torch.nn.utils.prune.random_structured#
- torch.nn.utils.prune.random_structured(module, name, amount, dim)[source]#
Prune tensor by removing random channels along the specified dimension.
Prunes tensor corresponding to parameter called
nameinmoduleby removing the specifiedamountof (currently unpruned) channels along the specifieddimselected at random. Modifies module in place (and also return the modified module) by:adding a named buffer called
name+'_mask'corresponding to the binary mask applied to the parameternameby the pruning method.replacing the parameter
nameby its pruned version, while the original (unpruned) parameter is stored in a new parameter namedname+'_orig'.
- Parameters
module (nn.Module) – module containing the tensor to prune
name (str) – parameter name within
moduleon which pruning will act.amount (int or float) – quantity of parameters to prune. If
float, should be between 0.0 and 1.0 and represent the fraction of parameters to prune. Ifint, it represents the absolute number of parameters to prune.dim (int) – index of the dim along which we define channels to prune.
- Returns
modified (i.e. pruned) version of the input module
- Return type
module (nn.Module)
Examples
>>> m = prune.random_structured(nn.Linear(5, 3), "weight", amount=3, dim=1) >>> columns_pruned = int(sum(torch.sum(m.weight, dim=0) == 0)) >>> print(columns_pruned) 3