of low-level knitting procedures, and (3) a form of user-editable scheduling.

Novel primitives. Our skeleton graph enabled an initial, parametric model of

many types of garments, while relying on only three base shape primitives. There is

no constraint on allowing more primitives. In fact, we envision that more complex

glueing operations could be integrated as part of dedicated primitives. The complexity

in designing these lies in a judicious choice of the primitives. It would be wasteful to

rely merely on a collection of templates if these are not worth composing.

Higher-level customization. While we only showcase 2D patterns for customiza-

tion, the integration of existing face-based programming [123] may provide a first

extension to support colorwork and other multi-yarn interactions. Tunable schedul-

ing procedure [121] may also further enable this. One subtle design issue is that of

scale. While enabling larger garment scales is likely a computational problem that

can be solved with engineering, large-scale design will require different representations

of customization itself. Working with individual pixels may be satisfying for simple

structures but does not scale well if we need to apply it to hundreds of thousands –

276

if not millions of – stitches. Pattern interaction must happen at a higher level: i.e.,

not rely on per-stitch drawing, but work at per-pattern or sub-pattern levels. Simi-

larly, the interaction between patterns upon editing of the shape is currently mainly

focused on maintaining access to the pattern data, not in how such patterns may

need to evolve. Smart knitting patterns [71] that use data-driven methods to adapt

the patterns may provide an elegant solution. Finally, a critical, missing component

is a form of parameterization of low-level knitting procedures. While Nader et al.

[121] rely on procedures designed by experts for customizing their schedules, it is

unclear how to fully parameterize the space of low-level procedures in a way that is

composable, verifiable and accessible to users.

7.2.3 Sketch-based Workflow

Our workflow allows the translation of professional garment patterns into knitting

programs. Yet, existing garment workflows provide many interaction capabilities

beyond what we displayed, such as different forms of binding, the grading of patterns,

and physical tangible manipulation that allows low-level customization. Similarly, we

envision that our sketch workflow can be extended in many important ways: (1) using

novel forms of shape representation, (2) integrating with two-view garment design

tools, and (3) parameterizing sketches from scratch to enable automatic grading and

more general customization.

Representing the knitted shape. Our interactive time function editing capabil-

ities provide one means of customizing the knitting flow. Unfortunately, it makes

low-curvature assumptions that prevent some forms of garments from being easily

modeled – e.g., socks. While it supports a form of seam editing a posteriori, seams

typically come from large flows that merge or split and are thus inherently discontin-

uous. A complete solution would support locally large curvature – e.g., local aggrega-

tions of short-rows or seam discontinuities. In terms of workflow, the tuning of regions

tend to be more important than the time function itself, and thus one may wonder if

delineating and composing regions instead of a time function may be a simpler, more

277

robust strategy. Given that the underlying region graph is semantically similar to our

parametric skeleton, it may in fact be possible to instead compose shape primitives

over the sketch atlas. Regarding the resulting stitch graph, we currently allow indirect

seam editing. Yet, one may often want to control other low-level topology properties

such as to specify short-rows or make specific regions symmetric.

Integration with 3D simulation. Our system only takes care of the implicit ge-

ometry whereas full professional garment editing tools provide both 2D manufacturing

and 3D simulation views side-by-side [25, 39, 113]. We envision that our system could

be integrated within similar systems, extending their CAM capabilities to whole-

garment weft knitting machines. In terms of customization, we could provide direct

editing of the underlying stitch graph such as is done with stitch meshes [123, 187], but

this may lead to workflow issues if those editing operations get lost as the user makes

changes to the shape. Furthermore, those do not necessarily match existing digital

workflows based on image layers for customization. Similarly to complex cut & sew

garments, knitted garments often include multiple layers of yarn – e.g., colorwork,

structural yarn patterns, inlay, or even multi-layer pockets and spacer fabric – and

modeling these is critical for adoption.

Parametric sketches. Traditional garment patterns often model more than just

a single garment. They typically provide graded curves to produce various sizes of

the same garment. Grading is an important part of garment modeling [119, 148]

and we envision that parametric sketches could go beyond by providing per-user

tunable designs. This is however more complicated than just providing parametric

sketch editing. The core issue is in the underlying parametric representation to enable

proper size customization capabilities1, while also taking into account the need for

user customization of the corresponding sketch garment.

1See for example the work and community started by Joost De Cock at http://freesewing.org

278

http://freesewing.org

Appendix A

Proofs and Definitions

Proof of Theorem 1

We first describe the necessary definitions and lemmas to prove Theorem 1. We need

a general way to measure the discrepancy between two distributions, which we borrow

from the definition of discrepancy suggested by [111].

Definition 1 (Discrepancy [111]). Let ℋ be a class of functions mapping from 𝒳 to

𝒴. The discrepancy between two distribution 𝒟1 and 𝒟2 over 𝒳 is defined as

discℋ(𝒟1,𝒟2) = max
ℎ,ℎ′∈ℋ

|ℒ𝒟1(ℎ, ℎ
′)− ℒ𝒟2(ℎ, ℎ

′)| . (A.1)

The discrepancy is symmetric and satisfies the triangle inequality, regardless of

any loss function. This can be used to compare distributions for general tasks even

including regression.

279

The following lemma is the extension of Lemma 4 in [19] to be generalized by the

above discrepancy.

Lemma 1. Let ℎ be a hypothesis in class ℋ, and assume that ℒ is symmetric and

obeys the triangle inequality. Then

|ℒ𝛼(ℎ, 𝑦)− ℒ𝑇 (ℎ, 𝑦)| ≤ 𝛼 (discℋ(𝒟𝑆,𝒟𝑇) + 𝜆) , (A.2)

where 𝜆=ℒ𝑆(ℎ*, 𝑦)+ℒ𝑇 (ℎ*, 𝑦), and the ideal joint hypothesis ℎ* is defined as

ℎ*= arg minℎ∈ℋ ℒ𝑆(ℎ, 𝑦)+ℒ𝑇 (ℎ, 𝑦).

Proof. The proof is based on the triangle inequality of ℒ, and the last inequality

follows the definition of the discrepancy.

|ℒ𝛼(ℎ, 𝑦)− ℒ𝑇 (ℎ, 𝑦)|

=𝛼|ℒ𝑆(ℎ, 𝑦)− ℒ𝑇 (ℎ, 𝑦)|

=𝛼 |ℒ𝑆(ℎ, 𝑦)− ℒ𝑆(ℎ*, ℎ) + ℒ𝑆(ℎ*, ℎ)

− ℒ𝑇 (ℎ*, ℎ) + ℒ𝑇 (ℎ*, ℎ)− ℒ𝑇 (ℎ, 𝑦) |

≤𝛼
⃒⃒
|ℒ𝑆(ℎ, 𝑦)− ℒ𝑆(ℎ*, ℎ)|+

|ℒ𝑆(ℎ*, ℎ)− ℒ𝑇 (ℎ*, ℎ)|+ |ℒ𝑇 (ℎ*, ℎ)− ℒ𝑇 (ℎ, 𝑦)|
⃒⃒

≤𝛼
⃒⃒
ℒ𝑆(ℎ*, 𝑦)+|ℒ𝑆(ℎ*, ℎ)−ℒ𝑇 (ℎ*, ℎ)|+ℒ𝑇 (ℎ*, 𝑦)

⃒⃒
≤𝛼 (discℋ(𝒟𝑆,𝒟𝑇) + 𝜆) . (A.3)

We conclude the proof.

Many types of losses satisfy the triangle inequality: e.g., the 0−1 loss [19, 41] and

𝑙1-norm obey the triangle inequality, and 𝑙𝑝-norm (𝑝 > 1) obeys the pseudo triangle

inequality [53].

280

Lemma 1 bounds the difference between the target loss and 𝛼-mixed loss. In order

to derive the relationship between a true expected loss and its empirical loss, we rely

on the following lemma.

Lemma 2 ([19]). For a fixed hypothesis ℎ, if a random labeled sample of size 𝑚 is

generated by drawing 𝛽𝑚 points from 𝒟𝑆 and (1− 𝛽)𝑚 points from 𝒟𝑇 , and labeling

them according to 𝑦𝑆 and 𝑦𝑇 respectively, then for any 𝛿 ∈ (0, 1), with probability at

least 1− 𝛿 (over the choice of the samples),

|ℒ̂𝛼(ℎ, 𝑦)− ℒ𝛼(ℎ, 𝑦)| ≤ 𝜖(𝑚,𝛼, 𝛽, 𝛿), (A.4)

where 𝜖(𝑚,𝛼, 𝛽, 𝛿) =

√︂
1
2𝑚

(︁
𝛼2

𝛽
+ (1−𝛼)2

1−𝛽

)︁
log(2

𝛿
).

The detail function form of 𝜖 will be omitted for simplicity. We can fix 𝑚, 𝛼, 𝛽,

and 𝛿 when the learning task is specified, then we can treat 𝜖(·) as a constant.

