Rate this Page

PyTorch: Tensors#

Created On: Dec 03, 2020 | Last Updated: Dec 03, 2020 | Last Verified: Nov 05, 2024

A third order polynomial, trained to predict \(y=\sin(x)\) from \(-\pi\) to \(pi\) by minimizing squared Euclidean distance.

This implementation uses PyTorch tensors to manually compute the forward pass, loss, and backward pass.

A PyTorch Tensor is basically the same as a numpy array: it does not know anything about deep learning or computational graphs or gradients, and is just a generic n-dimensional array to be used for arbitrary numeric computation.

The biggest difference between a numpy array and a PyTorch Tensor is that a PyTorch Tensor can run on either CPU or GPU. To run operations on the GPU, just cast the Tensor to a cuda datatype.

99 936.752685546875
199 622.59716796875
299 414.8085021972656
399 277.3704833984375
499 186.4628448486328
599 126.33118438720703
699 86.5556869506836
799 60.244606018066406
899 42.83978271484375
999 31.326017379760742
1099 23.709278106689453
1199 18.670387268066406
1299 15.336673736572266
1399 13.13105297088623
1499 11.671746253967285
1599 10.706193923950195
1699 10.067300796508789
1799 9.644535064697266
1899 9.364765167236328
1999 9.179624557495117
Result: y = -0.0024831201881170273 + 0.8383749723434448 x + 0.0004283789894543588 x^2 + -0.09071800112724304 x^3

import torch
import math


dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU

# Create random input and output data
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)

# Randomly initialize weights
a = torch.randn((), device=device, dtype=dtype)
b = torch.randn((), device=device, dtype=dtype)
c = torch.randn((), device=device, dtype=dtype)
d = torch.randn((), device=device, dtype=dtype)

learning_rate = 1e-6
for t in range(2000):
    # Forward pass: compute predicted y
    y_pred = a + b * x + c * x ** 2 + d * x ** 3

    # Compute and print loss
    loss = (y_pred - y).pow(2).sum().item()
    if t % 100 == 99:
        print(t, loss)

    # Backprop to compute gradients of a, b, c, d with respect to loss
    grad_y_pred = 2.0 * (y_pred - y)
    grad_a = grad_y_pred.sum()
    grad_b = (grad_y_pred * x).sum()
    grad_c = (grad_y_pred * x ** 2).sum()
    grad_d = (grad_y_pred * x ** 3).sum()

    # Update weights using gradient descent
    a -= learning_rate * grad_a
    b -= learning_rate * grad_b
    c -= learning_rate * grad_c
    d -= learning_rate * grad_d


print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')

Total running time of the script: (0 minutes 0.206 seconds)