Theorem 1. Let ℋ be a hypothesis class, and 𝒮 be a labeled sample of size 𝑚 gen-

erated by drawing 𝛽𝑚 samples from 𝒟𝑆 and (1− 𝛽)𝑚 samples from 𝒟𝑇 and labeling

them according to the true label 𝑦. Suppose ℒ is symmetric and obeys the triangle

inequality. Let ℎ̂ ∈ ℋ be the empirical minimizer of ℎ̂ = arg minℎ ℒ̂𝛼(ℎ, 𝑦) on 𝒮 for

a fixed 𝛼 ∈ [0, 1], and ℎ*
𝑇 = arg minℎ ℒ𝑇 (ℎ, 𝑦) the target error minimizer. Then, for

any 𝛿 ∈ (0, 1), with probability at least 1− 𝛿 (over the choice of the samples), we have

1
2
|ℒ𝑇 (ℎ̂, 𝑦)− ℒ𝑇 (ℎ*

𝑇 , 𝑦)| ≤ 𝛼 (discℋ(𝒟𝑆,𝒟𝑇) + 𝜆) + 𝜖, (A.5)

where 𝜖(𝑚,𝛼, 𝛽, 𝛿) =

√︂
1
2𝑚

(︁
𝛼2

𝛽
+ (1−𝛼)2

1−𝛽

)︁
log(2

𝛿
), and 𝜆= minℎ∈ℋ ℒ𝑆(ℎ, 𝑦)+ℒ𝑇 (ℎ, 𝑦).

281

Proof. We use Lemmas 1 and 2 for the bound derivation with their associated as-

sumptions.

ℒ𝑇 (ℎ̂, 𝑦)

≤ ℒ𝛼(ℎ̂, 𝑦) + 𝛼 (discℋ(𝒟𝑆,𝒟𝑇) + 𝜆) , (A.6)

(By Lemma 1)

≤ ℒ̂𝛼(ℎ̂, 𝑦) + 𝛼 (discℋ(𝒟𝑆,𝒟𝑇) + 𝜆) + 𝜖, (A.7)

(By Lemma 2)

≤ ℒ̂𝛼(ℎ*
𝑇 , 𝑦) + 𝛼 (discℋ(𝒟𝑆,𝒟𝑇) + 𝜆) + 𝜖, (A.8)

(ℎ̂ = arg min
ℎ∈ℋ

ℒ̂𝛼(ℎ))

≤ ℒ𝛼(ℎ*
𝑇 , 𝑦) + 𝛼 (discℋ(𝒟𝑆,𝒟𝑇) + 𝜆) + 2𝜖, (A.9)

(By Lemma 2)

≤ ℒ𝑇 (ℎ*
𝑇 , 𝑦) + 2𝛼 (discℋ(𝒟𝑆,𝒟𝑇) + 𝜆) + 2𝜖, (A.10)

(By Lemma 1)

which concludes the proof.

Theorem 1 does not have unnecessary dependencies for our purpose, which are

used in [19] such as unsupervised data and the restriction of the model type to finite

VC-dimensions.

282

Appendix B

Implementation Details

This appendix provides implementations details of the hierarchical sampling algo-

rithms presented in Section 6.5.

B.1 Solving the IQP Problems

Our stitch graph computation involves several optimizations that are formulated as

Integer Quadratic Programming problems with linear constraints. While constrained

IQPs are NP-hard in the general case, we explain how our formulations can be solved

efficiently.

Our general strategy is to start with the relaxed version of the problem for which

we can get a reasonable solution quickly using the NLOpt [84] library. We use the

Improved Augmented Lagrangian Method [22] as global solver, and L-BFGS [105]

as local solver. The result is then rounded to the closest integers, which results in

the first initial variable state we start from. From there, we use a branch-and-bound

strategy to explore the integer solution space, subject to some limited time budget.

283

Global Stitch Problem

The first interface sampling optimization searches for global stitch numbers 𝑛𝑖 on the

edges e𝑖 of our bipartite region graph:

arg min
n

𝜆crs

∑︁
e𝑖∈ℰ

𝐸crs(𝑛𝑖) + 𝜆smpl

∑︁
(e𝑖,e𝑗)∈ℛ

𝐸smpl(𝑛𝑖, 𝑛𝑗)

s.t. ∀ 𝜂 ∈ ℐinternal,
∑︁
e𝑖∈ℰ in

𝜂

𝑛𝑖 =
∑︁

e𝑗∈ℰout
𝜂

𝑛𝑗.

First, note that our graph’s bipartite structure simplifies the problem, as the con-

straints must have mutually disjoint variable supports: each 𝑛𝑖 can only appear in at

most one constraint. This means that the constraints cannot introduce any complex

variable dependencies. Thus, in practice, a relaxed non-integer solution can effec-

tively be made into a suitable integer solution by simply rounding the values, and

then locally adjusting any variables that violate the constraints. While this does not

ensure that we get to the global optimum quickly, it at least ensures that we can get

a valid solution quickly.

The other aspect to consider is the number of equality constraints that grows lin-

early with |ℐ|. To improve convergence, we remove the interface equality constraints

via variable aliasing. With this approach, we only allocate an explicit variable for

𝑞− 1 of the 𝑞 unknowns associated with any particular equality constraint; the value

of the remaining unknown is defined implicitly. In the trivial 1-to-1 case, we only

need one variable per interface (instead of two). For the general 𝑁 -to-𝑀 merge/split,

we can use only 𝑁 +𝑀 −1 variables, with a single inequality constraint that requires

the remaining variable to be positive. This reduces the number of variables, while

removing all equality constraints and adding a small number of inequality constraints.

Local Stitch Problems

The local region optimization tackles two different sizing problems: (1) along the

wale direction, and (2) along the course direction. Both are solved for each region

(e𝑎, e𝑏) ∈ ℛ.

284

Wale Problem Recall that the first sizing problem seeks a number 𝑁 of isoline

segment sets 𝒮𝑖 ∈ 𝒰 to allocate along a region, as well as short-row densities 𝑟𝑘 in

between each pair (𝒮𝑖,𝒮𝑗) ∈ 𝒜 :

arg min
𝑁, r

∑︁
(𝒮𝑖,𝒮𝑗)∈𝒜

(︀
𝜆wale𝐸wale(𝒮𝑖,𝒮𝑗) + 𝜆srs𝐸srs(𝒮𝑖,𝒮𝑗)⏟ ⏞

𝐸𝑁
𝑖,𝑗

)︀
.

We first estimate the expected number 𝑁* based on 𝐷wale, which indicates the ex-

pected distance between the centers of adjacent wale-connected stitches. For region

(e𝑎, e𝑏), that number is

𝑁* = |𝑡(e𝑏)− 𝑡(e𝑎)|/𝐷wale. (B.1)

Then, to select our final value of 𝑁 , we evaluate several integer values around our

initial guess 𝑁* and keep the one with the lowest energy
∑︀

𝐸𝑁
𝑖,𝑗. This energy involves

solving for r in each of the independent sub-problems 𝐸𝑁
𝑖,𝑗.

For a given 𝑁 , we solve for r in 𝐸𝑁
𝑖,𝑗 by: (1) finding the relaxed solution with

NLOpt, initialized with the solution given by the wale term 𝐸wale, then (2) directly

rounding it to the closest integer, and (3) enforcing that at least one sample gets

𝑟𝑘 = 0. While we could use a more complex branch-and-bound strategy to find the

global optimum, the computational cost would become prohibitive, as it must be

executed for every sub-region, for each selection of 𝑁 , over every simple region.

Course Problem The second sizing problem seeks local stitch numbers with a for-

mulation that appears very similar to the global stitch problem. The main difference

is the set of constraints and their inter-dependencies:

arg min
𝑚

𝜆crs

∑︁
𝒮𝑖∈𝒰

𝐸crs(𝑚𝑖) + 𝜆smpl

∑︁
(𝒮𝑖,𝒮𝑗)∈𝒜

𝐸smpl(𝑚𝑖,𝑚𝑗)

s.t. ∀ (𝒮𝑖,𝒮𝑗) ∈ 𝒜, ⌈𝑚𝑗/𝐹max⌉ ≤ 𝑚𝑖 ≤ ⌊𝑚𝑗 𝐹max⌋.

285

The constraints of this local problem are box constraints that interact in a sequential

manner. This sequential interaction makes it again possible to quickly find at least

one solution. Furthermore, by constraining the minimum number of subdivisions 𝑁

based on the global stitch counts at the region’s start and end interfaces, we can

ensure that we have a feasible solution.

B.2 Affordable Geodesic Computations

We describe our strategy to compute the geodesic distance G(𝑝, 𝑞) between two loca-

tions 𝑝 and 𝑞, possibly in different charts of a same atlas. Practically speaking, we

focus on computing the shortest path from 𝑝 to 𝑞 (i.e., the geodesic path), whereas

the distance G(𝑝, 𝑞) is the length of that path.

We require the distance to measure the degree of alignment between different

locations within our stitch graph sampling algorithm. We further require the path so

as to sample short-row stitches along stitch wales. Having proper sketch embedding

of the stitches matters for two purposes: 1) for visualization, which matters for seam

editing, and 2) to allow location-based pattern queries and editing.

Our strategy is of hierarchical nature. Our main observation is that when the

distance is large, we do not need to be very precise, whereas when we get closer to

the target, we would appreciate to get the exact geodesic path.

In a precomputation stage, we store the geodesic distance between any two samples

of the finest level of the mesh data structure holding the time function. The distances

do not necessarily need to be exact, so a simple strategy is to use 𝑁 instantiation of

Dijkstra based on the mesh connectivity (for 𝑁 vertices). We instead use the Heat

Method [42] to get a more precise continuous measure.

Given the precomputation table, upon a query between locations 𝑝 and 𝑞, we

compute their sample neighborhood in the mesh (edge or face). If the neighborhood

is the same, the geodesic path is trivial and we’re done. If they are not, we create an

approximate path by linking 𝑝 and 𝑞 to all their sample neighbors (2 on an edge, 3 in

a triangle and 4 in a quad) and picking the shortest path between any pair of those

286

samples across sides.

This approximation is then tested against a refinement threshold – we set it to

3∆𝑠 where ∆𝑠 is the distance between two adjacent grid samples. If it is above the

threshold, we return the approximate path and its distance.

If it is below, we refine the path by computing the exact geodesic path between

two points as described in Surazhsky et al. [162]. To further restrict the search space

during the edge-window propagation, we only consider the neighborhoods adjacent

to our initial approximate geodesic path.

B.3 Stitch Sampling and Alignment

Multiple steps of our sampling algorithm rely on the notion of geodesic distance

between sampled locations on the sketch atlas. While our geodesic computation

strategy deals with one part of the problem, how we pick the sampled locations can

matter as much in practice. The issue of sample location naturally arises in two steps:

(1) during the short-row density computation of region sampling, and (2) from stitch

instantiation to wale distribution.

B.3.1 Short-row Density Alignment

The computation of the local short-row densities 𝑟𝑖 assumes 𝐾 pairs of samples that

are uniformly sampled between two adjacent isoline segment sets 𝒮𝑖 and 𝒮𝑗. Recall

that the goal of that computation is to maximize the wale accuracy across a simple

region.

Instead of computing the number of short-row stitches directly, the computation

uses representative short-row densities that are sampled along the isoline pairs. In

practice, we uniformly sample 𝐾 samples independently on each isoline, and then

we create the pairs by matching the samples across both sides with Dynamic Time

Warping (DTW).

The number of samples pairs 𝐾 is chosen based on the isoline lengths and the

mesh resolution ∆𝑠. Since the mesh interpolation of 𝑡 is linear, sampling beyond the

287

mesh resolution brings very limited benefit. However, one subtle issue is that our

uniformly spaced 𝐾 samples on both sides 𝒮𝑖 and 𝒮𝑗 have a potential unknown global

shift (rotation of circular courses). Increasing the resolution decreases the impact of

such global shift on the systematic alignment error, but increasing the stitch resolution

also enhances that issue.

An adaptive solution to this problem is to complement the sample-pair DTW-

based alignment with a further refinement that iteratively attempts to reduce the

global sample shift through a sub-sample alignment procedure. Given 𝐾 aligned

samples {𝑠𝑖,𝑘} and {𝑠𝑗,𝑘} along adjacent isoline segment sets 𝒮𝑖 and 𝒮𝑗, we successively

look for global shifts that would improve the full alignment. We pick the potential

shifts by subdividing the interval between two neighboring samples in a binary fashion

while searching for a shift that reduces the alignment error. We use a fixed number

of subdivision levels (5) but this could be adapted with the stitch scale.

Instead of applying this procedure to each sub-region, we only apply it if the

global alignment shows an average distance that is unexpectedly large (i.e., short-row

densities above 0 on at least half of the samples). For smooth time functions, short-

rows are only needed sparsely and such adaptive sub-sample alignment procedure

ends up only firing where (i) short-rows are needed, or (ii) the random offset is large.

B.3.2 Stitch Course Alignment

The uniform stitch distribution during the creation of courses leads to a similar po-

tential misalignment during wale distribution. However the impact is very different

because wale distribution implicitly distributes any form of local misalignment, and

thus it is typically not notable when considering purely the topological graph struc-

ture. And even if it was noticeable, the seam penalty provides user control to override

any local misalignment.

288

Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning. In 12th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 16), pages
265–283, 2016.

[2] Colin C Adams. The Knot Book. American Mathematical Soc., 1994.

[3] Sabit Adanur. Handbook of Weaving. CRC press, 2020.

[4] Adobe Inc. Adobe Photoshop, March 2019. URL https://www.adobe.com/
products/photoshop.html. [Online; Accessed: 08-16-2021].

[5] Michael Agnes and David Bernard Guralnik. Webster’s New World College
Dictionary. Macmillan New York, 1999.

[6] C.L. Ahles. Fine Machine Sewing: Easy Ways to Get the Look of Hand Fin-
ishing and Embellishing. Taunton Press, 2001. ISBN 978-1-56158-487-1. URL
https://books.google.com/books?id=ft_qCrwc_BYC.

[7] Lea Albaugh, Scott Hudson, and Lining Yao. Digital Fabrication of Soft Actu-
ated Objects by Machine Knitting. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems, CHI ’19, pages 1–13, New York, NY,
USA, 2019. Association for Computing Machinery. ISBN 978-1-4503-5970-2.

[8] W. Albrecht, H. Fuchs, and W. Kittelmann. Nonwoven Fabrics: Raw Ma-
terials, Manufacture, Applications, Characteristics, Testing Processes. Wiley,
2006. ISBN 978-3-527-60531-6. URL https://books.google.com/books?id=
pvQwXBi3HwMC.

[9] Nikolay Anguelov. The Dirty Side of the Garment Industry: Fast Fashion and
Its Negative Impact on Environment and Society. CRC Press, 2015.

[10] Michael Ashikmin, Simon Premože, and Peter Shirley. A microfacet-based
BRDF generator. In Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques, pages 65–74, 2000.

[11] Autodesk, INC. Fusion 360, August 2021. URL https://www.autodesk.com/
products/fusion-360/. [Online; Accessed: 08-16-2021].

289

https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
https://books.google.com/books?id=ft_qCrwc_BYC
https://books.google.com/books?id=pvQwXBi3HwMC
https://books.google.com/books?id=pvQwXBi3HwMC
https://www.autodesk.com/products/fusion-360/
https://www.autodesk.com/products/fusion-360/

[12] Firas Awaja and Dumitru Pavel. Recycling of PET. European polymer journal,
41(7):1453–1477, 2005.

[13] Cagri Ayranci and Jason Carey. 2D braided composites: A review for stiffness
critical applications. Composite Structures, 85(1):43–58, 2008.

[14] Tavmjong Bah. Inkscape: Guide to a Vector Drawing Program. prentice hall
press, 2007.

[15] Alfred Barlow. The History and Principles of Weaving by Hand and by Power.
Low, Marston, Searle, and Rivington, 1878.

[16] Robert K Barnhart. The Barnhart Dictionary of Etymology. New York: HW
Wilson Company, 1988.

[17] Aric Bartle, Alla Sheffer, Vladimir G. Kim, Danny M. Kaufman, Nicholas Vin-
ing, and Floraine Berthouzoz. Physics-Driven Pattern Adjustment for Direct
3D Garment Editing. ACM Trans. Graph., 35(4), July 2016. ISSN 0730-0301.

[18] Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. Material recogni-
tion in the wild with the materials in context database. Computer Vision and
Pattern Recognition (CVPR), 2015.

[19] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira,
and Jennifer Wortman Vaughan. A theory of learning from different domains.
Machine learning, 79(1-2):151–175, 2010.

[20] Floraine Berthouzoz, Akash Garg, Danny M. Kaufman, Eitan Grinspun, and
Maneesh Agrawala. Parsing Sewing Patterns into 3D Garments. ACM Trans.
Graph., 32(4), July 2013. ISSN 0730-0301.

[21] Rachel Bick, Erika Halsey, and Christine C Ekenga. The global environmental
injustice of fast fashion. Environmental Health, 17(1):1–4, 2018.

[22] Ernesto G Birgin and José Mario Martínez. Improving ultimate convergence of
an augmented Lagrangian method. Optimization Methods and Software, 23(2):
177–195, 2008.

[23] Ronald V Book and Friedrich Otto. String-rewriting systems. In String-
Rewriting Systems, pages 35–64. Springer, 1993.

[24] Brother. Brother Sewing and Embroidery Machines, 2021. URL https://www.
brother-usa.com/home/sewing-embroidery. [Online; Accessed: 2021-08-19].

[25] Browzwear. Browzwear VStitcher, 2009. URL http://www.browzwear.com/
vstitcher.htm. [Online; Accessed: 08-27-2009].

[26] H.D. Buck. Flat Machine Knitting and Fabrics. Bragdon, Lord & Nagle Com-
pany, 1921. URL https://books.google.com/books?id=1xsjkgAACAAJ.

290

https://www.brother-usa.com/home/sewing-embroidery
https://www.brother-usa.com/home/sewing-embroidery
http://www.browzwear.com/vstitcher.htm
http://www.browzwear.com/vstitcher.htm
https://books.google.com/books?id=1xsjkgAACAAJ

[27] Ann Budd. Knitter’s Handy Book of Top-Down Sweaters: Basic Designs in
Multiple Sizes and Gauges. Interweave, 2012. ISBN 978-1-59668-483-6.

[28] Butterick Publishing Inc. The Art of Knitting (Dover Knitting, Crochet, Tat-
ting, Lace). Dover Publications, 2016.

[29] Michele Calì, Salvatore Massimo Oliveri, Ubaldo Cella, Massimo Martorelli,
Antonio Gloria, and Domenico Speranza. Mechanical characterization and
modeling of downwind sailcloth in fluid-structure interaction analysis. Ocean
Engineering, 165:488–504, 2018.

[30] Denis DR Cartie, Giuseppe Dell’Anno, Emilie Poulin, and Ivana K Partridge.
3D reinforcement of stiffener-to-skin T-joints by Z-pinning and tufting. Engi-
neering fracture mechanics, 73(16):2532–2540, 2006.

[31] E. Castro-Aguirre, F. Iñiguez-Franco, H. Samsudin, X. Fang, and R. Auras.
Poly(lactic acid)—Mass production, processing, industrial applications, and
end of life. Advanced Drug Delivery Reviews, 107:333–366, 2016. ISSN 0169-
409X. doi: 10.1016/j.addr.2016.03.010. URL https://www.sciencedirect.
com/science/article/pii/S0169409X16300965. PLA biodegradable poly-
mers.

[32] Edwin Catmull and James Clark. Recursively generated B-spline surfaces on
arbitrary topological meshes. Computer-aided design, 10(6):350–355, 1978.

[33] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 40(4):834–848, 2018.

[34] Maurice Chiodo. An introduction to braid theory. Msc, University of Mel-
bourne, 2005.

[35] Wonseok Choi and Nancy B Powell. Three dimensional seamless garment knit-
ting on V-bed flat knitting machines. Journal of Textile and Apparel, Technology
and Management, 4(3):1–33, 2005.

[36] PL Chu and T Whitbread. Measurement of stresses in optical fiber and preform.
Applied Optics, 21(23):4241–4245, 1982.

[37] Deborah DL Chung and Deborah Chung. Carbon Fiber Composites. Elsevier,
2012.

[38] K.S. Clair. The Golden Thread: How Fabric Changed History. Liveright,
2019. ISBN 978-1-63149-636-3. URL https://books.google.com/books?id=
VweLDwAAQBAJ.

[39] Clo3D. Clo3D, 2020. URL https://www.clo3d.com/. [Online; Accessed: 2021-
08-19].

291

https://www.sciencedirect.com/science/article/pii/S0169409X16300965
https://www.sciencedirect.com/science/article/pii/S0169409X16300965
https://books.google.com/books?id=VweLDwAAQBAJ
https://books.google.com/books?id=VweLDwAAQBAJ
https://www.clo3d.com/

[40] Isabel De Nyse Conover. A Complete Course in Dressmaking, (Vol. 8, Draping
and Pattern Making). New York, E. J. Clode, 1922. URL http://archive.
org/details/completecoursein08cono.

[41] Koby Crammer, Michael Kearns, and Jennifer Wortman. Learning from multi-
ple sources. Journal of Machine Learning Research, 9(Aug):1757–1774, 2008.

[42] Keenan Crane, Clarisse Weischedel, and Max Wardetzky. The Heat Method
for Distance Computation. Commun. ACM, 60(11):90–99, October 2017. ISSN
0001-0782.

[43] Douglas Crockford. JavaScript: The Good Parts: The Good Parts. " O’Reilly
Media, Inc.", 2008.

[44] Patrick Davison. Because of the Pixels: On the History, Form, and Influence
of MS Paint. Journal of Visual Culture, 13(3):275–297, 2014. doi: 10.1177/
1470412914544539. URL https://doi.org/10.1177/1470412914544539.

[45] Fernando de Goes, Mathieu Desbrun, Mark Meyer, and Tony DeRose. Sub-
division exterior calculus for geometry processing. ACM Trans. Graph., 35
(4), July 2016. ISSN 0730-0301. doi: 10.1145/2897824.2925880. URL
https://doi.org/10.1145/2897824.2925880.

[46] Philippe Decaudin, Dan Julius, Jamie Wither, Laurence Boissieux, Alla Sheffer,
and Marie-Paule Cani. Virtual Garments: A Fully Geometric Approach for
Clothing Design. Computer Graphics Forum, 25(3):625–634, 2006.

[47] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-
rahman Mohamed, and Pushmeet Kohli. RobustFill: Neural Program Learning
under Noisy I/O. In International Conference on Machine Learning, 2017.

[48] Thomas G Dietterich, Richard H Lathrop, and Tomás Lozano-Pérez. Solving
the multiple instance problem with axis-parallel rectangles. Artificial intelli-
gence, 89(1-2):31–71, 1997.

[49] Nanette Donohue. 750 Knitting Stitches: The Ultimate Knit Stitch Bible. REED
BUSINESS INFORMATION 360 PARK AVENUE SOUTH, NEW YORK, NY
10010 USA, 2015.

[50] Thomas Dublin. Women at Work. The Transformation of Work and Community
in Lowell, Massachusetts, 1826–1860. Columbia University Press, 1979.

[51] J. Essinger. Jacquard’s Web: How a Hand-Loom Led to the Birth of the Infor-
mation Age. OUP E-Books. OUP Oxford, 2007. ISBN 978-0-19-280578-2. URL
https://books.google.com/books?id=zXoRDAAAQBAJ.

[52] S. Fouchier. Felt. Textiles Handbooks. A&C Black, 2009. ISBN 978-0-7136-
8494-0. URL https://books.google.com/books?id=bcUbC60NQbsC.

292

http://archive.org/details/completecoursein08cono
http://archive.org/details/completecoursein08cono
https://doi.org/10.1177/1470412914544539
https://doi.org/10.1145/2897824.2925880
https://books.google.com/books?id=zXoRDAAAQBAJ
https://books.google.com/books?id=bcUbC60NQbsC

[53] Tomer Galanti and Lior Wolf. A Theory of Output-Side Unsupervised Domain
Adaptation. arXiv:1703.01606, 2017.

[54] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky.
Domain-adversarial training of neural networks. Journal of Machine Learning
Research, 17(1):2096–2030, 2016.

[55] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer
using convolutional neural networks. In IEEE Conference on Computer Vision
and Pattern Recognition, 2016.

[56] N. Gokarneshan, B. Varadarajan, and C.B. Senthil Kumar. 4 - Types of cams
in textile and their design. In N. Gokarneshan, B. Varadarajan, and C.B.
Senthil Kumar, editors, Mechanics and Calculations of Textile Machinery, pages
66–80. Woodhead Publishing India, 2013. ISBN 978-0-85709-104-8. doi: 10.
1533/9780857095527.1.66. URL https://www.sciencedirect.com/science/
article/pii/B9780857091048500043.

[57] R.H. Gong. Specialist Yarn and Fabric Structures: Developments and Applica-
tions. Woodhead Publishing Series in Textiles. Elsevier Science, 2011. ISBN 978-
0-85709-393-6. URL https://books.google.com/books?id=KQ5IAgAAQBAJ.

[58] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial nets. In Advances in Neural Information Processing Systems, 2014.

[59] S. Gordon and Y.L. Hsieh. Cotton: Science and Technology. Woodhead Pub-
lishing Series in Textiles. Elsevier Science, 2006. ISBN 978-1-84569-248-3. URL
https://books.google.com/books?id=VsBQAwAAQBAJ.

[60] Peng Guan, Loretta Reiss, David A. Hirshberg, Alexander Weiss, and Michael J.
Black. DRAPE: DRessing Any PErson. ACM Trans. Graph., 31(4), July 2012.
ISSN 0730-0301.

[61] Alexander Gumennik, Alexander M Stolyarov, Brent R Schell, Chong Hou,
Guillaume Lestoquoy, Fabien Sorin, William McDaniel, Aimee Rose, John D
Joannopoulos, and Yoel Fink. All-in-fiber chemical sensing. Advanced Materials,
24(45):6005–6009, 2012.

[62] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of
modern neural networks. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 1321–1330. JMLR. org, 2017.

[63] Runbo Guo, Jenny Lin, Vidya Narayanan, and James McCann. Representing
crochet with stitch meshes. In Symposium on Computational Fabrication, SCF
’20, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
978-1-4503-8170-3. doi: 10.1145/3424630.3425409. URL https://doi.org/
10.1145/3424630.3425409.

293

https://www.sciencedirect.com/science/article/pii/B9780857091048500043
https://www.sciencedirect.com/science/article/pii/B9780857091048500043
https://books.google.com/books?id=KQ5IAgAAQBAJ
https://books.google.com/books?id=VsBQAwAAQBAJ
https://doi.org/10.1145/3424630.3425409
https://doi.org/10.1145/3424630.3425409

[64] Yuanyuan Guo, Shan Jiang, Benjamin JB Grena, Ian F Kimbrough, Emily G
Thompson, Yoel Fink, Harald Sontheimer, Tatsuo Yoshinobu, and Xiaoting Jia.
Polymer composite with carbon nanofibers aligned during thermal drawing as a
microelectrode for chronic neural interfaces. Acs Nano, 11(7):6574–6585, 2017.

[65] J Hagewood. Technologies for the manufacture of synthetic polymer fibers. In
Advances in Filament Yarn Spinning of Textiles and Polymers, pages 48–71.
Elsevier, 2014.

[66] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In IEEE Conference on Computer Vision and
Pattern Recognition, 2016.

[67] Francesann L. Heisey, Peter Brown, and Robert F. Johnson. Three-dimensional
pattern drafting: A theoretical framework. Clothing and Textiles Research
Journal, 6(3):1–9, 1988. doi: 10.1177/0887302X8800600301. URL https:
//doi.org/10.1177/0887302X8800600301.

[68] Anamaría Henao, Marco Carrera, Antonio Miravete, and Luis Castejón. Me-
chanical performance of through-thickness tufted sandwich structures. Com-
posite structures, 92(9):2052–2059, 2010.

[69] David W Henderson and Daina Taimina. Crocheting the hyperbolic plane. The
Mathematical Intelligencer, 23(2):17–28, 2001.

[70] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate
Saenko, Alexei A Efros, and Trevor Darrell. Cycada: Cycle-consistent adver-
sarial domain adaptation. In International Conference on Machine Learning,
2018.

[71] Megan Hofmann, Lea Albaugh, Ticha Sethapakadi, Jessica Hodgins, Scott Hud-
son, Jame McCann, and Jennifer Mankoff. KnitPicking Textures: Programming
and Modifying Complex Knitted Textures for Machine and Hand Knitting. Pro-
ceedings of the 32nd Annual ACM Symposium on User Interface Software and
Technology, pages 5–16, 2019.

[72] Chen Huang, Yining Li, Chen Change Loy, and Xiaoou Tang. Learning Deep
Representation for Imbalanced Classification. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[73] Ping Huang, Junfeng Yao, and Hengheng Zhao. Automatic realistic 3D garment
generation based on two images. In 2016 International Conference on Virtual
Reality and Visualization (ICVRV), pages 250–257. IEEE, 2016.

[74] Scott E. Hudson. Printing teddy bears: A technique for 3D printing of soft
interactive objects. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’14, pages 459–468, New York, NY, USA, 2014.
Association for Computing Machinery. ISBN 978-1-4503-2473-1. doi: 10.1145/
2556288.2557338. URL https://doi.org/10.1145/2556288.2557338.

294

https://doi.org/10.1177/0887302X8800600301
https://doi.org/10.1177/0887302X8800600301
https://doi.org/10.1145/2556288.2557338

[75] D. Hunter. Papermaking: The History and Technique of an Ancient Craft.
Dover Books Explaining Science. Dover Publications, 1978. ISBN 978-0-486-
23619-3. URL https://books.google.com/books?id=1sEp3rtK994C.

[76] Janet Hunter. Women and the Labour Market in Japan’s Industrialising Econ-
omy: The Textile Industry before the Pacific War. Routledge, 2004.

[77] Takeo Igarashi and John F. Hughes. Clothing Manipulation. ACM Trans.
Graph., 22(3):697, July 2003. ISSN 0730-0301.

[78] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image
translation with conditional adversarial networks. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2017.

[79] F.H. Jackson. Intarsia and Marquetry. Handbooks for the Designer
and Craftsman. Sands, 1903. URL https://books.google.com/books?id=
B0JLAAAAMAAJ.

[80] Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. In-
stant Field-Aligned Meshes. ACM Trans. Graph., 34(6), October 2015. ISSN
0730-0301.

[81] C. James. The Complete Serger Handbook. A Sterling/Sewing Information
Resources Book. Sterling Publishing Company, Incorporated, 1998. ISBN 978-
0-8069-9807-7. URL https://books.google.com/books?id=Mjg0SEEjxnkC.

[82] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-
time style transfer and super-resolution. In European Conference on Computer
Vision, 2016.

[83] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Judy Hoffman,
Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. Inferring and executing
programs for visual reasoning. In IEEE International Conference on Computer
Vision, 2017.

[84] Steven G Johnson. The NLopt nonlinear-optimization package, 2014. URL
http://github.com/stevengj/nlopt. [Online; Accessed: 08-16-2021].

[85] S.J. Kadolph. Textiles. Fashion Series. Pearson, 2010. ISBN 978-0-13-500759-4.
URL https://books.google.com/books?id=vsO9QQAACAAJ.

[86] Jonathan Kaldor. Simulating Yarn-Based Cloth. PhD Thesis, Cornell Univer-
sity, 2011.

[87] Jonathan M. Kaldor, Doug L. James, and Steve Marschner. Simulating knitted
cloth at the yarn level. In ACM Transactions on Graphics (TOG), SIGGRAPH
’08, New York, NY, USA, 2008. Association for Computing Machinery. ISBN
978-1-4503-0112-1. doi: 10.1145/1399504.1360664. URL https://doi.org/
10.1145/1399504.1360664.

295

https://books.google.com/books?id=1sEp3rtK994C
https://books.google.com/books?id=B0JLAAAAMAAJ
https://books.google.com/books?id=B0JLAAAAMAAJ
https://books.google.com/books?id=Mjg0SEEjxnkC
http://github.com/stevengj/nlopt
https://books.google.com/books?id=vsO9QQAACAAJ
https://doi.org/10.1145/1399504.1360664
https://doi.org/10.1145/1399504.1360664

[88] Mehmet Kanik, Sirma Orguc, Georgios Varnavides, Jinwoo Kim, Thomas Be-
navides, Dani Gonzalez, Timothy Akintilo, C Cem Tasan, Anantha P Chan-
drakasan, Yoel Fink, et al. Strain-programmable fiber-based artificial muscle.
Science, 365(6449):145–150, 2019.

[89] Neel Kant. Recent Advances in Neural Program Synthesis. arXiv:1802.02353,
2018.

[90] Alexandre Kaspar, Liane Makatura, and Wojciech Matusik. Knitting Skele-
tons: A Computer-Aided Design Tool for Shaping and Patterning of Knitted
Garments. In Proceedings of the 32nd Annual ACM Symposium on User In-
terface Software and Technology, pages 53–65, New Orleans, Louisiana, USA,
October 2019. ISBN 978-1-4503-6816-2.

[91] Alexandre Kaspar, Tae-Hyun Oh, Liane Makatura, Petr Kellnhofer, and Wo-
jciech Matusik. Neural Inverse Knitting: From Images to Manufacturing In-
structions. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Pro-
ceedings of the 36th International Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages 3272–3281, Long Beach,
California, USA, June 2019. PMLR. URL http://proceedings.mlr.press/
v97/kaspar19a.html.

[92] Alexandre Kaspar, Kui Wu, Yiyue Luo, Liane Makatura, and Wojciech Matusik.
Knit Sketching: From Cut & Sew Patterns to Machine-Knit Garments. ACM
Transactions on Graphics (Proc. SIGGRAPH), 40(4), 2021.

[93] F Selcen Kilinc. Handbook of Fire Resistant Textiles. Woodhead Publishing
Series in Textiles. Elsevier Science, 2013. ISBN 978-0-85709-893-1. URL https:
//books.google.com/books?id=dGVEAgAAQBAJ.

[94] Marius Kintel and Clifford Wolf. OpenSCAD, the programmers solid 3D CAD
modeller, 2017. URL https://openscad.org/. [Online; Accessed: 2021-08-16].

[95] Berthold Laufer. The early history of felt. American Anthropologist, 32(1):1–18,
1930.

[96] James Laver. Costume and Fashion: A Concise History (World of Art). Thames
& Hudson, 2020.

[97] Jonathan Leaf, Rundong Wu, Eston Schweickart, Doug L. James, and Steve
Marschner. Interactive Design of Yarn-Level Cloth Patterns. ACM Transactions
on Graphics (Proceedings of SIGGRAPH Asia 2018), 37(6), November 2018.
doi: 10.1145/3272127.3275105.

[98] Olivier Lecarme and Karine Delvare. The Book of GIMP: A Complete Guide
to Nearly Everything. No Starch Press, 2013.

296

http://proceedings.mlr.press/v97/kaspar19a.html
http://proceedings.mlr.press/v97/kaspar19a.html
https://books.google.com/books?id=dGVEAgAAQBAJ
https://books.google.com/books?id=dGVEAgAAQBAJ
https://openscad.org/

[99] Beverly Lemire. Draping the body and dressing the home: The material culture
of textiles and clothes in the Atlantic world, c. 1500–1800. In History and
Material Culture, pages 89–105. Routledge, 2017.

[100] Jenny Li and James McCann. An Artin Braid Group Representation of Knitting
Machine State with Applications to Validation and Optimization of Fabrication
Plans. In 2021 International Conference on Robotics and Automation (ICRA),
2021.

[101] Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, and Leonidas
Guibas. Grass: Generative recursive autoencoders for shape structures. ACM
Transactions on Graphics (TOG), 36(4):1–14, 2017.

[102] Minchen Li, Alla Sheffer, Eitan Grinspun, and Nicholas Vining. Foldsketch:
Enriching Garments with Physically Reproducible Folds. ACM Trans. Graph.,
37(4), July 2018. ISSN 0730-0301.

[103] Jenny Lin, Vidya Narayanan, and James McCann. Efficient Transfer Planning
for Flat Knitting. In Proceedings of the 2Nd ACM Symposium on Computational
Fabrication, SCF ’18, pages 1:1–1:7, New York, NY, USA, 2018. ACM. ISBN
978-1-4503-5854-5.

[104] Tsung-Yi Lin, Priyal Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal
loss for dense object detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2018.

[105] Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large
scale optimization. Mathematical programming, 45(1-3):503–528, 1989.

[106] LingShan Liu, Tao Zhang, Peng Wang, Xavier Legrand, and Damien Soulat.
Influence of the tufting yarns on formability of tufted 3-Dimensional composite
reinforcement. Composites Part A: Applied Science and Manufacturing, 78:
403–411, 2015.

[107] Gabriel Loke, Tural Khudiyev, Brian Wang, Stephanie Fu, Syamantak Payra,
Yorai Shaoul, Johnny Fung, Ioannis Chatziveroglou, Pin-Wen Chou, Itamar
Chinn, et al. Digital electronics in fibres enable fabric-based machine-learning
inference. Nature communications, 12(1):1–9, 2021.

[108] Matt Lombard. SolidWorks 2013 Bible. John Wiley & Sons, 2013.

[109] Yiyue Luo, Yunzhu Li, Pratyusha Sharma, Wan Shou, Kui Wu, Michael Foshey,
Beichen Li, Tomás Palacios, Antonio Torralba, and Wojciech Matusik. Learn-
ing human–environment interactions using conformal tactile textiles. Nature
Electronics, 4(3):193–201, 2021.

[110] Yiyue Luo, Kui Wu, Tomás Palacios, and Wojciech Matusik. KnitUI: Fabricat-
ing Interactive and Sensing Textiles with Machine Knitting. In Proceedings of

297

the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21,
pages 1–12, New York, NY, USA, 2021. Association for Computing Machinery.

[111] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adap-
tation: Learning bounds and algorithms. In Conference on Learning Theory,
2009.

[112] Shashank G Markande and Elisabetta A Matsumoto. Knotty knits are tangles
on tori. arXiv preprint arXiv:2002.01497, 2020.

[113] MarvelousDesigner. MarvelousDesigner, 2020. URL https://www.
marvelousdesigner.com. [Online; Accessed: 2021-08-16].

[114] William S Massey. A Basic Course in Algebraic Topology, volume 127. Springer,
2019.

[115] James McCann. The “Knitout” (.k) File Format, 2017. URL https://
textiles-lab.github.io/knitout/knitout.html. [Online; Accessed: 2021-
08-16].

[116] James McCann, Lea Albaugh, Vidya Narayanan, April Grow, Wojciech Ma-
tusik, Jennifer Mankoff, and Jessica Hodgins. A Compiler for 3D Machine
Knitting. ACM Transactions on Graphics (TOG), 35(4):49:1–49:11, July 2016.
ISSN 0730-0301.

[117] Ministry of Supply. Ministry of Supply, 2021. URL https://www.
ministryofsupply.com/. [Online; Accessed: 2021-08-16].

[118] Juan Montes, Bernhard Thomaszewski, Sudhir Mudur, and Tiberiu Popa. Com-
putational Design of Skintight Clothing. ACM Trans. Graph., 39(4), July 2020.
ISSN 0730-0301.

[119] Carolyn L Moore, Kathy K Mullet, and Margaret Prevatt Young. Concepts
of Pattern Grading: Techniques for Manual and Computer Grading. Fairchild
Books, 2001.

[120] K. Murasugi and B. Kurpita. A Study of Braids. Mathematics and Its
Applications. Springer Netherlands, 2012. ISBN 978-94-015-9319-9. URL
https://books.google.com/books?id=VLTnCAAAQBAJ.

[121] Georges Nader, Yu Han Quek, Pei Zhi Chia, Oliver Weeger, and Sai-Kit Yeung.
KnitKit: A flexible system for machine knitting of customizable textiles. ACM
Transactions on Graphics (TOG), 40(4), 2021.

[122] Vidya Narayanan, Lea Albaugh, Jessica Hodgins, Stelian Coros, and James
Mccann. Automatic Machine Knitting of 3D Meshes. ACM Transactions on
Graphics, 37(3), August 2018. ISSN 0730-0301.

298

https://www.marvelousdesigner.com
https://www.marvelousdesigner.com
https://textiles-lab.github.io/knitout/knitout.html
https://textiles-lab.github.io/knitout/knitout.html
https://www.ministryofsupply.com/
https://www.ministryofsupply.com/
https://books.google.com/books?id=VLTnCAAAQBAJ

[123] Vidya Narayanan, Kui Wu, Cem Yuksel, and James McCann. Visual knitting
machine programming. ACM Transactions on Graphics (TOG), 38(4):1–13,
2019.

[124] Addy Ngan, Frédo Durand, and Wojciech Matusik. Experimental analysis of
BRDF models. Rendering Techniques, 2005(16th):2, 2005.

[125] Kirsi Niinimäki, Greg Peters, Helena Dahlbo, Patsy Perry, Timo Rissanen, and
Alison Gwilt. The environmental price of fast fashion. Nature Reviews Earth
& Environment, 1(4):189–200, 2020.

[126] Syamantak Payra, Irmandy Wicaksono, Juliana Cherston, Cedric Honnet,
Valentina Sumini, and Joseph A Paradiso. Feeling through spacesuits: Ap-
plication of space-resilient e-textiles to enable haptic feedback on pressurized
extravehicular suits. In 2021 IEEE Aerospace Conference (50100), pages 1–12,
2021.

[127] Huaishu Peng, Jennifer Mankoff, Scott E. Hudson, and James McCann. A
layered fabric 3D printer for soft interactive objects. In Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems, pages
1789–1798. Association for Computing Machinery, New York, NY, USA, 2015.
ISBN 978-1-4503-3145-6. URL https://doi.org/10.1145/2702123.2702327.

[128] Huaishu Peng, Scott Hudson, Jennifer Mankoff, and James McCann. Soft print-
ing with fabric. XRDS: Crossroads, The ACM Magazine for Students, 22(3):
50–53, 2016.

[129] Joel Peterson, Jonas Larsson, Jan Carlsson, and Peter Andersson. Knit on
demand - development and simulation of a production and shop model for cus-
tomised knitted garments. International Journal of Fashion Design, Technol-
ogy and Education, 1(2):89–99, 2008. doi: 10.1080/17543260802353399. URL
https://doi.org/10.1080/17543260802353399.

[130] Salvinija Petrulyte and Renata Baltakyte. Static water absorption in fabrics of
different pile height. Fibres & Textiles in Eastern Europe, 17(3):60–65, 2009.

[131] John Picton and John Mack. African Textiles. Trustees of the British Museum,
1989.

[132] Ivan Poupyrev, Nan-Wei Gong, Shiho Fukuhara, Mustafa Emre Karagozler,
Carsten Schwesig, and Karen E. Robinson. Project Jacquard: Interactive Dig-
ital Textiles at Scale. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, CHI ’16, pages 4216–4227, New York, NY, USA,
2016. Association for Computing Machinery. ISBN 978-1-4503-3362-7.

[133] Andrea Berman Price. Knitspeak: An A to Z Guide to the Language of Knitting
Patterns. Open Road Media, 2011.

299

https://doi.org/10.1145/2702123.2702327
https://doi.org/10.1080/17543260802353399

[134] J Dale Prince. 3D printing: An industrial revolution. Journal of electronic
resources in medical libraries, 11(1):39–45, 2014.

[135] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic Beauty
of Plants. Springer Science & Business Media, 2012.

[136] Michael Rein, Valentine Dominique Favrod, Chong Hou, Tural Khudiyev,
Alexander Stolyarov, Jason Cox, Chia-Chun Chung, Chhea Chhav, Marty Ellis,
John Joannopoulos, et al. Diode fibres for fabric-based optical communications.
Nature, 560(7717):214, 2018.

[137] Juergen Riegel, Werner Mayer, and Yorik van Havre. FreeCAD. FreeCAD,
2016. URL https://www.freecadweb.org/. [Online; Accessed: 08-16-2021].

[138] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical Image Computing and Computer-Assisted Intervention. Springer, 2015.

[139] Harold A Rothbart. Cam Design Handbook. McGraw-Hill Education, 2004.

[140] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. Grabcut: Inter-
active foreground extraction using iterated graph cuts. ACM Transactions on
Graphics, 23(3):309–314, 2004.

[141] Grzegorz Rozenberg and Arto Salomaa. The Mathematical Theory of L Systems.
Academic press, 1980.

[142] Gerard Rubio. OpenKnit: Open Source Digital Knitting, 2014. URL http:
//openknit.org. [Online; Accessed: 2018-09-01].

[143] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. International journal of com-
puter vision, 115(3):211–252, 2015.

[144] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. Improved techniques for training gans. In Advances in Neural
Information Processing Systems, 2016.

[145] Gustav Sandin and Greg M. Peters. Environmental impact of textile reuse
and recycling – A review. Journal of Cleaner Production, 184:353–365, 2018.
ISSN 0959-6526. doi: 10.1016/j.jclepro.2018.02.266. URL https://www.
sciencedirect.com/science/article/pii/S0959652618305985.

[146] Triambak Saxena, Gerard Rubio, and Tom Catling. Kniterate: The Digi-
tal Knitting Machine, 2017. URL https://www.kickstarter.com/projects/
kniterate/kniterate-the-digital-knitting-machine. [Online; Accessed:
2018-09-01].

300

https://www.freecadweb.org/
http://openknit.org
http://openknit.org
https://www.sciencedirect.com/science/article/pii/S0959652618305985
https://www.sciencedirect.com/science/article/pii/S0959652618305985
https://www.kickstarter.com/projects/kniterate/kniterate-the-digital-knitting-machine
https://www.kickstarter.com/projects/kniterate/kniterate-the-digital-knitting-machine

[147] Abu Sadat Muhammad Sayem, Richard Kennon, and Nick Clarke. 3D CAD
systems for the clothing industry. International Journal of Fashion Design,
Technology and Education, 3(2):45–53, 2010.

[148] Nancy A Schofield. Pattern Grading. Cambridge, Woodhead Publishing Lim-
ited, 2007.

[149] Peter Schröder. Subdivision as a fundamental building block of digital ge-
ometry processing algorithms. Journal of Computational and Applied Mathe-
matics, 149(1):207–219, 2002. ISSN 0377-0427. doi: 10.1016/S0377-0427(02)
00530-7. URL https://www.sciencedirect.com/science/article/pii/
S0377042702005307. Scientific and Engineering Computations for the 21st
Century - Me thodologies and Applications Proceedings of the 15th Toyota
Conference.

[150] Shima Seiki. SDS-ONE Apex3, 2011. URL http://www.shimaseiki.com/
product/design/sdsone_apex/flat/. [Online; Accessed: 2018-09-01].

[151] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning:
From Theory to Algorithms. Cambridge university press, 2014.

[152] Nicholas Sharp, Keenan Crane, et al. Geometry-central, 2019. URL https:
//www.geometry-central.net. [Online; Accessed: 08-16-2021].

[153] Yu Shen, Junbang Liang, and Ming C Lin. GAN-based Garment Generation
Using Sewing Pattern Images. In Proceedings of the European Conference on
Computer Vision (ECCV), volume 1, page 3, 2020.

[154] Hitomi Shida and Gayle Roehm. Japanese Knitting Stitch Bible: 260 Exquisite
Patterns by Hitomi Shida. Tuttle Publishing, 2017.

[155] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda Wang,
and Russell Webb. Learning from simulated and unsupervised images through
adversarial training. In IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

[156] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[157] Richard Socher, Cliff Chiung-Yu Lin, Andrew Y Ng, and Christopher D Man-
ning. Parsing natural scenes and natural language with recursive neural net-
works. In ICML, 2011.

[158] D.J. Spencer. Knitting Technology: A Comprehensive Handbook and Prac-
tical Guide. Woodhead Publishing Series in Textiles. Technomic publishing,
2001. ISBN 978-1-58716-121-6. URL https://books.google.com/books?id=
zsoRvDWPd2gC.

301

https://www.sciencedirect.com/science/article/pii/S0377042702005307
https://www.sciencedirect.com/science/article/pii/S0377042702005307
http://www.shimaseiki.com/product/design/sdsone_apex/flat/
http://www.shimaseiki.com/product/design/sdsone_apex/flat/
https://www.geometry-central.net
https://www.geometry-central.net
https://books.google.com/books?id=zsoRvDWPd2gC
https://books.google.com/books?id=zsoRvDWPd2gC

[159] Stoll. M1Plus pattern software, 2011. URL http://www.stoll.com/stoll_
software_solutions_en_4/pattern_software_m1plus/3_1. [Online; Ac-
cessed: 2018-09-01].

[160] Eliza Strickland. Shapeways bringing 3-D printing to the masses. Ieee Spectrum,
50(11):22–22, 2013.

[161] Bjarne Stroustrup. The C++ Programming Language. Pearson Education,
2013.

[162] Vitaly Surazhsky, Tatiana Surazhsky, Danil Kirsanov, Steven J. Gortler, and
Hugues Hoppe. Fast Exact and Approximate Geodesics on Meshes. ACM Trans.
Graph., 24(3):553–560, July 2005. ISSN 0730-0301.

[163] Guangming Tao, Heike Ebendorff-Heidepriem, Alexander M Stolyarov, Sylvain
Danto, John V Badding, Yoel Fink, John Ballato, and Ayman F Abouraddy.
Infrared fibers. Advances in Optics and Photonics, 7(2):379–458, 2015.

[164] A. Thompson. Narrow Fabric Weaving. Read Books Limited, 2013. ISBN 978-
1-4733-8996-0. URL https://books.google.com/books?id=gi9-CgAAQBAJ.

[165] Bruce Trace. On the Reidemeister moves of a classical knot. Proceedings of the
American Mathematical Society, pages 722–724, 1983.

[166] E. Turquin, J. Wither, L. Boissieux, M. Cani, and J. F. Hughes. A Sketch-
Based Interface for Clothing Virtual Characters. IEEE Computer Graphics and
Applications, 27(1):72–81, 2007.

[167] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial Dis-
criminative Domain Adaptation. In IEEE Conference on Computer Vision and
Pattern Recognition, 2017.

[168] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance Normaliza-
tion: The Missing Ingredient for Fast Stylization. arXiv:1607.08022, 2016.

[169] Nobuyuki Umetani, Danny M. Kaufman, Takeo Igarashi, and Eitan Grinspun.
Sensitive Couture for Interactive Garment Modeling and Editing. ACM Trans.
Graph., 30(4), July 2011. ISSN 0730-0301.

[170] Jenny Underwood. The Design of 3D Shape Knitted Preforms. PhD Thesis,
Fashion and Textiles, RMIT University, 2009.

[171] Lieva Van Langenhove. Smart Textiles for Medicine and Healthcare: Materials,
Systems and Applications. Elsevier, 2007.

[172] Vasturiano. Force-directed graph rendered on HTML5 canvas, 2018. URL
https://github.com/vasturiano/force-graph. [Online; Accessed: 2018-08-
22].

302

http://www.stoll.com/stoll_software_solutions_en_4/pattern_software_m1plus/3_1
http://www.stoll.com/stoll_software_solutions_en_4/pattern_software_m1plus/3_1
https://books.google.com/books?id=gi9-CgAAQBAJ
https://github.com/vasturiano/force-graph

[173] Diederik Veenendaal, Mark West, and Philippe Block. History and overview of
fabric formwork: Using fabrics for concrete casting. Structural Concrete, 12(3):
164–177, 2011.

[174] Petras Vestartas, Mary Katherine Heinrich, Mateusz Zwierzycki, David Andres
Leon, Ashkan Cheheltan, Riccardo La Magna, and Phil Ayres. Design tools
and workflows for braided structures. In Klaas De Rycke, Christoph Geng-
nagel, Olivier Baverel, Jane Burry, Caitlin Mueller, Minh Man Nguyen, Philippe
Rahm, and Mette Ramsgaard Thomsen, editors, Humanizing Digital Reality:
Design Modelling Symposium Paris 2017, pages 671–681. Springer Singapore,
Singapore, 2018. ISBN 978-981-10-6611-5. URL https://doi.org/10.1007/
978-981-10-6611-5_55.

[175] W. D. F. Vincent. Part 1: Juvenile and Youth’s Garments. In The Cutters’
Practical Guide. John Williamson Co. Limited, 1898.

[176] Pascal Volino, Frederic Cordier, and Nadia Magnenat-Thalmann. From
early virtual garment simulation to interactive fashion design. Computer-
Aided Design, 37(6):593–608, 2005. ISSN 0010-4485. doi: 10.1016/j.cad.
2004.09.003. URL https://www.sciencedirect.com/science/article/pii/
S0010448504002209. CAD Methods in Garment Design.

[177] Frederick T Wallenberger and Paul A Bingham. Fiberglass and glass technology.
Energy-Friendly Compositions And Applications, 2010.

[178] Charlie C. L. Wang, Yu Wang, and Matthew M. F. Yuen. Design Automation
for Customized Apparel Products. Comput. Aided Des., 37(7):675–691, June
2005. ISSN 0010-4485.

[179] Huamin Wang. Rule-Free Sewing Pattern Adjustment with Precision and Effi-
ciency. ACM Trans. Graph., 37(4), July 2018. ISSN 0730-0301.

[180] Sen Wang, Ang Lu, and Lina Zhang. Recent advances in regenerated cellulose
materials. Progress in Polymer Science, 53:169–206, 2016.

[181] Tuanfeng Y. Wang, Duygu Ceylan, Jovan Popović, and Niloy J. Mitra. Learning
a Shared Shape Space for Multimodal Garment Design. ACM Trans. Graph.,
37(6), December 2018. ISSN 0730-0301.

[182] James CY Watt, Anne E Wardwell, and Morris Rossabi. When Silk Was Gold:
Central Asian and Chinese Textiles. Metropolitan Museum of art, 1997.

[183] Irmandy Wicaksono, Carson I Tucker, Tao Sun, Cesar A Guerrero, Clare Liu,
Wesley M Woo, Eric J Pence, and Canan Dagdeviren. A tailored, electronic
textile conformable suit for large-scale spatiotemporal physiological sensing in
vivo. Nature Flexible Electronics, 4(1):1–13, 2020.

303

https://doi.org/10.1007/978-981-10-6611-5_55
https://doi.org/10.1007/978-981-10-6611-5_55
https://www.sciencedirect.com/science/article/pii/S0010448504002209
https://www.sciencedirect.com/science/article/pii/S0010448504002209

[184] U Wollina, M Heide, W Müller-Litz, D Obenauf, and J Ash. Functional textiles
in prevention of chronic wounds, wound healing and tissue engineering. Curr
Probl Dermatol, 31:82–97, 2003.

[185] K. Wu and C. Yuksel. Real-time cloth rendering with fiber-level detail. IEEE
Transactions on Visualization and Computer Graphics, PP(99):1–1, 2017. ISSN
1077-2626. doi: 10.1109/TVCG.2017.2731949.

[186] Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele Panozzo, and Cem Yuksel.
Stitch Meshing. ACM Transactions on Graphics (SIGGRAPH), 37(4):130:1–
130:14, July 2018. ISSN 0730-0301.

[187] Kui Wu, Hannah Swan, and Cem Yuksel. Knittable Stitch Meshes. ACM
Transactions on Graphics, 38(1):10:1–10:13, January 2019. ISSN 0730-0301.

[188] Kui Wu, Marco Tarini, Cem Yuksel, James Mccann, and Xifeng Gao. Wear-
able 3D Machine Knitting: Automatic Generation of Shaped Knit Sheets to
Cover Real-World Objects. IEEE Transactions on Visualization and Computer
Graphics, pages 1–1, 2021.

[189] Fisher Yu and Vladlen Koltun. Multi-Scale Context Aggregation by Dilated
Convolutions. In International Conference on Learning Representations, 2016.

[190] Cem Yuksel, Jonathan M. Kaldor, Doug L. James, and Steve Marschner. Stitch
Meshes for Modeling Knitted Clothing with Yarn-level Detail. ACM Transac-
tions on Graphics (SIGGRAPH), 31(3):37:1–37:12, 2012.

[191] Shuang Zhao, Fujun Luan, and Kavita Bala. Fitting procedural yarn models
for realistic cloth rendering. ACM Transactions on Graphics (TOG), 35(4):51,
2016.

[192] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet,
Zhizhong Su, Dalong Du, Chang Huang, and Philip HS Torr. Conditional
random fields as recurrent neural networks. In IEEE International Conference
on Computer Vision, 2015.

[193] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso,
and Antonio Torralba. Semantic understanding of scenes through the ADE20K
dataset. International Journal of Computer Vision, 2018.

[194] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired Image-
to-Image Translation using Cycle-Consistent Adversarial Networks. In IEEE
International Conference on Computer Vision, 2017.

304

	Introduction
	Digital Garment Design
	Computerized Machine Knitting
	Thesis Overview

	I Background
	Textiles Background
	Context and Applications of Textiles
	Textile, Fabric or Cloth
	Historical Context and Importance
	Applications Areas

	From Fiber to Yarn
	Types of Fibers
	Fiber Processing

	From Fiber to Textile and Fabric
	Weaving
	Knitting
	Crochet
	Braiding
	Knotting
	Sewing
	Tufting
	Non-Woven
	Napped and Pile Fabric

	Computerized Machine Knitting
	Flat Knitting Machinery
	Needles and Needle Beds
	Carriage
	Yarn Carriers
	Rollers
	Basic Operations
	Special Carrier Modes

	Low-Level Machine Knitting Programming
	Time–Needle Images
	Instruction Sequences

	Stitch Representations
	Mesh-based Representations
	Graph-based Representations

	II Knitted Garment Design and Programming
	Learning-Based Garment Programming
	Introduction
	Machine Knitting Instructions
	A Domain-Specific Language for Patterns
	From High- to Low-level Instructions

	Dataset for Knitting Patterns
	Pattern Instructions
	Knitting Many Samples

	Learning Framework
	Learning from Different Domains
	Loss Function

	Implementation Details
	The Refiner Network
	Loss Balancing Parameters
	Data Augmentation
	Training Procedure
	Data Post-Processing

	Evaluation
	Comparison to Baselines
	Impact of Loss and Data Mixing Ratio
	Impact of Dataset Size
	Larger Models
	Knitting the Inferred Programs

	Discussions and Related Work
	Pattern Scale Identification
	Learning with Simulated Data
	Semantic Segmentation
	Neural Program Synthesis

	Primitive-Based Garment Design
	Knitting Templates
	Limitations of Existing Templates
	Existing Primitives for Knitting
	Proposed Workflow

	Parametric Shape Primitives
	Sheet / Tube
	Joint
	Split / Merge
	Editing Primitive Parameters
	Programmatic Shaping

	Patterning
	Pattern Operations
	Patterning DSL
	Drawing Layers
	Half-Gauge Knitting

	Implementation Overview
	Stitch Graph Computation
	Patterning
	Layout Optimization
	Knitting Interpretation
	Knitting Simulation
	Code Generation

	Results and Discussions
	Scope of Shaping Primitives
	Pattern Layers in Action
	Performance
	Missing yet Desirable Features

	User Experience
	Procedure
	Feedback and Results
	Example of Issues and Iterations to Fix Them

	Sketch-based Garment Workflow
	Traditional Garment Workflow
	Digital Garment Design

	From Sketches to Knitting Programs
	Proposed User Workflow

	Computing the Knitting Time Function
	Discretization
	Computing Time and Direction Fields
	Termination
	Curvature and Time
	Topological Opening

	Region Graph Construction
	Tracing Candidate Isolines
	Computing Regions from Dependency Paths
	Building the Bipartite Region Graph

	Hierarchical Stitch Sampling
	Interface Sampling
	Region Sampling
	Stitch Connectivity
	Short-row Insertion

	Yarn Tracing
	Scheduling Stitches onto Needles
	Slicing
	Layout Representations
	Schedule Optimization

	Code Generation
	Code Passes
	Half-Gauge vs Full-Gauge
	Shaping with Collapse-Shift-Expand
	Shaping with Rotate-Shift

	Layer-based Customization
	User Stitch Programs
	Screen-space vs. Stitch-space Layers
	Layer Interactions
	Stitch Pattern Layers
	Multi-Yarn Pattern Layers
	Intarsia Layers

	Results and Discussions
	Knitted Garment Samples
	Scheduling Algorithms
	The Importance of Details
	Binding Fabric

	Scalability and Performance
	Complexity
	Parameters
	Interactivity
	Convergence of the Optimizations
	Subdivision Strategies

	Conclusion
	Impact Summary
	Future Work
	Learning-based Workflow
	Primitives-based Workflow
	Sketch-based Workflow

	Proofs and Definitions
	Implementation Details
	Solving the IQP Problems
	Affordable Geodesic Computations
	Stitch Sampling and Alignment
	Short-row Density Alignment
	Stitch Course Alignment

